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The previously developed technique for evaluation of charge transfer and electron-excitation processes in
low-energy heavy-ion collisions [Tupitsyn et al., Phys. Rev. A 82, 042701 (2010)] is extended to collisions of ions
with neutral atoms. The method employs the active-electron approximation, in which only the active-electron
participates in the charge transfer and excitation processes while the passive electrons provide the screening
density-functional theory (DFT) potential. The time-dependent Dirac wave function of the active electron is
represented as a linear combination of atomic-like Dirac-Fock-Sturm orbitals, localized at the ions (atoms).
The screening DFT potential is calculated using the overlapping densities of each ion (atom), derived from the
atomic orbitals of the passive electrons. The atomic orbitals are generated by solving numerically the one-center
Dirac-Fock and Dirac-Fock-Sturm equations by means of a finite-difference approach with the potential taken
as the sum of the exact reference ion (atom) Dirac-Fock potential and of the Coulomb potential from the other
ion within the monopole approximation. The method developed is used to calculate the K-K charge transfer and
K-vacancy production probabilties for the Ne(1s22s22p6)-F8+(1s) collisions at the F8+(1s) projectile energies
130 and 230 keV/u. The obtained results are compared with experimental data and other theoretical calculations.
The K-K charge transfer and K-vacancy production probabilities are also calculated for the Xe-Xe53+(1s)
collision.

DOI: 10.1103/PhysRevA.85.032712 PACS number(s): 34.10.+x, 34.50.−s, 34.70.+e

I. INTRODUCTION

Collisions of highly charged ions provide a unique tool
for tests of relativistic and quantum electrodynamics (QED)
effects in the scattering theory [1–3]. Investigations of such
processes can also give access to QED in supercritical fields,
provided the total charge of the colliding nuclei is larger
than the critical one, Zc = 173 (see, e.g., Ref. [4] and
references therein). One of the most attractive ways for indirect
observation of the supercritical field created in the collision is
to investigate the dynamics of inner-shell electrons, which
can be rather sensitive to the collision parameters. The most
favorable conditions for studying the electron dynamics in
the supercritical field regime correspond to the projectile
energy of about the Coulomb barrier [5]. In the case of
U-U collisions this requires energy of about 6 MeV/u, which
means a low-energy collision. One of the key processes in
such collisions is the charge transfer of electrons (see, e.g.,
Ref. [6] and references therein). A systematic approach to
relativistic calculations of the charge transfer probabilities
and electron-excitation probabilities in low-energy heavy-ion
collisions was developed in our previous paper [7], where the
consideration was restricted to collisions of H-like ions with
bare nuclei. Since the experimental study of such collisions for
high-Z systems is presently rather problematic, an extention
of the method to collisions of highly charged ions with neutral
atoms, which can be studied in experiments with the current
GSI facility and future GSI Facility for Antiproton and Ion
Research (FAIR) [8,9], is needed. In this paper we present

the desired extention and perform calculations for low-energy
ion-atom collisions. To examine the approach we calculate the
K-K charge transfer and K-vacancy production probabilities
for low-energy collision of H-like F (F8+) and neutral Ne, the
process of which has been investigated both experimentally
[10] and theoretically [11–13]. The calculations are performed
at the F8+ projectile energies 130 and 230 keV/u. We also
evaluate the probabilities of the K-K charge transfer and
K-vacancy production in the Xe-Xe53+(1s) collision at the
projectile energy 3.6 MeV/u. The latter processes are planned
to be studied in the near future in experiments at GSI [8,9].

The paper is organized as follows. In Sec. II A we
describe the time-dependent one-electron equation in the
so-called active-electron approximation [14] and the method
for constructing the local Kohn-Sham potential induced by the
passive electrons. The wave function of the active electron is
expanded in terms of the Dirac-Fock and Dirac-Fock-Sturm
basis functions, which are central-field four-component Dirac
bispinors centered at the ions. The two-center relativistic
Kohn-Sham equation in the finite basis set is briefly discussed
in Sec. II B. The basis functions are obtained by solving
numerically the atomic Dirac-Fock and Dirac-Fock-Sturm
equations in an external field with a special choice of
the weight function, as was proposed in Refs. [15,16].
The external potential is a spherically symmetric Coulomb-
Hartree potential of the other ion (atom) taken in the monopole
approximation. The basis set constructed in this way and
the related calculation procedures are described in Sec. II C.
Basic formulas for the K-vacancy production probability are
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given in Sec. II D. In Sec. III we present the results of the
relativistic calculations of the Ne K-shell-vacancy production
and K-K charge transfer probabilities in the Ne-F8+ collisions
as a function of the impact parameter b at the projectile energies
130 and 230 keV/u. In this section we also present the results
of the neutral Xe K-shell-vacancy production and K-K charge
transfer probabilities in the Xe-Xe53+(1s) collision.

II. THEORY

A. Dirac-Kohn-Sham equation in the active-electron
approximation

In this paper we use so-called active-electron approximation
[14] to describe the ion-atom collision. In this approximation,
we consider only the active electron which participates in the
charge transfer and excitation processes, while the other pas-
sive electrons provide a screening potential. In our calculations
the screening potential is defined by the density-functional
theory (DFT) in the local-density approximation (LDA). In
this approach the time-dependent wave function ψ(r,t) of the
active electron is the solution of the relativistic time-dependent
Kohn-Sham equation. In atomic units (h̄ = m = e = 1), this
equation is given by

i
∂ψ(r,t)

∂t
= hDψ(r,t). (1)

Here hD is the two-center Dirac-Kohn-Sham Hamiltonian
defined by

ĥD = c(α · p) + βc2 + VAB(r),
(2)

VAB(r) = VH [ρ] + Vxc[ρ],

where c is the speed of light and α and β are the Dirac matrices.
VH [ρ] and Vxc[ρ] are the Hartree and exchange-correlation
potentials, respectively. Both of them are the functionals of the
electron density ρ(r). The Hartree potential VH [ρ] includes
the electron-nucleus interaction and the electron-electron
Coulomb repulsion VC[ρ]:

VH [ρ] = V A
nucl(rA) + V B

nucl(rB) + VC[ρ],
(3)

rA = r − RA, rB = r − RB,

where

Vnucl(r) =
∫

d3r ′ ρnucl(r ′)
|r − r ′| , VC[ρ] =

∫
d3r ′ ρ(r ′)

|r − r ′| , (4)

ρnucl(r) and ρ(r) are the nuclear and electron densities,
respectively. The exchange-correlation potential Vxc[ρ] was
taken in the Perdew-Zunger parametrization [17] including
the self-interaction correction (SIC).

The electron density ρ(r), obtained with the many-electron
wave function which is represented by a Slater determinant, is
invariant with respect to the rotations in the occupied orbitals’
space. For this reason, to obtain the electron density we can
use atomiclike orbitals, localized on both centers (A and B). In
this case the electron density, constructed from the orthogonal
localized orbitals, can be represented as a sum of densities
ρA(r) and ρB(r) which are localized on the centers A and B.
This is not the case, however, if the orbitals localized on the
different centers overlap and are nonorthogonal. The electron

density, derived from nonorthogonal orbitals, is given by

ρ(r) =
∑
i,j

ψ
(p)∗
i (r)(S−1)ijψ

(p)
j (r), (5)

where ψ
(p)
i (r) are the atomiclike wave functions of the passive

electrons and matrix S is the overlapping matrix. Note that
the electron density is normalized on the number of passive
electrons, ∫

d3rρ(r) = N − 1, (6)

where N is the total number of electrons. The electron density
ρ(r) can be divided into three parts,

ρ(r) = ρA(r) + ρB(r) + ρ
(ovlp)
AB (r), (7)

if we split the summation over indices i,j into the sum over
i,j ∈ A, the sum over i,j ∈ B, and the remaining overlapping
part. We can also split the overlapping density into two parts
dividing the space into two regions, A and B,

ρ
(ovlp)
AB (r) = ρ

(ovlp)
A (r) + ρ

(ovlp)
B (r). (8)

This can be done by the plane passing through the middle of
the internuclear distance (see Ref. [7] for details).

For simplicity, let us consider spherically average values of
the electron densities in each region,

ρA(rA) =
∫

d�A

[
ρA(r) + ρ

(ovlp)
A (r)

]
,

(9)
ρB(rB) =

∫
d�B

[
ρB(r) + ρ

(ovlp)
B (r)

]
.

This procedure does not change the normalization of the total
electron density,∫

d3rρ(r) =
∫

d3r[ρA(rA) + ρB(rB)] = N − 1. (10)

As a result, the potential VAB(r) can be approximated by the
sum of the spherically symmetric potentials of the two different
centers,

VAB(r) � VA[ρA](rA) + VB[ρB](rB). (11)

The overlapping densities must be taken into account
especially for the short internuclear distances. Otherwise, the
Pauli principle is violated and, as a result, the number of
electrons on the 1s shell of the united system can exceed 2.

It should also be noted that the time-dependent wave
function ψ(r,t) of the active electron is orthogonalized to the
wave functions ψ

(p)
i (r) of the passive electrons. This means

that the transitions of the active electron to the states occupied
by the passive electrons are forbidden in accordance with the
Pauli principle.

B. Two-center Dirac-Kohn-Sham equation

The two-center expansion of the time-dependent wave
function ψ(r,t) can be written in the form

ψ(r,t) =
∑

α=A,B

∑
a

Cαa(t)ϕα,a(r − Rα(t)), (12)
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where index α = A,B labels the centers, index a enumerates
basis functions at the given center, and ϕα,a(r − Rα) is the
central-field bispinor centered at point α. In what follows, the
shorthand notations |j 〉 ≡ |ϕj 〉 ≡ |ϕα,a〉 for states j ≡ α,a are
used. The expansion coefficients Caα(t) of the time-dependent
wave function ψ(r,t) can be obtained by solving the linear
system of first-order differential equations:

i
∑

k

Sjk

dCk(t)

dt
=

∑
k

(Hjk − Tjk)Ck(t), (13)

where indices j and k enumerate the basis functions of both
centers, and the matrix elements of H and S are

Hjk = 〈j |ĥD|k〉, Sjk = 〈j |k〉. (14)

The matrix elements of T are given by

Tjk = i〈j | ∂

∂t
|k〉 = T ∗

kj + i
∂

∂t
Sjk. (15)

Obviously the matrix T is non-Hermitian, if the overlapping
matrix S depends on time.

The functions ϕα,a depend on time due to two reasons.
First, the basis functions centered at the target and projectile
nuclei move together with the nuclei. Second, the basis
functions depend parametrically on the distance between the
nuclei, since their radial parts are obtained from the radial
equations, where for each center the potential of the other ion
(atom) is included in the so-called monopole approximation
(see Sec. II C).

C. Basis functions

In our approach the basis set contains Dirac-Fock and Dirac-
Fock-Sturm orbitals. The Dirac-Fock-Sturm orbitals can be
considered as pseudostates, which should be included in the
basis to take into account the contribution of the positive-
and negative-energy Dirac continuum. Both types of basis
functions ϕαa are central-field Dirac bispinors centered at the
position Rα (α = A,B) of the corresponding ion,

ϕnκm(r) =
(

Pnκ (r)
r

χκm(�)

i Qnκ (r)
r

χ−κm(�)

)
, (16)

where Pnκ (r) and Qnκ (r) are the large and small radial
components, respectively, and κ = (−1)l+j+1/2(j + 1/2) is
the relativistic angular quantum number. The large and small
radial components are obtained by solving numerically the
Dirac-Fock and Dirac-Fock-Sturm equations in the central-
field approximation. The radial Dirac-Fock equation is[

hDF
α + Vext(r)

]
Fαnκ (r) = εαnκFαnκ (r),

(17)

Fαnκ (r) =
(

Pαnκ (r)
Qαnκ (r)

)
,

where hDF
α is the radial Dirac-Fock Hamiltonian of ion α (α =

A,B), Fαnκ (r) is the two-component radial wave function,
and Vext(r) is a local external potential. The explicit form
of the radial Dirac-Fock equation and the description of the
corresponding computer code are presented in Ref. [18]. For
the details of the method see also Ref. [19]. The radial
components of the Dirac-Fock-Sturm orbitals ϕnκm, which
we denote by Fnκ (r), are the solutions of the generalized

Dirac-Fock-Sturm eigenvalue problem,[
hDF

α +Vext(r)−εαn0κ

]
Fαnκ (r) = λαnκ Wκ (r) Fαnκ (r). (18)

Here λαnκ can be considered as the eigenvalue of the Dirac-
Fock-Sturm operator and Wκ (r) is a constant sign weight
function. The energy εαn0κ is fixed in the Dirac-Fock-Sturm
equation. If the weight function W (r) → 0 at r → ∞, all
Sturmian functions have the same asymptotic behavior at
r → ∞. It is clear that for λαnκ = 0 the Sturmian function
ϕnκm coincides with the reference Dirac-Fock orbital ϕn0κm. In
our calculations we use the following weight function

Wκ (r) = −1 − exp[−(ακr)2]

(ακr)2
. (19)

In contrast to 1/r , this weight function is regular at the origin. It
is well-known that the Sturmian operator is Hermitian. It does
not contain continuum spectra, in contrast to the Dirac opera-
tor. Therefore, the set of the Sturmian eigenfunctions forms a
discrete and complete basis set of one-electron wave functions.

The external central-field potential Vext(r) in Eqs. (17) and
(18) is arbitrary, and, therefore, it can be chosen to provide most
appropriate Dirac-Fock and Dirac-Fock-Sturm basis orbitals.
At small internuclear distances the wave function of the atomic
electron experiences also the strong Coulomb field of the other
ion (atom). To the leading order this effect can be taken into
account by including the Coulomb-Hartree potential of the
second ion (atom) as the external potential Vext(r) within the
monopole approximation. For instance, the external central-
field potential V A

ext(r) is given by

V A
ext(r) = V B

mon(r) = 1

4π

∫
d�AV B

H (r − RAB), (20)

where V B
mon(r) is the spherically symmetric part of the

reexpansion of the Coulomb-Hartree potential V B
H (r − RAB)

of the ion B with respect to the center A and RAB is the
internuclear distance vector.

The matrix elements Hjk , Sjk , and Tjk [Eqs. (14) and (15)]
are expressed in terms of the one- and two-center integrals
which are evaluated by the method described in detail in
our previous paper [7]. The time-dependent Dirac-Kohn-Sham
equation for the active electron is solved using the two-center
basis set expansion. The expansion coefficients are determined
employing the direct evolution (exponential) operator method
[7], which is more stable compared to the others, such as,
e.g., the Crank-Nicholsen propagation scheme [20] and the
split-operator method [21]. To obtain the matrix representation
of the exponential operator in the finite basis set one has
to diagonalize the generalized complex Hamiltonian matrix
at each time step. Since our basis set is not too large, the
diagonalization procedure is not too time-consuming.

D. Charge transfer and vacancy production probabilities

The amplitudes of the charge transfer and excitations to
different bound states of the projectile and target ions are
calculated by projecting the time-dependent wave function
of the active electron onto the atomic Dirac-Fock orbitals
of the projectile and target. The corresponding calculations
for collisions of H-like ions with bare nuclei were described
in detail in our work [7]. That is why here we restrict our
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consideration only to the new features of the calculation
procedure that occur for atom-ion collisions within the one
active electron approximation.

Consider the collision of a neutral atom A (target) with a
H-like ion B (projectile). We assume that before the collision
the active electron occupies the 1s state of the target with
spin up (in the relativistic case, with the total angular moment
projection μ = 1/2) and the passive electron of the H-like ion
occupies the 1s state with spin down. In what follows, we are
interested in two processes: the K-K charge transfer and the
K-shell-vacancy production.

Let PA(1s) denote the probability to find the active electron
in the 1s state of the target after the collision and PB(1s)
denote the probability to find one active electron in the 1s

state of the projectile or, in other words, the probability PK-K

of the K-K shell charge transfer of one electron. To obtain
the probabilty Pvac of the K-shell-vacancy production, we
introduce the probabilities P (E1) and P (E2) of the events
E1 and E2, when a hole is created in the 1s state of the target
with spin up and spin down, respectively. The probabilities of
these events are defined by

P (E1) = 1 − PA(1s),

P (E2) = 1 − PA(1s) − PB(1s).
(21)

Assuming the events E1 and E2 are independent, the proba-
bility of production of at least one hole in the 1s state of the
target is given by

Pvac = P (E1) + P (E2) − P (E1)P (E2)

= 1 − PA(1s)[PA(1s) + PB(1s)]. (22)

We note that, since the sum of the probabilities PA(1s) and
PB(1s) is less than 1, the vacancy production probability
satisfies the condition 0 � Pvac � 1. It should also be noted
that the K-shell-vacancy production defined by Eq. (22)
includes the production of two holes in the target K shell.
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FIG. 1. The results of the present calculations for the probabilities
P (b) of the Ne K-shell-vacancy production (solid line) and of the
K-K-shell charge transfer (dotted line) as functions of the impact
parameter b for the Ne-F8+(1s) collision at the projectile energy
230 keV/u. The circles indicate experimental results by Hagmann
et al. [10]. The dashed and dash-dotted lines present theoretical results
by Fritsch and Lin [11] and by Thies et al. [13], respectively.
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FIG. 2. The results of the present calculations for the probabilities
P (b) of the Ne K-shell-vacancy production (solid line) and of the K-
K-shell charge transfer (dotted line) as functions of the impact param-
eter b for the Ne-F8+(1s) collision at the projectile energy 130 keV/u.
The circles indicate experimental results by Hagmann et al. [10]. The
dashed and dash-dotted lines present theoretical results by Lin et al.
(taken from Ref. [10]) and by Thies et al. [13], respectively.

III. RESULTS OF THE CALCULATIONS AND DISCUSSION

To test the approach we have studied the Ne-F8+(1s) colli-
sion for low energies where experimental and nonrelativistic
theoretical results are available [10–13]. In this case the nuclear
charge numbers are rather small and, therefore, relativistic
effects are negligible. We stress, however, that our approach
can be directly applied to heavier systems where the relativistic
effects become stronger or even dominant.

In our calculations the projectile (F8+) moves on a straight
line with constant velocity and the target (Ne) is fixed. In Fig. 1
we present the results of our calculations for the probabilities
P (b) of the Ne K-shell-vacancy production (solid line) and
of the K-K-shell charge transfer (dotted line) as functions

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.2

0.4

0.6

0.8

1

K vac.  Xe--Xe53+(1s) 

K-K      Xe--Xe53+(1s) 

K vac.  Xe53+(1s)--Xe54+

P(b)

b [a.u.]

FIG. 3. The probabilities P (b) of the Xe K-shell-vacancy pro-
duction (solid line) and of the K-K-shell charge transfer (dotted line)
in the Xe-Xe53+(1s) collision as functions of the impact parameter
b. The dashed line indicates the K-shell-vacancy production for the
Xe53+(1s)-Xe54+ collision.
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FIG. 4. The probability P (b) of the Xe K-shell-vacancy pro-
duction in the Xe-Xe53+(1s) collision as a function of the impact
parameter b. The solid and dashed lines present relativistic and
nonrelativistic results, respectively.

of the impact parameter b for the Ne-F8+(1s) collision at the
projectile energy 230 keV/u. The results for the Ne K-vacancy
production are compared with experimental values (circles)
[10] and with theoretical results obtained by Fritsch and Lin
(dashed line) [11] and by Thies et al. (dash-dotted line) [13].
It can be seen that our results are in perfect agreement with the
experimental ones.

The related results for the Ne-F8+(1s) collision at the
projectile energy 130 keV/u are presented in Fig. 2, where
the same notations as in Fig. 1 are used. We note that our
theoretical results are in good agreement with the experimental
ones at small impact parameters. However, in contrast to
Fig. 1, the agreement is not so good for medium and large
impact parameters, although the theoretical predictions for the
maximum and minimum positions agree rather well with the
experimental ones.

As one can see from Figs. 1 and 2, for both energies
at large impact parameters the K-vacancy production is
mainly determined by the K-K-shell charge transfer, which
is indicated by the dotted line. The difference between the K-
vacancy production and the K-K-shell transfer probabilities
at small impact parameters is due to the contribution from
the charge transfer excitation into the 2s, 2p, and higher
vacant states of the projectile. This is in accordance with
the experimental results of Ref. [22], where the K-vacancy
production in the Ne-F6+[(1s)22s] collision was studied. The
calculation of the latter process is currently under way and will
be published elsewhere.

In this work we also performed the related calculations for
the Xe-Xe53+(1s) collision at the projectile energy 3.6 MeV/u.
The experimental study of this process is planned at GSI
(Darmstadt) [8,9]. The probabilities P (b) of the Xe K-shell-
vacancy production and of the K-K-shell charge transfer as
functions of the impact parameter b are plotted in Fig. 3.
The solid and dotted lines represent the vacancy production
and the charge transfer, respectively. For comparison, in the
same figure we display the K-shell-vacancy production for the
Xe53+(1s)-Xe54+ collision that is indicated by the dashed line.

We note again that at large impact parameters the K-vacancy
production is almost completely determined by the K-K-shell
charge transfer. It can be also seen that in the case under
consideration the screening effect is rather small.

To investigate the role of the relativistic effects we per-
formed the same calculations for the Xe-Xe53+(1s) collision
in the nonrelativistic limit by multiplying the standard value of
the speed of light by the factor 1000. The obtained relativistic
and nonrelativistic results are presented in Fig. 4. As one can
see from the figure, the oscillatory behavior of both curves is
the same but the nonrelativistic curve is shifted toward larger
impact parameters.

IV. CONCLUSION

In this paper the method that was previously developed
for evaluation of the electron-excitation and charge transfer
processes in collisions of H-like ions with bare nuclei has
been extended to collisions of ions with neutral atoms. The
extention is based on the active-electron approximation, in
which the interaction of the active electron with the passive
electrons is accounted for by the screening DFT potential.

The method developed has been applied to evaluate the
K-vacancy production and the K-K charge transfer in the
low-energy Ne-F8+ collision. The results of the calculation
are compared with available experimental data and with
theoretical calculations by other authors. The influence of the
relativistic effects on the K-vacancy production probability is
investigated for the Xe-Xe53+ collision. It is demonstrated that
the relativistic and nonrelativistic probabilities as functions of
the impact parameter exhibit the same oscillatory behavior at
low energies but the relativistic curves are shifted toward lower
impact parameters compared to the nonrelativistic ones.

In our further investigation we plan to continue calculations
of low-energy heavy-ion collisions that are of interest for
current and near future experiments at GSI and FAIR in
Darmstadt. Special attention will be paid to the critical regime,
when the ground-state level of the united quasimolecule can
become so deeply bound to allow for spontaneous filling by
electron-positron pair creation. In the Dirac single-particle
picture this corresponds to the diving of the ground-state level
into the negative-energy Dirac continuum.

As is known (see, e.g., Refs. [4,23]), for a proper account
of the negative-energy continuum one should use the second
quantization formalism. Such a formulation, which is espe-
cially important in the near critical regime, and the correspond-
ing calculations will be presented in a forthcoming paper.
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