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Nonentangling channels for multiple collisions of quantum wave packets
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We consider multiple collisions of quantum wave packets in one dimension. The system under investigation
consists of an impenetrable wall and two hard-core particles with very different masses. The lighter particle
bounces between the heavier one and the wall. Both particles are initially represented by narrow Gaussian
wave packets. A complete analytical solution of this problem is presented. The idea of the method used is to
decompose the two-particle wave function into a continuous superposition of terms (channels), such that the
multiple collisions within each channel do not lead to subsequent entanglement between the two particles. For
each channel, the time evolution of the two-particle wave function is completely determined by the motion of
the corresponding classical pointlike particles; therefore the whole quantum problem is reduced to a classical
calculation. The calculation based on the above method reveals the following unexpected result: The entanglement
between the two particles first increases with time due to the collisions, but then it begins to decrease, disappearing
completely when the light particle becomes too slow to catch up with the heavy one.
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I. INTRODUCTION

In quantum mechanics, particles are often represented by
wave packets. According to the Schrödinger equation, the
wave packet of a free particle typically spreads without a
limit. This spread was of concern in the early days of quantum
mechanics for Schrödinger himself [1], because it had never
been observed for macroscopic systems. He was able to
identify the nonspreading coherent wave packets only for
the harmonic potential. In the free-particle case, the spread
of the wave packets and the accompanying winding of the
quantum phase significantly complicate practical calculations,
in particular, in the treatment of multiple collisions between
particles. Typically, each collision between two quantum wave
packets leads to entanglement between them [2–10]. As a
result, the wave function of the system after many collisions
becomes increasingly intractable.

The studies of colliding wave packets are often motivated
either by the agenda of the controlled generation of entangle-
ment [3,5–8] or by studies of quantum decoherence [2,4,9].
In both contexts, the treatment of multiple collisions between
quantum wave packets is of significant interest. In the former
context, it was investigated for two cold atoms in a harmonic
trap in Ref. [3].

In this article, we consider the problem of a light particle
bouncing between a heavy particle and a wall, shown in Fig. 1,
and propose a method for dealing with multiple scattering
of quantum wave packets. This method is based on the
observation that there exist special initial conditions which
do not lead to entanglement between two colliding Gaussian
wave packets. We refer to states with these conditions as
“nonentangling channels.” The method consists of decompos-
ing the initial wave function of the system as a superposition
of nonentangling channels. The calculation for each channel
becomes largely classical, even though the complete solution
retains all the usual quantum features. For the two-particle
problem considered, we report a remarkable result: Even
though the wave packets of the two particles become entangled
after initial collisions, the entanglement begins to decrease
later and eventually disappears completely.

II. FORMULATION OF THE PROBLEM

The setting of our problem is shown in Fig. 1. We use the
variable x for the coordinate and for all subscripts referring to
the light particle. Correspondingly, the variable y refers to the
heavy particle. The two particles have very different masses mx

and my such that ε = √
mx/my � 1. We assume the particles

to be nonrelativistic. They interact via the hard-core potential.
The wall is represented by an infinitely high potential step.
The Hamiltonian of the problem is

Ĥ = p̂2
x

2mx

+ p̂2
y

2my

+ S1�(x − y) + S2�(−x), (1)

where p̂x and p̂y are momentum operators and �(x) is the
Heaviside step function. We consider only the hard-core limits
S1 → ∞ and S2 → ∞; therefore the light particle always
remains localized between the heavy particle and the wall.

Initially, the light particle is moving while the heavy particle
is at rest. We assume a nearly factorized initial state of two
Gaussian wave packets (with h̄ = 1):

ψ0(x,y) ∼ exp

{
− [x − xM0]2

2σ 2
0x

+ ipx0x− [y − yM0]2

2σ 2
0y

}
, (2)

where 0 < xM0 < yM0 are the maxima of the Gaussians,
px0 > 0 the initial momentum of the light particle, and σ0x

and σ0y the widths of the respective wave packets, which are
assumed to be much smaller than any of the three distances
xM0, yM0, and yM0 − xM0. The sign “∼” in Eq. (2) means

wall light particle heavy particle

0 xM0 yM0

FIG. 1. (Color online) The system considered: a light particle
bouncing between a heavy particle and a wall.
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that the wave function needs to be slightly modified to
remove the overlap of the exponentially small tails of the
particles’ wave functions and the penetration of these tails
into the wall. A possible form of this modification is given in
Appendix A. We further consider only sufficiently large values
of px0, such that the widths of both wave packets remain much
smaller than yM0 until the collisions between the two particles
stop (see below). Therefore, we use the approximation that
every collision involves only two constituents: either the two
particles or the light particle and the wall.

III. PRELIMINARY CONSIDERATIONS

Let us first recall that a Gaussian wave packet, initially
with the maximum at xM0, the width σ0x and momentum px0

evolves according to a free-particle Schrödinger equation as

φ(x; t) = N (t) exp

{
− [x − xc(t)]2

2βx(t)2
+ ipx0x

}
, (3)

where βx(t)2 = σ 2
0x(1 + it

mxσ
2
0x

) is the width parameter,

xc(t) = xM0 + px0

mx
t is the time-dependent position of the max-

imum, and N (t) is the normalization factor. The probability
distribution of positions |φ(x; t)|2 remains Gaussian. Its width
grows with time as |βx(t)2|. We also introduce the analogous
width parameter for the heavy particle, βy(t)2 = σ 2

0y(1 +
it

myσ
2
0y

). The above-mentioned narrow-wave-packet assumption

implies that

|βy(t)|,|βx(t)| � yM0. (4)

We use the description of the reflection of the light particle
from the wall given in Ref. [2]. This description incorporates
the wall by considering the antisymmetric superposition of
the free-particle Gaussian and its mirror image with respect
to the position of the wall, i.e., φ(x; t) − φ(−x; t). Far away
from the wall φ(x; t) dominates before the collision, while
φ(−x; t) dominates after the collision. Hence, the description
of the particle-wall reflection amounts to the transformation
x → −x in the free-particle Gaussian (3) (see Appendix B).

The single collision of two wave packets via a hard-
core potential in one dimension has been described in
Refs. [4,7,8]. If the Hamiltonian of the two-particle interaction
is rewritten using the center-of-mass coordinate R = (mxx +
myy)/(mx + my) and the relative coordinate r = x − y, the
problem separates into a free-particle motion for variable R

and the wall reflection problem for variable r . By analogy with
the particle-wall collision, the two-particle collision can be
described by the transformation r → −r with the subsequent
transformation back to the variables (x,y) (see Appendix C).
If the initial wave function has the form (2), then, after one
collision between the two particles, the wave function becomes

ψ1(x,y; t) ∼ exp
{
Axx

1 x2 + A
yy

1 y2 + A
xy

1 xy + Bx
1 x+ B

y

1 y
}
,

where all coefficients are functions of time and other pa-
rameters of the problem. In general, this wave function is
entangled in terms of variables x and y because of the term
A

xy

1 xy appearing in the exponent. However, this term vanishes

[2,4,7–9], i.e., A
xy

1 = 0, when1

mxσ
2
0x = myσ

2
0y. (5)

In this case, not only the entanglement vanishes but also
the width parameters βx(t) and βy(t) continue evolving as
in the corresponding free-particle cases, i.e., after the collision
the wave function is

ψ1(x,y; t) ∼ exp

{
− [x − xM(t)]2

2βx(t)2
+ ipx1x

}

× exp

{
− [y − yM(t)]2

2βy(t)2
+ ipy1y

}
, (6)

where px1 and py1 are the momenta and xM(t) and yM(t) are
the maxima of the wave packets moving as the coordinates of
two reflected classical particles. The relation (5) implies that
mxβx(t)2 = myβy(t)2 holds both before and after the collision.
It also implies that the kinetic energies stored in the momentum
distributions of each of the two particles in the rest frames
of their respective wave packets are equal to each other—a
situation somewhat reminiscent of the thermal equilibrium.

We observe further that since the evolutions of the param-
eters βx(t) and βy(t) remain unaffected after a two-particle
collision in the case of the condition (5) and the same is true for
the particle-wall collision, the ansatz of the form (6) remains
valid after multiple collisions of the light particle with the wall
and with the heavy particle. The evolutions of the centers of the
Gaussian wave packets xM(t) and yM(t) and their respective
momenta can be calculated by identifying the wave packet’s
maxima with the coordinates of classical pointlike particles.
These are what we call “nonentangling channels.”

IV. SOLUTION BASED ON THE DECOMPOSITION
INTO NONENTANGLING CHANNELS

We now turn to the general case when the wave packets do
not obey the relation (5). We limit ourselves to the case

mxσ
2
0x < myσ

2
0y. (7)

(The opposite inequality affords qualitatively the same treat-
ment.) The inequality (7) is equivalent to the statement that the
initial wave packet for the heavy particle is too broad to obey
the relation (5). Central to our method is the representation of
the initial wave packet for the heavy particle as a superposition
of Gaussian wave packets with different maxima but the same
width, which is smaller than the initial one σ0y such that
it obeys Eq. (5). That is, each of the wave packets in this
decomposition together with the wave packet for the light
particle describes a nonentangling channel. In this way, we
reduce the whole quantum problem to the classical calculation
of the probability distribution for the nonentangling channels.

We divide σ 2
0y into two parts

σ 2
0y = �σ 2

y,0 + σ 2
yT , (8)

where σ 2
yT is defined by the condition mxσ

2
0x = myσ

2
yT

[cf. Eq. (5)], and rewrite the initial wave function in Eq.(2)

1Another case of vanishing entanglement is mx = my .
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using the mathematical fact that the convolution of two
Gaussian functions is a Gaussian function again:

ψ0(x,y) ∼ exp

{
− [x − xM0]2

2σ 2
0x

+ ipx0x

}

×
∫ ∞

−∞
dym exp

{
− [ym − yM0]2

2�σ 2
y,0

}

× exp

{
− [y − ym]2

2σ 2
yT

}
. (9)

The first Gaussian function inside the integral can be inter-
preted as the distribution of the maxima ym for the heavy
particle in different nonentangling channels. We also introduce
the variable xm for the maxima of the light particle for each
nonentangling channel. According to Eq. (9), all xm initially
coincide with xM0.

The problem is now reduced to calculating the time evolu-
tion of the positions xm and ym of classical particles and then
obtaining the probability distribution of these positions, which
we denote as Pxy,n(xm,ym; t). Here the index n represents the
number of collisions between the two particles that occurred
before time t in each nonentangling channel. Given our
assumption of sufficiently narrow wave packets, we consider
only the moments of time between the collisions when particles
in each nonentangling channel have experienced the same
number of collisions and, otherwise, are sufficiently far from
each other and from the wall. Therefore, assigning the same in-
dex n to all nonentangling channels at a given moment of time
is justified. Since the momenta of the particles do not change
between the collisions, their respective values pxn and pyn

depend only on the number of preceding collisions n but not on
the channel and not on time. Below we also use marginal prob-
ability distributions Px,n(xm; t) ≡ ∫ ∞

−∞ dymPxy,n(xm,ym; t) and
Py,n(ym; t) ≡ ∫ ∞

−∞ dxmPxy,n(xm,ym; t).
The time evolution of the wave function of the system can

now be represented as

ψn(x,y; t) ∼
∫ ∞

−∞

∫ ∞

−∞
dxmdym Pxy,n(xm,ym; t)

× exp

{
− [x − xm]2

2β2
x (t)

±ipxnx

}

× exp

{
− [y − ym]2

2ε2β2
x (t)

+ipyny

}
, (10)

where the sign ± implies + when the light particle moves
away from the wall, and − when it moves toward the wall.

According to Eq. (9), the initial probability distribution for
the underlying classical problem is

Pxy,0(xm,ym; 0) = N0 exp

{
− [ym − yM0]2

2�σ 2
y,0

}

× δ (xm − xM0) , (11)

where N0 is the normalization constant. The corresponding
marginal probability distributions Px,0(xm; 0) and Py,0(ym; 0)
are illustrated in Fig. 2: The light particle has a definite initial
position xM0 and the momentum px0, while the heavy particle
has a Gaussian distribution of possible initial positions ym and
no momentum. The subsequent evolution of Pxy,n(xm,ym; t)

Δσy,0

mymx

y
M0

px0 Py,0(ym ; 0)

PX,0(xm ; 0 )

x
M00

FIG. 2. (Color online) Classical probability distributions
Px,0(xm; 0) and Py,0(ym; 0).

is obtained below in the leading order in the small parameter
ε = √

mx/my .
In each two-particle collision, the light particle transfers

momentum to the heavy particle. Eventually, the collisions
stop when the light particle becomes too slow to catch up with
the heavy particle. The last collision will have index

nmax ≈ π

4ε
(12)

(see Appendix D).
The evolution of the probability distribution Pxy,n(xm,ym; t)

between the collisions, i.e., for a fixed value of n, just amounts
to the shift of the values of xm and ym associated with
the motion with respective velocities pxn/mx and pyn/my .
Therefore, the shape of Pxy,n(xm,ym; t) changes only when n

changes.
Two trends in the evolution of the probability distribution

Pxy,n(xm,ym; t) as a function of n can be anticipated, namely,
an initial increase in the spread of the possible values of xm and
an initial decrease in the spread of the possible values of ym.
Both trends originate from the time delay between collisions
for different initial positions of the heavy particle, ym0: The
larger ym0, the later the first and the subsequent collisions
occur. The effect of each such time delay is rather small, but it
accumulates after many collisions. The resulting evolution of
the particle coordinates is obtained in Appendix D. The result
is

xm(ym0; t) = xM(t) + sin(2εn)

ε
(ym0 − yM0), (13)

ym(ym0; t) = yM(t) + cos(2εn)(ym0 − yM0), (14)

where xM(t) and yM(t) represent the “reference” trajectory
for the center of the probability distribution corresponding
to ym0 = yM0, and xm(ym0; t) and ym(ym0; t) stand for the
positions of the two classical particles at time t provided
that the heavy particle was at ym0 at t = 0. The above
equations reveal that the distances xm(ym0; t) − xM(t) and
ym(ym0; t) − yM(t) are proportional to the initial distance
ym(ym0; 0) − yM(0) = ym0 − yM0 and the scaling factors do
not depend on ym0; in particular,

xm(ym0; t) − xM(t) = tan(2εn)

ε
[ym(ym0; t) − yM(t)]. (15)

Given the initial distribution Pxy,0(xm,ym; 0) and the scaling
relations (14) and (15), we obtain the distribution at later times
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as

Pxy,n(xm,ym; t)

= Nn exp

{
− [ym − yM(t)]2

2�σ 2
y,n

}

×δ

(
xm − xM(t) − tan(2εn)

ε
[ym − yM(t)]

)
, (16)

where Nn are normalization factors and

�σy,n = �σy,0| cos(2εn)| (17)

[cf. Eq. (14)]. The corresponding marginal distribution
Py,n(ym; t) is, up to a prefactor, equal to the exponential factor
in Eq. (16), while the marginal distribution with respect to xm

is

Px,n(xm) ∼= exp

{
− [xm − xM(t)]2

2�σ 2
x,n

}
, (18)

where �σx,n = �σy,0| sin(2εn)|/ε [cf. Eq. (13)].
According to Eqs. (16) and (17), the marginal distribution

Py,n(ym; t) contracts to a δ function when the number of
collisions reaches the critical value ncr ≈ π

4ε
. Since this value

is equal to nmax, the collisions stop at the same time.

V. DISCUSSION

A. Evolution of entanglement

According to Eq. (10), there is a direct connection between
the entanglement properties of the wave function of the system
in terms of variables x and y and the factorizability of the
classical probability distribution Pxy,n(xm,ym; t) in terms of
variables xm and ym. The former is entangled if and only if the
latter is not factorizable. For example, the initial wave function
ψ0(x,y) is not entangled and the corresponding probability
distribution Pxy,0(xm,ym; 0) given by Eq. (11) is factorizable.
According to Eq. (16), the distribution Pxy,n(xm,ym; t) be-
comes not factorizable at later times due to the presence of
ym in the δ function. Therefore, the wave function of the
system becomes entangled. However, after the critical number
of collisions ncr, the Gaussian in Eq. (16) contracts to the δ

function and as a result Pxy,n(xm,ym; t) becomes factorizable
again. Thus, the two particles are no longer entangled at the
time when the collisions stop.

Substituting Eq. (16) into Eq. (10), we obtain

ψn(x,y; t) ∼ exp
{
Axx

n x2 + Ayy
n y2 + Axy

n xy + Bx
nx + By

ny
}
,

where of particular interest is the coefficient

Axy
n = sin(4εn)

[
β2

y (t) − ε2β2
x (t)

]
2
√

εβ2
x (t)β2

y (t)
, (19)

which controls the entanglement between the two particles.
As anticipated, it is equal to zero for n = 0 and n = ncr.
The other two A coefficients are Axx

n = − cos2(2εn)
2β2

x (t) − sin2(2εn)
2β2

y (t) ε2

and A
yy
n = − cos2(2εn)

2β2
y (t) − sin2(2εn)

2β2
x (t)

1
ε2 . We omit the explicit expres-

sions for the coefficients Bx
n and B

y
n .

At n = ncr, we obtain Axx
ncr = − ε2

2β2
y (t) = A

yy

0 ε2 and A
yy
ncr =

− 1
2ε2β2

x (t) = Axx
0

1
ε2 , which implies that, by the time when

the collisions stop, the two wave packets exchange the
kinetic energies stored in the momentum distributions in their
respective rest frames.

B. Validity of the narrow-wave-packet assumption

The applicability of our results is limited by the narrow-
wave-packet assumption that both |βx(t)| and |βy(t)| should be
much smaller than yM(t), which for the sake of an estimate can
be further approximated as yM0. We limit ourselves to the case
|βx(t)| 	 |βy(t)|. Therefore, the critical condition invalidating
our approximation is

y2
M0 = |βx(t)|2 = σ 2

0x

(
1 + t2h̄2

m2
xσ

4
0x

)
≈ t2h̄2

m2
xσ

2
0x

. (20)

Denoting the number of collisions required to reach this
condition as nbal, then approximating the corresponding time
as t ≈ 2yM0nbal/vx0, and, finally, substituting it in Eq. (20),
we obtain

nbal ≈ mxσ0xvx0

4h̄
. (21)

The condition for the validity of our approximation becomes

nmax � nbal, (22)

where, as derived in the previous section, nmax ≈ π
4ε

. Condition
(22) is thus equivalent to

εmxσ0xvx0

πh̄
	 1. (23)

Let us now give a concrete example when the left-hand side
of inequality (23) is approximately equal to 1. This critical
situation may be realized when the light particle is a big
molecule with mx = 10−20 g and the heavy particle is a very
small dust grain of mass my = 10−10 g. The initial velocity
of the molecule is vx0 = 104 cm/s. The initial wave-packet
widths of the two particles are σ0x = 10−6 cm and σ0y =
10−10 cm.

In order to satisfy condition (23) starting from the above
numbers, one should increase the value of either of the
parameters appearing in the product εmxσ0xvx0.

C. Alternative frameworks

The results obtained in Sec. IV can also be reproduced
by representing both the reflection from the wall and the
two-particle collision as linear transformations of the coef-
ficients Axx

n , A
yy
n , A

xy
n , Bx

n , and B
y
n and then multiplying the

transformation matrices. Another way to treat our problem of
two particles in one dimension is to convert it into a problem
of one particle in two dimensions bouncing between two walls
forming a narrow wedge. This can be seen by introducing a
new variable y ′ = y

√
mx/my , so that the Hamiltonian (1) can

be rewritten as

Ĥ = p̂2
x

2mx

+ p̂2
y ′

2mx

+ S1�(x − y ′√my/mx) + S2�(−x).

(24)

This is the Hamiltonian of a free particle with mass mx

constrained by two impenetrable walls at x = 0 and x =
y ′√my/mx .
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VI. CONCLUSIONS

In conclusion, we have described a method for dealing
analytically with interacting one-dimensional wave packets
and applied it to the system depicted in Fig. 1. The essence
of the method is the reduction of a quantum problem to
classical calculations. The idea of this method is generalizable
to problems with non-Gaussian shapes of the wave packets
and larger numbers of particles in one dimension. Possible
generalizations to higher dimensions and to different interac-
tion potentials require further study. The unexpected result is
that the entanglement between the two particles that arises due
to the collisions vanishes by the time when the collisions stop.
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APPENDIX A: FULL EXPRESSION FOR THE INITIAL
WAVE FUNCTION IN EQ. (2)

The sign “∼” in Eq. (2) means that the wave function needs
to be slightly modified to exclude the mutual penetration of
the two particles and the wall and then normalized. Since the
tails are exponentially small, the details of this modification
are not important. One just needs to introduce a cutoff factor,
which varies sufficiently slowly as a function of x and y. A
possible way of doing this is

ψ (c)(x,y) = N exp

{
− [x − xM0]2

2σ 2
0x

+ ipx0x − [y − yM0]2

2σ 2
0y

}

× sin

(
πx

y

)
�(x)�(y − x), (A1)

where N is a normalization constant and �(x)�(y − x) are the
Heaviside step functions. The sine factor in Eq. (A1) preserves
the continuity of the wave function at x = 0 and x = y.

Once the light particle approaches either the wall or the
heavy particle, the behavior of the respective tail will evolve
to follow the result of the “antisymmetrized image” procedure
described in the next two sections.

One might be concerned that, since the initial Gaussian
wave packets (2) are supposed to be truncated as described,
every collision will introduce an error into the wave function,
which will accumulate with the number of collisions. However,
one needs to remember that the possible corrections due to the
truncation of the Gaussian wave packets (2) are exponentially
small in terms of the ratios of the widths of the wave packets
to the distance between the heavy particle and the wall.
Particularly important here is the ratio |βx(t)|/yM0 constrained
in Sec. V B. Since the maximum number of collisions given
by Eq. (12) is only polynomially large in terms of the
inverse of our small parameter ε, the accumulated effect of
the truncation error should still be exponentially small after
multiple collisions.

APPENDIX B: REFLECTION OF A WAVE PACKET
FROM THE WALL

Here, we briefly summarize the “antisymmetrized image”
method for calculating the reflection of a quantum wave packet
from a hard wall. The Hamiltonian of a quantum system
consisting of one particle and an impenetrable wall is

Ĥx = − h̄2

2mx

∂2

∂x2
+ S�(−x) (B1)

in the limit S → ∞. In the region x > 0, the particle is free to
move, but it cannot penetrate the region x � 0. Therefore, its
wave function should continuously approach 0 from the side
of positive x and stay 0 on the negative-x side.

Let us consider a wave function, which is well approximated
far from the wall by a Gaussian wave packet

φ(x; t) = N (t) exp

{
− [x − xc(t)]2

2βx(t)2
+ ipx0x

}
. (B2)

In order to respect the boundary condition at the wall,
we introduce the mirror image of the above wave packet
φ(−x; t), then consider the antisymmetrized superposition of
the original packet and the image, and, finally, take only the
positive-x part of this superposition:

φa(x; t) = [φ(x; t) − φ(−x; t)] �(x). (B3)

One can check directly that the above wave function is, in fact,
an exact solution of the particle-wall problem.

According to Eq. (B2), the two wave packets φ(x; t) and
φ(−x; t) have opposite group velocities. Initially, they move
toward each other, then they meet and interfere at x = 0, and,
finally, separate again. Once they have separated, the main
contribution to Eq. (B3) comes from the Gaussian φ(−x; t).
This is why the approximation φa(x; t) ≈ −φ(−x; t) is valid
for sufficiently long times after the collision.

To summarize, the wave function after the reflection from
the wall is the wave function of the mirror image evolving
in free space. What happens during the collision is easily
computable, but we are not interested in it.

APPENDIX C: COLLISION BETWEEN
TWO HARD-CORE PARTICLES

A collision between two hard-core particles is described by
the Hamiltonian

Ĥ = p̂2
x

2mx

+ p̂2
y

2my

+ S�(x − y) (C1)

in the limit S → ∞. Before the collision, as long as the
particles are sufficiently far from each other, the wave function
of the system is well approximated as

ψ(x,y; t) ∼ exp

{
− [x − xM(t)]2

2βx(t)2
+ ipx0x

}

× exp

{
− [y − yM(t)]2

2βy(t)2

}
. (C2)
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We perform the standard transformation to the center-of-mass
coordinate

R = mxx + myy

mx + my

(C3)

and the relative coordinate

r = x − y. (C4)

The Hamiltonian in the new coordinates reads Ĥ = ĤR + Ĥr ,
where

ĤR = p̂2
R

2M
, (C5)

Ĥr = p̂2
r

2μ
+ S�(r) and S → ∞ (C6)

with the total mass M and the reduced mass μ, respectively,

M = mx + my, (C7)

μ = mxmy

mx + my

. (C8)

The dynamics of the center-of-mass coordinate R is just the
free-particle evolution. At the same time, the Hamiltonian Ĥr

in Eq. (C6) is exactly the same as the one in Appendix B.
The only difference from the one-particle situation is that now
two variables are present. By analogy with the particle-wall
collision, it can be shown that, in order to obtain the wave
function after the collision, the initial wave function should be
propagated in time as if the two particles were not interacting
and then the sign of r should be changed but not the sign of
R. This fact makes the result of this procedure nontrivial once
we rewrite the wave function after the collision in the (x,y)
coordinates:

ψ1(x,y; t) ∼ exp

{
− (my − mx)2

2β2
y (t)(mx + my)2

y2 − 2m2
y

β2
x (t)(mx + my)2

y2

}
exp

{
2myxc(t)

β2
x (t)(mx + my)

y − ipx0
2my

mx + my

y

}

× exp

{
− 2mx(my − mx)

β2
y (t)(mx + my)2

xy + 2my(my − mx)

β2
x (t)(mx + my)2

xy

}
exp

{
− 2m2

x

β2
y (t)(mx + my)2

x2 − (my − mx)2

2β2
x (t)(mx + my)2

x2

}

× exp

{
− (my − mx)xc(t)

β2
x (t)(mx + my)

x + ipx0
my − mx

mx + my

x − x2
c (t)

2β2
x

}
, (C9)

where xc is given in Sec. III. The momenta after the collision
px0

2my

mx+my
and px0

my−mx

mx+my
appearing in Eq. (C9) follow from

the classical energy and momentum conservation.

APPENDIX D: PROBABILITY DISTRIBUTIONS FOR THE
CLASSICAL MULTIPLE-COLLISION PROBLEM

As a part of the full quantum solution, we need to solve a
classical problem with the following initial conditions: A wall
is at the origin. The light particle has the initial momentum px0

and a definite initial position xM0, i.e., the initial probability
distribution of positions is Px,0(xm; 0) = δ(xm − xM0). The
heavy particle has zero initial momentum and the Gaussian
distribution of possible initial positions

Py,0(ym; 0) ∼= exp

{
− [ym − yM0]2

2�σ 2
y,0

}
. (D1)

Below we calculate the evolutions of the marginal probability
distributions Px,n(xm; t) and Py,n(ym; t) as functions of the
number of collisions n that have occurred. In order to do this,
we first fix an arbitrary initial position of the heavy particle ym0

and solve the problem in this specific case. Then we address
the evolution of the probability distributions.

1. Solution for a given ym0

At t = 0, we have the following initial situation: The light
particle is at xM0 with a momentum px0 directed toward

the heavy particle, which is at the position ym0. Before
starting with the quantitative analysis, let us summarize the
qualitative expectations. Due to the small but nevertheless
nonzero mass ratio ε = √

mx/my � 1, the light particle will
lose its momentum and accelerate the heavy particle at each
collision. This transfer of momentum lasts as long as the light
particle is faster than the heavy one. After the maximal number
of collisions nmax, the light particle will become too slow to
catch up with the heavy one. Because of the smallness of ε and
the conservation of energy, the velocity of the heavy particle
after the last collision is much smaller than the initial velocity
of the light particle, vx0 = px0/mx .

To compute the position of the heavy particle, we introduce
the function n(ym0; t) ≡ n, which represents the number of
collisions before time t . With such a definition,

ym(ym0; t) = y(n) + [t − t̃(n)]vy(n), (D2)

where y(n) and t̃(n) denote, respectively, the position and the
time of the nth collision and vy(n) the velocity of the heavy
particle after the nth collision.

The velocities vy(n) and vx(n) after n collisions can be
obtained using the following iteration relations:

vx(n + 1) = my − mx

mx + my

vx(n) − 2my

mx + my

vy(n), (D3)

vy(n + 1) = 2mx

mx + my

vx(n) + my − mx

mx + my

vy(n), (D4)
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which lead to
vx(n) = vx0 cos(nϕ), (D5)

vy(n) = vx0ε sin(nϕ), (D6)

where

ϕ = arctan

(
2ε

1 − ε2

)
≈ 2ε. (D7)

The maximal number of collisions can be determined from the
condition

vy(nmax) = vx(nmax) (D8)

which gives

nmax = arctan
(

1
ε

)
arctan

(
2ε

1−ε2

) ≈ π

4ε
. (D9)

To calculate the positions and the times of the collisions,
another set of iteration relations can be obtained:

y(n + 1) = vx(n) + vy(n)

vx(n) − vy(n)
y(n), (D10)

t̃(n + 1) − t̃(n) = 2

vx(n) − vy(n)
y(n). (D11)

Expanding expression (D10) in powers of the small parameter
ε up to the second order, we obtain

y(n + 1) ≈ (1 + 4nε2)y(n). (D12)

Since we expect the motion of the heavy particle to be slow,
the following approximation is valid:

y(n + 1) − y(n)

1
≈ dy(n)

dn
≈ 4nε2y(n) (D13)

and the solution to this equation is

y(n) = ym0 exp(2n2ε2). (D14)

Using Eq. (D14) and making the same approximation, we
obtain from Eq. (D11)

t̃(n) ≈ 2ym0

vx0
n

[
1 − ε2

(
4

3
n2 + n + 1

3

)]
. (D15)

It is important to know the inverse of this function,
which gives us the number of collisions occurring during
time t ,

n(ym0; t) ≈ tvx0

2ym0
− tvx0 (2tvx0 + ym0) (tvx0 − 2ym0)

12y3
m0

ε2.

(D16)

It is implied that the right-hand side of the above equation is
rounded from below. The first term in Eq. (D16) is what we

expect from an infinite-mass particle located at ym0. The minus
sign in front of the second term is also expected because a
nonzero mass ratio ε means that the same number of collisions
takes a longer time.

The position of the heavy particle between the nth and the
(n + 1)th collisions is

ym(ym0; t) = y(n) + [t − t̃(n)]vy(n). (D17)

Likewise, the position of the light particle xm(ym0; t) between
the two collisions can be written as

xm(ym0; t) = |y(n) − [t − t̃(n)]vx(n)|. (D18)

2. Evolution of the classical probability distributions

After obtaining the results for a given initial position of
the heavy particle, the evolutions of the marginal probability
distributions Px,n(xm; t) and Py,n(ym; t) can be calculated.
These probability distributions refer to the moments of time
between collisions, when, given the assumption of narrow
wave packets, the number of preceding collisions can be
assumed to be the same for any value of ym0. We now focus on
the shapes and the widths of these distributions as functions of
the number of collisions n.

The evolution of the probability distributions can be divided
into two alternating stages: the evolution between the collisions
and the change due to the collisions. During the first stage, i.e.,
for a fixed value of n, the probability distributions Px,n(xm; t)
and Py,n(ym; t) only shift along the xm and ym axes with
respective velocities pxn/mx and pyn/my . Therefore, the
shapes and widths of the distributions change only during the
second stage when n changes.

As mentioned in the main article, two trends in the
evolution of Px,n(xm; t) and Py,n(ym; t) can be anticipated
qualitatively, namely, an initial broadening of the distribution
Px,n(xm; t) for the light particle and an initial narrowing of the
distribution Py,n(ym; t) for the heavy particle. Both trends can
be understood with the help of Fig. 3, which represents the
time evolutions starting from two different initial conditions:
Case A and Case B.

In the beginning (t = t1), the light particle is at the same
position in both cases but the heavy particle is not. This is why
at a later time (t = t2), the first collision has already happened
in Case A but not yet in Case B. In Case B, the particles finally
collide at t = t3. After one collision in both cases (t = t4), the
two velocities of the light particles are the same and the two
velocities of the heavy particles are also the same. However,

t = t1 t = t2 t = t3 t = t4

Case A :

Case B:

FIG. 3. (Color online) In this sketch, the two rows represent two different initial conditions. The upper and the lower lines of figures
represent respectively Cases A and B described in the text. The columns represent the evolution in time. The arrows depict the velocities of the
particles.
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during the time delay between t2 and t3 the heavy particle was
moving faster in Case A. This is why the difference between
the heavy particle’s positions in the two cases decreases (the
distance between the red dashed lines). On the contrary, the
distance between the two positions of the light particle has
increased during the same interval from zero to a finite value
(the distance between the green dashed lines).

The changes of the relative distances in Fig. 3 are exag-
gerated. In reality, these changes are rather small. However,
they accumulate after multiple collisions. Moreover, as shown
below, the two trends described above additionally enhance
each other.

We now calculate the narrowing of the distribution
Py,n(ym; t). For this purpose, we investigate the evolution of
the distance between two different initial positions of the heavy
particle. Denoting the initial distance as (�y)0 and the distance
after n collisions as (�y)n we obtain

(�y)n−1 − (�y)n = �vn�tn, (D19)

where �vn is the difference in the velocities of the heavy
particles during the time delay. It follows from Eq. (D6) that

�vn = {sin(nϕ) − sin[(n − 1)ϕ]}εvx0. (D20)

The time delay in Eq. (D19) is

�tn = (�x)n−1 + (�y)n−1

{cos[(n − 1)ϕ] − ε sin[(n − 1)ϕ]}vx0
. (D21)

In the numerator, (�x)n−1 is the distance between the light
particles after n − 1 collisions. The denominator of Eq. (D21)
is the difference between the velocities of the heavy and the
light particles.

The distance between the light particles can be obtained
from

(�x)n = (�y)n−1 + �tn{cos(nϕ) + ε sin[(n − 1)ϕ]}vx0.

(D22)

In the context of Fig. 3, the second term in Eq. (D22)
corresponds to the distance the light particle travels in
Case A between t = t2 and t = t3. Inserting (D21) into (D22),
we obtain

(�x)n ≈ (�x)n−1 + 2(�y)n−1 ≈
n−1∑
i=0

2(�y)i . (D23)

Substituting (D20) and (D21) into (D19) and expanding the
result in terms of ε up to the second order, we further obtain
for a large n

(�y)n+1 − (�y)n ≈ −4ε2
n∑

i=0

(�y)i , (D24)

which, in the continuous limit, can be rewritten as

d(�y)n
dn

= −4ε2
∫ n

0
(�y)n′dn′. (D25)

The solution of this equation is

(�y)n = (�y)0 cos(2εn). (D26)

The consequence of the dependence (D26) is that the shape
of Py,n(ym; t) remains Gaussian. This originates in the fact
that the scaling factor cos(2εn) in Eq. (D26) does not depend
on ym0, i.e., the distance between two arbitrary points of the
distribution Py,n(ym; t) becomes rescaled by the same factor as
long as all points of the distribution have experienced the same
number of collisions. Therefore, it follows from Eq. (D26) that
the width of Py,n(ym; t) evolves as

(�σy)n = �σy | cos(2εn)|. (D27)

The explicit form of Py,n(ym; t) is thus

Py,n(ym; t) ∼= exp

{
− [ym − yM(t)]2

(�σy)n

}
, (D28)

where yM(t) = ym(yM0; t) is given in Eq. (D17).
To calculate (�x)n, we substitute (D26) into (D23), which

gives

(�x)n ≈ 2(�y)0

n−1∑
i=0

cos(2εi), (D29)

and then perform the summation with the help of the following
approximation:

n−1∑
i=0

cos(2εi) ≈
∫ n−1

0
cos(2εx)dx = 1

2ε
sin[2ε(n − 1)].

(D30)

Substituting Eq. (D30) into (D29) and approximating
n − 1 ≈ n, we obtain

(�x)n ≈ (�y)0

ε
sin(2εn). (D31)

Since the scaling factor sin(2εn)
ε

in Eq. (D31) does not depend
on ym0 and Py,n(ym; t) always has the Gaussian shape, the
distribution Px,n(xm; t) also acquires the Gaussian shape. Its
width (�σx)n evolves as

(�σx)n = �σy

ε
| sin(2εn)|. (D32)

Equations (12) and (13) of the main article for the evolution of
the particles’ coordinates follow from Eqs. (D26) and (D31)
and from the definitions xM(t) ≡ xm(yM0; t) [the right-hand
side (RHS) given by Eq. (D18)] and yM(t) ≡ ym(yM0; t)
[the RHS given by Eq. (D17)].
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