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Atomic-matter-wave diffraction evidenced in low-energy Na+ + Rb charge-exchange collisions
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Single charge transfer in low-energy Na+ + 87Rb(5s,5p) collisions is investigated using magneto-optically
trapped Rb atoms and high-resolution recoil-ion momentum spectroscopy. The three-dimensional reconstruction
of the recoil-ion momentum provides accurate relative cross sections for the active channels along with their
associated distributions in projectile scattering angle. The measurements are accompanied by molecular close-
coupling calculations. The predicted diffractionlike oscillations in angular distributions are clearly resolved by
the experiment. An excellent agreement is found between the present molecular calculations and the experimental
data.
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I. INTRODUCTION

Single charge exchange in low-energy ion-atom collisions
is quite an old topic which has been extensively studied for
decades. Concurrent advances in experimental and theoretical
techniques have led to a satisfying knowledge of the underlying
dynamics, which is reviewed in textbooks such as [1].
However, the interest in this fundamental process has never
faded out since charge exchange plays an important role
in astrophysical and Tokamak plasma environments [2,3],
ion-induced radiation damage to biological cells [4,5], and
many other actual applications. These applications, which
cover a wide range of ion impact energies E (from eV to
MeV) and involve increasingly complex targets (from atoms
to molecules and clusters), continuously show that the charge
exchange database is far from being complete.

Moreover, most of the works concerning charge exchange
focused on integrated (total) cross sections. In fact, charge
exchange occurs at rather large impact parameters so that the
scattered projectiles appear strongly peaked about the forward
direction. The overlap of scattered and incoming projectile
beams thus makes the measurements of angular cross sections
difficult. In this respect, the advent of cold-target recoil-ion
spectroscopy (COLTRIMS [6]) has been a breakthrough since
it allows measurements of differential cross sections with
unprecedented resolution. An additional step forward has been
achieved as COLTRIMS has been coupled to laser-cooled
atomic targets trapped in a magneto-optical trap (MOT)
[7–9]. The resulting MOTRIMS setup indeed provides state-
selective differential cross sections, with hitherto unsurpassed
accuracy, due to the extremely low target cloud temperature.
Many experiments have been performed worldwide [7–16],
using alkali-metal atomic targets, and have revealed detailed
information on single- and multielectron capture processes.

For instance, MOTRIMS experiments have resolved oscil-
latory patterns in the differential cross sections associated to
single charge transfer in low-energy Li+ + Na collisions [7].
These oscillations have been interpreted in terms of Fraunhofer
diffraction of atomic matter waves by analogy with usual
diffraction of light waves: The incoming projectile ion, with
de Broglie wavelength λ, catches an electron from the target
atom provided the impact parameter b is smaller than a typical

value bmax, so that the target acts as a “hole” of radial aperture
bmax; angular diffraction patterns with λ/2bmax characteristic
spacing then follow. While diffractionlike oscillations are
general features of charge exchange scattering in atomic
collisions, their observation has been rather limited so far
because of the prohibitive angular resolution required. Even
MOTRIMS experiments can fail in this respect, as it has been
the case in Ref. [11] for Na+ + Rb collisions.

In this paper, we revisit Na+ + Rb collisions in the
framework of a joined experimental-theoretical endeavor. A
state-of-the-art MOTRIMS setup is employed to obtain relative
and differential capture cross sections, not only for dominant
channels but also for weak ones. Theoretical calculations using
the semiclassical molecular orbital close-coupling (MOCC)
scheme are also performed. In this respect, it is interesting to
note the interplay between theory and experiment: Theory is
needed to gauge whether measurements with given angular
resolution can reveal oscillations in charge exchange scatter-
ing; on the other hand, refined measurements allows us to test
the degree of accuracy of the employed theoretical approach.

Our paper is organized as follows. In Sec. II, we outline the
MOTRIMS setup and present the Q-value spectra obtained
in Na+ + Rb(5s,5p) collisions at E = 0.5, 2, and 5 keV. The
MOCC calculations are described in Sec. III, with particular
emphasis on the adequacy of the model potential approach
used to describe the collisional systems as effective one-
electron systems. State-selective cross-section ratios are given
in Sec. IV A and the MOCC calculations are used in Sec. IV B
to picture the collision dynamics and therefore understand the
magnitudes of the ratios. Computed and measured differential
cross sections are compared in Sec. IV C. Finally, we give our
conclusions and perspectives in Sec. V. Atomic units are used
throughout unless otherwise indicated.

II. EXPERIMENT

The experimental setup has already been described in detail
elsewhere [17]. As shown in Fig. 1, it consists of a short ion
beam line providing a collimated projectile beam of singly
charged alkali-metal particles, a MOT confining the cold target
of Rb atoms in a small volume, and a recoil-ion momentum
spectrometer (RIMS).
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FIG. 1. Schematic view of the experimental setup.

The MOT uses two identical external-cavity diode lasers
(DLs) [18], each providing about 100 mW output power at
780 nm. A small fraction of the laser power is sent toward two
frequency stabilization systems [19] combining a saturated
absorption spectroscopy setup and an acousto-optic modulator.
A first laser is tuned a few MHz below the cooling or
trapping transition 5 2S1/2 (F = 2) − 5 2P3/2 (F ′ = 3) of the
87Rb atoms; the second is tuned to the repumping transition
5 2S1/2 (F = 1) − 5 2P3/2 (F ′ = 2). The main laser beams are
merged through a polarizing beam-splitting cube (PBSC) and
sent to a 110-MHz acousto-optic modulator (AOM) used as
a fast beam shutter (switch-AOM). The laser beams are then
magnified by a two-lens telescope and split into three beams
of equal power. The three 14-mm-diameter [full width at half
maximum (FWHM)] laser beams enter the trapping chamber
along three orthogonal directions and are retroreflected by
gold-coated mirrors located on the opposite sides of the cham-
ber. In the trapping volume, they deliver a total power of 65 mW
at the cooling or trapping frequency. Six quarter-wave plates
ensure the adequate circular polarization for the three pairs
of counterpropagating beams. The trapping magnetic-field
gradient, of about 20 G/cm in the axial direction, is applied
thanks to a 1.8-A current running through two coils arranged
in an anti-Helmholtz configuration. A pressure of about
10−9 mbar of Rb vapor is maintained in the chamber by heating
a cell containing 1 g of natural Rb. The characteristics of the
trapped atomic cloud are obtained with a calibrated fast CCD
camera. In the experiments described here, we measured a
cloud diameter (FWHM) of 0.6 mm and a maximal density
of 1011 atoms/cm3. The cloud temperature, T ∼ 200 K, was
determined using the ballistic expansion technique [17].

The Na+ projectile beam is provided by a homemade
thermoionic ion gun. The ions can be accelerated up to
6 keV with a beam energy spread below 0.2 eV. A pair of
einzel lenses and two pairs of deflection plates ensure an
optimal overlapping of the ion beam with the target. The
beam diameter is limited at about 2 mm by two collimators
located at the entrance of the trapping chamber to prevent
the diffusion of the ions on other elements of the setup. At

the exit of the chamber, a set of deflection plates guides the
primary beam toward a Faraday cup. Projectiles neutralized
by charge exchange with the atomic target are detected
by a 40-mm-diameter microchannel-plate position-sensitive
detector (MCPPSD) [20]. The instant of their detection serves
as a time reference for the recoil-ion time-of-flight (TOF)
measurement. The recoil ions produced in the collision region
are extracted by the spectrometer electric field toward a similar
MCPPSD with 80 mm active diameter. The three components
of the recoil momentum are inferred from the position of
detection on the MCPPSD and from their TOF. To improve the
resolution on the momentum measurement, the spectrometer
was designed with an inhomogeneous field region followed
by a field-free drift region, which achieves three-dimensional
(3D) focusing of the collision region on the detector [17].
In these conditions, the TOF and detection position of the
ions do not depend, to first order, on the initial position of
the recoil ions within the collision region. The resolution on
the momentum measurement is thus here only limited by the
performances of the detectors and their electronics, yielding
a spatial resolution of 125-μm rms and a TOF resolution of
0.8 ns. In the present work, using an extraction voltage of
20 V, a resolution of about 0.05 a.u. was achieved on the three
components of the recoil momentum.

The trapping B field is chopped off during 3 ms at an 80-Hz
rate, which allows the detection of collision events whose
recoil-ion trajectories are not affected by the trapping magnetic
field. During these 3 ms, the trapping and repumping lasers
are both switched alternatively 50 μs off and 50 μs on by the
switch AOM. In that way, the target is constituted, respectively,
either of 87Rb(5s) atoms or of a mixture of 87Rb(5s,5p) atoms.
For each collision event, the position of detection and the TOF
of the recoil ion are recorded, as well as the position of the
projectile. In addition, the time reference of the collision within
the B-field switch cycle, and within the laser switch cycle are
sent to the acquisition system. In the data analysis, only the
capture events recorded with the B field off are selected. These
events are then sorted into two sets, one corresponding to
collisions with the lasers off (“lasers off” events) and the other
to collisions with the lasers on (“lasers on” events). For each
selected event, the Q value and the projectile scattering angle
θ are inferred from the recoil-ion momentum components:

Q = − 1
2mev

2
P − p||vP , (1)

θ = p⊥
mP vP

, (2)

where me and mP are, respectively, the mass of the electron
and the mass of the projectile, vP is the projectile velocity,
p|| and p⊥ are the parallel and perpendicular components of
the recoil-ion momentum measured with respect to the initial
projectile direction.

Measurements have been performed for Na+ +
87Rb(5s,5p) collisions with projectile energies of 5, 2,
and 0.5 keV. The corresponding Q-value spectra are shown,
respectively, in the Figs. 2–4. The lasers on data are shown in
the top panels, and the lasers off data (meaning that the target
is in the 5s ground state) in the middle panels. The electronic
configurations nl populated on the scattered projectile are
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FIG. 2. Q-value spectra for electron transfer in 5-keV Na+ projec-
tiles colliding with 87Rb(5s,5p) (top panel), 87Rb(5s) (middle panel),
and 87Rb(5p) (bottom panel). The configurations (nl) populated on
the scattered projectile are labeled on the figures and asterisks indicate
channels in which capture is from Rb(5p).

labeled on the figures. In the bottom panels, the Q-value
spectra are obtained by subtracting from the lasers on events
a weighted fraction of the lasers off events in such a way
that the contribution of electron capture from the 87Rb(5s)
ground state is suppressed. The resulting Q-value spectra
correspond then to electron capture from 87Rb target only in
the 5p excited state. The weight w applied to the laser off
spectra gives also the excited fraction f of the target in the
optical trapping cycle:

f = 1 − w. (3)

This fraction f depends on the trapping settings such as laser
detuning and intensity.

In the case of Na+ + 87Rb(5s,5p) collisions at 0.5 keV, the
only peak associated with electron capture from 87Rb(5s) to
Na(3p) can unfortunately be mixed with a small contribution
of the 87Rb(5p) → Na(3d,4p) channels. Therefore, we have
determined w and then the excited fraction f = 0.24 ± 0.03
at E = 0.5 keV by neglecting the 87Rb(5p) → Na(3d,4p)
contribution, which cannot give an accurate and reliable result.
However, for the experiments performed at 2 and 5 keV, w and
f were obtained unambiguously by using the 87Rb(5s) →
Na(3s) channel. We found f = 0.260 ± 0.003 for the 2-keV
experiment and f = 0.153 ± 0.004 for the 5-keV one.

FIG. 3. Same as Fig. 2 but for 2-keV Na+ projectiles.

Knowing these excited fractions, it is straightforward to
extract from the data analysis the total capture cross section
ratio between Na+ + 87Rb(5p) and Na+ + 87Rb(5s) collisions

R5p/5s = Ip

Is

1

f
, (4)

where Ip and Is respectively correspond to the integrals of the
Q-value spectra displayed in the bottom and middle panels of
Figs. 2–4.

Afterward the relative cross sections for each collision
system are obtained by integrating the peaks associated to nl

configurations populated on the projectile. When the resolution
in Q value does not allow a good separation of the peaks,
the spectra are fitted with a combination of Gaussians of
fixed positions and widths. The uncertainties obtained on the
experimental relative cross sections are purely statistical. They
take into account the contribution of the subtraction procedure
of laser off data, as well as the error due to the fitting procedure
when applied. For 5-, 2-, and 0.5-keV collision energies,
the resolutions (rms) obtained on the Q-value measurements
are, respectively, �Q = 137, 87, and 43 meV.

Doubly differential cross sections in scattering angle are
then obtained using Eq. (2) for selections of events associated
to the identified electron capture channels. Because of the
reconstruction procedure of the transverse recoil momentum
component p⊥, making use of both the recoil-ion TOF and
position on the detector, the resolution on p⊥ is not as good
as on p||. It was estimated to be around 0.11 a.u., which

032710-3



A. LEREDDE et al. PHYSICAL REVIEW A 85, 032710 (2012)

FIG. 4. Same as Fig. 2 but for 0.5-keV Na+ projectiles.

corresponds to resolutions in scattering angle of �θ = 88,
42, and 28 μrad for 0.5-, 2-, and 5-keV collision energies,
respectively.

III. THEORY

As mentioned in the Introduction, our calculations are
based on the semiclassical MOCC approach to atomic colli-
sions. We employ the impact parameter approximation [1] in
which the projectile follows straight-line trajectories with con-
stant velocity v and impact parameter b so that the internuclear
vector R(t) evolves as R(t) = b + vt . This approximation has
been found to be accurate for impact energies E greater than
∼250 eV/amu for prototypical Aq+ + H collisions [21,22];
however, we shall see that it can be safely applied down
to E = 0.5 keV for Na+ + Rb collisions because of the
large projectile and target masses and the long-range electron
transitions involved in the main charge exchange processes.

Electron transitions are considered in the framework of
the single active electron (SAE) approximation [1] in which
the Na+[1s22s22p6] and Rb+[1s22s22p6 · · · 4p6] ionic cores
remain frozen throughout the collision. The motion of the
active electron, initially bounded to Rb in the 5s or 5p orbitals,
is then quantum mechanically described by the total wave
function �(r,t), which is a solution of the eikonal equation

i
∂�(r,t)

∂t
= H�(r,t), (5)

where r is the electron position with respect to an origin located
on the internuclear axis at distances pR and qR from the target
and projectile centers, respectively (p + q = 1). The clamped
nuclei (Born-Oppenheimer) Hamiltonian H is

H = −1

2
∇2 + VNa (rNa) + VRb (rRb) + 1

R
, (6)

where VNa (rNa) and VRb (rRb), with rNa = r − qR and rRb =
r + pR, are model potentials describing the interaction of the
active electron with the Na+ and Rb+ ionic cores, respectively,
and 1/R is the (mean) electrostatic core-core interaction.
MOCC thus consists of solving (5) by expanding � on a
basis of eigenstates of H . Before presenting this resolution
scheme, let us focus on the obtention of the model potentials
and associated H eigenstates.

A. Electronic states of the NaRb+ quasimolecule

1. Optimization of VNa and VRb model potentials

VNa (rNa) and VRb (rRb) present the same analytical form,

V (r) = −1

r
− (Z − 1)

exp (−b1 r)

r
− b2 exp (−b3 r) , (7)

where Z is the nuclear charge (ZNa = 11 and ZRb = 37) and
{b1,b2,b3} are parameters which are optimized to reproduce
as accurately as possible the valence state energies of the
Na and Rb alkali-metal atoms. In practice, the optimization
consists of diagonalizing iteratively the atomic Hamiltonians
HNa,Rb, which correspond to the molecular H of Eq. (6) in the
respective limits (R → ∞,rRb → ∞) and (R → ∞,rNa →
∞), with varying parameters {bi} until diagonalization yields
eigenenergies that match reference data. In our case, the
energies of reference are those tabulated in the NIST Atomic
Spectra Database [23], and the atomic Hamiltonians are diag-
onalized in large-scale “even-tempered” Slater-type-orbitals
(STOs) [24],

S
(l,m)
j (r) = N (l)

j rle−αj rYm
l (�) , (8)

where N (l)
j is a normalization factor and Ym

l (�) is a spherical
harmonic. For all (l,m) angular symmetries, the exponents
αj belong to the geometrical sequence αj = αSβ

j

S , with
0 � j � jmax, αS = 5 × 10−4, βS = 1.3, and jmax = 50. We
report in Table I the parameters {bi} obtained by means of
our optimization procedure for both Na+ + e− and Rb+ + e−
atoms.

In Table II, we compare the energies of our computed Na
eigenstates with the reference data taken from NIST [23],
putting special emphasis on the states which are significantly
populated through charge exchange in low-energy Na+ +
Rb(5s,5p) collisions. One can note a very good agreement
between our values and the experimental ones, the largest rel-
ative difference between them not exceeding 0.3%. However,
we have made additional checks on the accuracy of our model

TABLE I. Parameters of the model potentials of Eq. (7).

b1 b2 b3

Na+ + e− 2.810 2.850 2.085
Rb+ + e− 3.923 5.825 1.333
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TABLE II. Na valence electron binding energies (in a.u.) obtained
from model potential calculations with STO and OEDM + GTO basis
sets (see text) compared to experimental data taken from NIST [23]
(only the fine structure energies corresponding to the lowest j value
are reported). States indicated in bold correspond to the R → ∞
limit of the molecular states included in the dynamical MOCC
calculations.

State NIST STO OEDM + GTO

3s −0.188 858 −0.188 645 −0.188 642
4s −0.071 578 −0.071 682 −0.071 680
5s −0.037 584 −0.037 640 −0.037 612
6s −0.023 132 −0.023 162 −0.023 002
3p −0.111 600 −0.111 666 −0.111 663
4p −0.050 951 −0.051 081 −0.051 063
5p −0.029 202 −0.029 273 −0.029 216
6p −0.018 923 −0.018 964 −0.018 779
3d −0.055 936 −0.055 789 −0.055 789
4d −0.031 442 −0.031 385 −0.031 382
5d −0.020 106 −0.020 078 −0.020 028
4f −0.031 268 −0.031 251 −0.031 250
5f −0.020 010 −0.020 001 −0.019 953

potential. On one hand, we have considered the model potential
proposed by Magnier et al. [25], which has the same analytical
form as our but differs in the values of bi parameters. We
have found that both model potentials lead to almost identical
results, provided the same STO basis (8) is used to diagonalize
the atomic Hamiltonian. The largest deviation is found for the
4d state, within 0.4% with respect to the value tabulated in
Table II. Beyond eigenenergies, we also aimed at checking the
accuracy of the computed eigenfunctions. Therefore, we have
computed oscillator strengths for a set of 12 dipolar transitions
involving collisionally important Na states. Comparison of our
results with the reference data tabulated in the frame of the
Opacity Project [26] shows that typical relative differences are
of some percents, with a minimum of 0.1% for the 3s → 3p

transition (which involves the most important Na states from
the collisional point of view) and a maximum of 9.1% for the
4p → 3d transition. Analogous calculations using the model
potential of Ref. [25] lead to similar relative differences with
respect to the reference data of Ref. [26].

In Table III, we present the energies of Rb states obtained
by means of our model potential STO calculations. These
energies closely agree with the reference data from NIST [23].
However, we have considered, as for Na, alternative model
potentials that have been previously used. Lee et al. [11]
designed a potential with two adjustable parameters that yields
Rb eigenenergies in worse agreement with the experimental
values than our potential does. For instance, the energy of the
Rb(5p) state, which corresponds to an entrance channel in the
case of excited target Na+ + Rb collisions, then differs by 8%
from the NIST value, whereas this difference decreases down
to 1% in the present work. Aymar et al. [27] proposed a model
potential with the form (7) to which they have added a term to
represent core polarization. This yields energies in very nice
agreement with those listed in Table III for 5s, 5p, and 6s

states but the 4d state is shifted by 4.5%. This effect could be
ascribed to the explicit account for core polarization effects in

TABLE III. The same as Table II for Rb valence electron binding
energies.

State NIST STO OEDM + GTO

5s −0.153 507 −0.153 468 −0.153 395
6s −0.061 776 −0.061 780 −0.061 757
7s −0.033 623 −0.033 647 −0.033 606
8s −0.021 160 −0.021 177 −0.021 079
5p −0.096 193 −0.095 075 −0.095 047
6p −0.045 453 −0.045 306 −0.045 183
7p −0.026 681 −0.026 644 −0.026 292
4d −0.065 316 −0.064 989 −0.064 981
5d −0.036 406 −0.036 368 −0.036 302
6d −0.022 798 −0.022 780 −0.022 487
4f −0.031 433 −0.031 306 −0.031 297
5f −0.020 107 −0.020 045 −0.019 983

the potential. Nevertheless, we have observed that using the
model potential of Aymar et al. with our large-scale STO basis
set (effectively larger than the one used in Ref. [27]) makes the
agreement between the calculated and NIST Rb(4d) energies
worse than the one shown in Table III.

Besides the close correspondence of our results and
NIST reference data presented in Tables II and III, all the
convergence checks we have performed allow us to trust on
the adequacy and accuracy of our model potentials to represent
the interaction of the valence electron with Na+ and Rb+ ionic
cores in the framework of the SAE approximation.

2. Molecular eigenstates

The bound molecular eigenstates χk of the NaRb+ quasi-
molecule, which are used in the MOCC calculations and fulfill

Hχk(R,r) = Ek(R)χk(R,r), (9)

cannot be obtained by diagonalizing H in the previous Rb-
and Na-centered STO basis sets since the latter are so large
that they are prone to linear dependencies for R � 10 a.u. We
thus have drawn from previous works on dressed projectile-
target interactions [28,29] and decided to diagonalize H in a
basis of one-electron diatomic molecule (OEDM) orbitals of
H2

+, which are eigenfunctions of the Hamiltonian obtained
by replacing VNa (rNa) and VRb (rRb) by the net interactions
−1/ (rNa) and −1/ (rRb) in Eq. (6). In practice, the OEDM set
includes 70 states, which are those asymptotically correlated
to H(n � 5,l,m). However, this basis set is not complete
enough to yield an accurate description of the χk molecular
states, mainly because of the lack of underlying orbitals
sharply peaked on the nuclear centers, which are necessary
to describe the effect of the ionic cores on the χk orbitals.
Following [28,29], we accordingly complete the OEDM set
by Gaussian-type orbital (GTO) basis sets on both nuclei

G
(n1,n2)
k (rNa,Rb) = N (n1,n2)

k x
n1
Na,Rbz

n2
Na,Rbe

−αkr
2
Na,Rb , (10)

where xNa,Rb and zNa,Rb are the Cartesian coordinates of the
electronic vectors rNa and rRb defined in the molecular frame
with ẑ||R̂ and (x̂,ẑ) = (v̂,b̂). N (n1,n2)

k is a normalization factor,
while n1 and n2 are integers such that 0 � n1 + n2 � 2. The
exponents αk are taken to form a geometrical sequence of
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FIG. 5. (Color online) Adiabatic potential energy curves for the
8σ (—) and 2π (- - -) most bounded valence states of the NaRb+

molecule. Lines, present calculations performed by means of the
model potentials and the OEDM + GTO basis set; dots, results of
Ghanmi et al. [30].

rather large numbers αk = αGβk
G with αG = 0.03, βG = 2.5,

and 0 � k � 14 for all the (n1 + n2) symmetries considered.
The augmented OEDM + GTO basis set then totals 280 states.

The asymptotic energies Ek(R → ∞) obtained through
diagonalization of H in the enlarged OEDM + GTO basis
are reported in Tables II and III for the Na and Rb states,
respectively. Deviations from the computed STO results are
significantly smaller than 10−3 a.u.; this indicates the effective
completeness of the OEDM + GTO basis set, which succeeds
as well as the previous STO basis in providing an accurate
description of asymptotic molecular states. Among the 280
molecular states which result from diagonalization, we retain
the 42 lower-lying ones, indicated in bold in Tables II and
III, for the dynamical calculations. The remaining ones lie too
high from the entrance channels on the energy scale to be
efficiently populated in the impact energy range E � 5 keV
that we consider.

In Fig. 5, we display the correlation diagram of the
Na+ + Rb system, which is the dependence on the internuclear
distance R of the molecular energies Ek(R), making special
emphasis on the σ and π states which lie closer to the
entrance Na+ + Rb(5s,5p) channels. We compare our results
to those of Ghanmi et al. [30], who used nonempirical
pseudopotentials [31] augmented with core polarization terms
[32] to describe the interaction of the valence electron with the
frozen ionic cores. One can observe a good agreement between
the calculations in the whole range of R’s. Importantly,
the energy differences in the regions of pseudocrossings
between adjacent molecular levels of same symmetry, which
tailor the radial collisional dynamics at low impact energies,
are similarly described by the model and pseudopotential
approaches. Alternatively to our Na model potential, we have
also used that of Magnier et al. [25] to build the NaRb+
correlation diagram; this has yielded molecular energies Ek(R)
indistinguishable from those drawn in Fig. 5 for R � 5 a.u.
This is very satisfactory from a convergence point of view since
the R < 5 a.u. collisional range cannot be fairly described
by any model- or pseudopotentials associated to frozen ionic

cores. Further, in the dynamical calculations we prevent the
system from entering this inner region where the cores overlap
and the structure of the NaRb+ quasimolecule is not accurately
reproduced.

B. Dynamical calculations

The eikonal equation (5) is solved by expanding the total
wave function �(r,t) into the set of 42 molecular orbitals
χk(r,R),

�(r,t) = eiU (r,t)
42∑

k=1

ak(v,b; t)χk(r,R)e−i
∫ t

Ek (t ′)dt ′ , (11)

where U (r,t) is a common translation factor (CTF) [33]
which ensures that �(r,t) is Galilei invariant and satisfies
the correct asymptotic conditions. In practice, we have used
the CTF defined in Refs. [33,34] in terms of prolate spheroidal
coordinates. Introduction of Eq. (11) in Eq. (5) leads to a set
of first-order coupled differential equations for the amplitudes
ak(v,b; t),

dak

dt
=

∑
m

am

(
〈χk|vt

R

∂

∂R
+ b2

R2
iLy − 1

2
∇2U − ∇U∇̇|χm〉

− i〈χk|1

2
(∇U )2 + ∂U

∂t
|χm〉

)
e−i

∫ t

0 (Em−Ek )dt ′ , (12)

where 〈χk| ∂
∂R

|χm〉 and 〈χk|iLy |χm〉 are known as the radial
and rotational couplings [1], respectively. The system (12) is
numerically solved from −tmax up to tmax = 150/v subject to
the initial conditions ak(v,b; −tmax) = δik , assuming that χi is
the initial state. For Na+ + Rb(5s) collisions, χi is unique (see
Fig. 5). According to our experimental setup, the entry state in
Na+ + Rb(5p) collisions is neither oriented nor aligned so that
the initial flux is statistically shared among the 5pσ , 5pπ+,
and 5pπ− states. Na+ + Rb(5p) collisions thus necessitate
three separate resolutions of Eq. (12), and the final dynamical
results consists of incoherent sums over these three conditions.

In the center-of-mass (c.m.) frame, the differential cross-
section (DCS) associated with the process i → f depends on
the angle θc.m. according to

dσi→f

dθc.m.

(v; θc.m.) = κ2

∣∣∣∣
∫ ∞

0
db b Fcut(b)J�m(2κb sin θc.m./2)

× [ti→f (v,b) − δif ]

∣∣∣∣
2

, (13)

where κ = μv, μ is the reduced mass, J�m stands for the
Bessel function of the first kind of order �m = |mf −
mi |, and ti→f (v,b) is the transition amplitude. This latter
is related to the expansion amplitude for the state f at
time tmax through ti→f (v,b) = ak(v,b; tmax)e−iδ(b)/v where the
b-dependent phase δ(b) is (see [35] for details)

δ(b) = νf (Zmax) + νi(Zmax) − Zmax(εf + εi)

− 2QT QP ln b + (qi + qf ) ln(u), (14)

with Zmax = vtmax, u = Zmax + √
Z2

max + b2, νk(Zmax) =∫ Zmax

0 Ek(Z′)dZ′, and εk = limR→∞Ek(R). QT = 1 and QP =
1 are the target and projectile ionic core charges and qk
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is related to the asymptotic behavior of the k state energy:
Ek(R) ∼ εk − qk/R.

In Eq. (13), we have introduced the cutoff function Fcut(b),
such that Fcut(b) = 0 for b � 4 a.u., Fcut(b) = 1 for b �
6 a.u., and Fcut(b) = b/2 − 2 otherwise, in order to cancel
the contribution of inelastic transitions occurring in the R

range where the Na and Rb ionic cores overlap. Even if this
contribution is small for the main reaction channels at low v (as
one can infer from Fig. 5), its inaccurate description in terms
of frozen atomic cores can distort the DCSs at large deflection
angles. In the next section, we quantitatively show the effect
of Fcut on the dynamical results.

We compute the DCS in the laboratory frame from the c.m.
one as follows:

dσi→f

dθ
(v; θ ) =

∣∣∣∣1 + 2ζ cos θc.m. + ζ 2

1 + ζ cos θc.m.

∣∣∣∣ dσi→f

dθc.m.

(v; θc.m.),

(15)

where ζ = MNa/MRb = 0.2644 is the ratio of atomic masses.
In order to perform comparisons with the experimental data,
the DCSs are convoluted with a Gaussian function which has
a FWHM that corresponds to the experimental resolution �θ .

It is legitimate to ask whether the semiclassical approach
that we have described is really appropriate to the description
of Na+ + Rb collisions at impact energies as low as 0.5 keV
(which correspond to v ≈ 0.0295 a.u.). In the full quantum-
mechanical framework, the DCS in the c.m. frame is defined by

dσ
(Q)
i→f

dθc.m.

= 1

4κ2

∣∣∣∣∣
∑

j

(2j + 1)

√
(j − �m)!

(j + �m)!

×P �m
j (cos θc.m.)

(
S

j

i→f − δif

)∣∣∣∣∣
2

, (16)

where j is the total (electronic + nuclear) angular momentum
quantum number, S

j

i→f is the scattering matrix element
(see [21] for details), and P �m

j is the associated Legendre
function of the first kind. Taking into account that j , which
can be expressed as j = μvb, is very large because of
the huge value of μ, μ = 33 398.5 a.u., we formally show
in the following that the semiclassical (13) and quantum
(16) expressions of the DCS yield almost equal results,
even in the extreme case where v = 0.0295 a.u. and b = 1
a.u. so that j ∼ 1000 a.u. We start from Eq. (16) and
employ the fact that for j � �m, (2j + 1)/2 � j and√

(j − �m)!/(j + �m)! � j−�m, to rewrite (16) as

dσ
(Q)
i→f

dθc.m.

≈ 1

κ2

∣∣∣∣∣
∑

j

j 1−�mP �m
j (cos θc.m.)

(
S

j

i→f − δif

)∣∣∣∣∣
2

. (17)

We now consider the semiclassical expression (13), neglecting
Fcut for the sake of generality, and make the following
assumptions: (i) In collisions involving such heavy target
and projectile as the present ones, θc.m. is very small so
that sin(θc.m./2) ≈ θc.m./2, (ii) there is a close correspondence
between j and b through b = j/μv, and (iii) the semiclassical
transition amplitude ti→f can be replaced by its quantum ana-
log Si→f because of the considerably large target and projectile
masses that imply long-range transitions where deviations

from classical trajectories can be depreciated. According to
this, and discretizing the integration on b in Eq. (13), we obtain

dσ
(SC)
i→f

dθc.m.

≈ 1

κ2

∣∣∣∣∣
∑

j

jJ�m(jθ )
(
S

j

i→f − δif

)∣∣∣∣∣
2

. (18)

Since j � �m, we can use J�m(jθ ) � j�mP −�m
j (cos θ ) and

P −�m
j (cos θ ) = (−1)�m(j − �m)!P �m

j (cos θ )/(j + �m)! �
(−1)�mP �m

j (cos θ )j−2�m [36] to finally get

dσ
(SC)
i→f

dθc.m.

� 1

κ2

∣∣∣∣∣
∑

j

j 1−�mP �m
j (cos θc.m.)

(
S

j

i→f − δif

)∣∣∣∣∣
2

,

(19)

which corresponds to the simplified form (17) of the quantum
DCS. Additionally to the formal similarities of the quantum
and semiclassical forms of the DCS, we explicitly checked
that full quantum calculations yield DCSs in close agreement
with their semiclassical counterparts in the whole range of
impact velocities considered in this work [37].

Finally, the total cross section for process i → f is obtained
by integration of the DCS on θ ; this leads to

σf (v) = 2π

∫ ∞

0
F 2

cut(b)Pf (v,b; tmax)b db, (20)

where Pf (v,b; t) = |af (v,b; t)|2 is the probability which can
be displayed for given (v,b) as a function of the scaled time
Z = vt to reveal the mechanisms underlying the collisional
process i → f .

IV. RESULTS

In this section, we first concentrate on the comparison
of MOTRIMS and MOCC ratios of state-selective capture
cross sections σnl to the total cross section σtot = ∑

nl σnl .
The MOCC calculations are then used to reveal the collision
dynamics in terms of so-called “histories of collision,” which
consists of displaying for representative impact parameter b

and velocity v the temporal evolution of reaction probabilities.
We then turn our attention to the DCS and the ability of our
improved MOTRIMS setup to yield the diffraction patterns
theoretically predicted.

A. State-selective capture ratios

The experimental state-selective capture ratios in
Na+ + Rb(5s,5p) collisions are listed in Tables IV–VI for
E = 5, 2, and 0.5 keV, respectively. They are compared to
previous MOTRIMS results [11]. Even if good agreement
is found for the most populated channels, the present setup,
which combines transverse extraction of the recoil ions and
switch-off of the trapping magnetic field techniques, leads to a
considerable decrease of the background noise (see Figs. 2–4),
and, consequently, to smaller error bars in the measured
ratios. This also allows the detection of weakly populated
capture channels which were not accessible in the previous
measurements [11].

Concerning Na+ + Rb(5s) collisions, it is clear from
Tables IV–VI that the main capture output is Na(3p) regardless
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TABLE IV. Ratios of (n,l)-partial cross sections to the total
capture cross section in 5-keV Na+ + 87Rb(5s,5p) collisions. The
present MOTRIMS results are compared to previous ones [11].

MOTRIMS MOTRIMS
(Present) ([11]) MOCC

Na+ + 87Rb(5s)

3s 0.1873 ± 0.0022 0.19 ± 0.07 0.1927
3p 0.7915 ± 0.0084 0.79 ± 0.29 0.8051
4s 0.0007 ± 0.0001 0.0004
(3d + 4p + 5s) 0.0205 ± 0.0003 0.02 ± 0.01 0.0017

Na+ + 87Rb(5p)
3s 0.0015 ± 0.0001 0.0007
3p 0.7959 ± 0.0136 0.82 ± 0.05 0.8184
3d 0.0997 ± 0.0037 0.0985
4s 0.0525 ± 0.0029 0.08 ± 0.01 0.0595
4p + 5s 0.0326 ± 0.0026 0.0130
4d 0.0178 ± 0.0023 0.03 ± 0.01 0.0071

of the impact energy E. However, as E increases, the Na(3s)
channel becomes more important and consists of ∼19% of
the total capture flux at E = 5 keV. Such a behavior can be
understood with the help of the correlation diagram in Fig. 5:
The pseudocrossings between the entrance Na+ + Rb(5s) and
capture Na(3s,3pσ ) + Rb+ channels are too broad to allow
efficient nonadiabatic radial transitions at low v so that capture
mainly consists of rotational transitions around R = 6 a.u.,
where the entrance channel crosses the Na(3pπ ) + Rb+ state.
As v increases, radial hops become possible in the regions
of the previous pseudocrossings, giving rise to capture into
Na(3s) and Na(3pσ ) states. Higher-order transitions promote
the flux onto more excited capture states Na(3d,4s, . . .) but
their contributions to the total cross section do not exceed a
few percent.

Something similar occurs in Na+ + Rb(5pσ ) collisions.
At E = 0.5 keV, which is prototypical of (very) low impact
energies, the Na+ + Rb(5pσ )-Na(3pσ ) + Rb+ and Na+ +
Rb(5pπ )-Na(3pπ ) + Rb+ pseudocrossings are too broad to
allow direct radial transitions that would preferentially popu-
late the Na(3p) states. In the ingoing part of Na+ + Rb(5pσ )
collisions, the electronic flux then mostly evolves adiabat-
ically until it reaches the Na+ + Rb(5pσ )-Na(4s) + Rb+

TABLE V. Same as Table IV for 2-keV Na+ + 87Rb(5s,5p)
collisions.

MOTRIMS MOTRIMS
(Present) ([11]) MOCC

Na+ + 87Rb(5s)

3s 0.0264 ± 0.0003 0.02 ± 0.01 0.0296
3p 0.9722 ± 0.0030 0.98 ± 0.05 0.9703
(3d + 4p + 5s) 0.0014 ± 0.0001 0.00 ± 0.02 0.0001

Na+ + 87Rb(5p)
3p 0.7440 ± 0.0052 0.60 ± 0.14 0.7766
4s 0.0494 ± 0.0007 0.08 ± 0.03 0.0431
3d + 4p 0.1943 ± 0.0019 0.30 ± 0.16 0.1737
4d 0.0123 ± 0.0003 0.02 ± 0.01 0.0024

TABLE VI. Same as Table IV for 0.5 keV Na+ + 87Rb(5s,5p)
collisions.

MOTRIMS MOTRIMS
(Present) ([11]) MOCC

Na+ + 87Rb(5s)
3p 1.0000 ± 0.0150 0.9998

Na+ + 87Rb(5p)
3p 0.2506 ± 0.0498 0.0561
4s 0.7494 ± 0.1001 0.7702

pseudocrossing, around R = 10 a.u. (see Fig. 5), which is
narrow enough to enable significant transitions and leads to
the dominant Na(4s) final population. In Na+ + Rb(5pπ )
collisions, the Na+ + Rb(5pσ ) molecular channel is populated
by means of a rotational redistribution of the incident flux
before the Na+ + Rb(5pσ )-Na(4s) + Rb+ transition region is
reached. At E = 0.5 keV, counting statistics are low and lead to
a blurred Q-value spectrum in the range of excited Na(3d,4p)
capture channels (see Fig. 4); therefore, the populations of
these excited channels cannot be reliably estimated and all the
electron flux that does not end up in the Na(4s) capture state
has been experimentally attributed to the 3p capture process.
However, the MOCC calculations yield sizable populations
of excited Na(3d,4p) shells, even at E = 0.5 keV, and do
not reproduce the 4s − 3p selectivity assumed in the analysis
of measurements. As E increases, the counting statistics
are enlarged and the agreement between experimental and
theoretical ratios is restored; the 3p capture channel becomes
dominant because of efficient direct interactions between the
Na+ + Rb(5p) and Na(3p) + Rb+ molecular channels and the
significant contribution of excited Na(3d,4s) levels to total
capture shows up in both experiments and calculations (see
Tables IV and V).

Beyond the difficulty inherent in the measurement of state-
selective capture ratios associated to high-lying states at low E,
the agreement of experimental and MOCC results is generally
very satisfactory. However, the present MOCC calculations
underestimate the population of the most excited states, whose
global contribution to the total capture cross section does not
exceed 3%, especially in the case of Na+ + Rb(5s) collisions.
This is due to the cutoff function Fcut(b), which prohibits
inelastic transitions to high-lying capture states at small b.

Besides capture ratios, MOCC calculations obviously pro-
vide absolute cross sections according to Eq. (20). Reasonable
agreement has been found with the AOCC results published
in Ref. [11] in the case of Na+ + Rb(5s) collisions. On
the contrary, our MOCC calculations yield absolute cross
sections in sharp disagreement with the AOCC results of
Lee et al. in the Na+ + Rb(5p) case. For instance, Lee
et al. found Na(3p) and Na(4s) cross sections of 94.20 and
10.39 × 10−16 cm2 at E = 2 keV, while our calculations
lead to σ3p = 18.51 × 10−16 cm2 and σ4s = 1.03 × 10−16

cm2. The MOTRIMS ratio R5p/5s (4) of total capture cross
sections in Na+ + Rb(5p) and Na+ + Rb(5s) collisions make
it possible to discriminate between correct and uncorrect
modeling. If we interpret the sum of σ3p and σ4s as a lower
bound of the total capture cross section in Na+ + Rb(5p)
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collisions, insomuch as Lee et al. did not explicitly give
the AOCC total cross section, we find that RAOCC

5p/5s � 6.46
at 2 keV, assuming that σ3p + σ3s is a good estimate of the
total capture cross section in Na+ + Rb(5s) collisions (see
Table V). Our MOCC calculations yield RMOCC

5p/5s = 1.31 in
satisfactory agreement with the MOTRIMS value RMOTRIMS

5p/5s =
1.15. The experiment is still in favor of MOCC simulations
at 5 keV, where RAOCC

5p/5s � 6.09, while RMOCC
5p/5s = 3.56 and

RMOTRIMS
5p/5s = 3.95. The discrepancies between AOCC and

MOCC calculations can be easily understood. We indeed
mentioned in Sec. III A 1 that the target model potential used
by Lee et al. yields an atomic energy for the Rb(5p) entry
state that differs by 8% from the NIST reference value. The
difference between the asymptotic energies of the Rb(5p) and
Na(3p) channels is then 0.008 73 a.u. in the work of Lee
et al., 0.016 58 a.u. in the present work, and 0.016 13 a.u.
in the NIST database. The significant underestimation of
the former asymptotic energy difference, which persists at
the level of the pseudocrossing between molecular curves,
leads to the overestimation of the capture flux from Rb(5p)
to Na(3p) and higher-lying states. This points out the need
for a careful optimization of the description of core-induced
screening effects, as presented in Sec. III A 1.

B. Collision dynamics

The MOCC approach is the adequate framework to under-
stand the collision dynamics and related cross-section ratios
beyond the intuitive analysis of the correlation diagram of
Fig. 5.

Figure 6 includes the weighted probabilities bP (b) which
build, according to Eq. (20), the integrated cross sections. We
focus on Na+ + Rb collisions at E = 5 keV, which are partic-
ularly interesting since more than one output capture channels
are significantly populated. Figure 6(a) corresponds to the case
of Na+ + Rb(5s) that mainly leads to capture into the Na(3pπ )
state around b = 6 a.u. and, secondarily, to capture into the
Na(3s) state with an oscillatory structured bP (b). Oscillatory
patterns also appear in the bP (b) profiles of all capture states
in Na+ + Rb(5pσ ) and Na+ + Rb(5pπ ) collisions, as shown
in Figs. 6(b) and 6(c), respectively. It is worth recalling
that in the quantum framework the probability oscillations
are basically related to the dependence on b (for fixed v) of
the phases exp{−i

∫ t

0 [Em(t ′) − Ek(t ′)]dt ′} accumulated along
the nuclear path R(t ′) = b + vt ′ and entering the system of
coupled equations (12). In the case of a two-state interac-
tion, these oscillations are generally known as Stueckelberg
oscillations [1,38]; in a more general case where initial and
final states are coupled through various pathways involving
different intermediate states and phase contributions, further
interference processes come into play [39–42]. Interestingly,
the quantum mechanical (interference) picture has a classical
analog [39,40,43]: The probability oscillations are related to
the number of swaps the electron experiences between the
target and the projectile during the collision; the larger b the
lower is the number of possible swaps.

The transition pathways between the initial and final states
can be revealed by displaying, for representative impact
parameters b, “collision histories,” which consist of the
temporal evolution of probabilities in course of collision.
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FIG. 6. (Color online) Weighted probabilities bP (b) as functions
of the impact parameter b for the most important capture channels
(indicated in the figures) in (a) Na+ + Rb(5s), (b) Na+ + Rb(5pσ )
and (c) Na+ + Rb(5pπ ) collisions for the impact energy E = 5 keV.

The case of Na+ + Rb(5s) collisions is illustrated in Fig. 7
for b = 9 a.u. In the incoming part of the collision (Z <

0), the Na(3pσ ) and Na(3s) capture channels are directly
populated from the entry state through radial transitions
around Z = −14 and −8 a.u., corresponding to R ∼ 16 and
12 a.u., where the respective molecular curves pseudocross
(see Fig. 5). Later on, rotational transitions empty the entry
channel to populate the Na(3pπ ) level across the distance of
closest approach (Z = 0 or, equivalently, R = b = 9 a.u.). The
receding phase of the collision is quite symmetric with respect
to the incoming one: direct radial transitions Rb(5s) → Na(3s)
and Rb(5s) → Na(3pσ ) occur around R = 12 and 16 a.u.,
respectively. It is thus clear that the three main output capture
states in low E Na+ + Rb(5s) collisions, Na(3s,3pσ ,3pπ ), are
directly populated from the entry channel. This can be easily
checked in the MOCC framework by canceling artificially
the couplings which monitor the transitions. In Fig. 7, we
prove that the final Na(3s) and Na(3pσ ) populations vanish
if the respective radial couplings 〈Na(3s)|∂/∂R|Rb(5s)〉 and
〈Na(3pσ )|∂/∂R|Rb(5s)〉 are canceled; the same happens
for the Na(3pπ ) state if 〈Na(3pπ )|iLy |Rb(5s)〉 = 0. As
mentioned above, all these direct transitions are amenable to
Stueckelberg oscillations in the corresponding bP (b) profiles.

In the incoming part of Na+ + Rb(5pσ ) collisions,
illustrated in Fig. 8 for b = 17 a.u., there is a strong rotational
redistribution of the electron flux, Rb(5pσ ) → Rb(5pπ ). Later
on, the Na(3pσ ) and Na(3pπ ) channels are populated as the
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FIG. 7. (Color online) Temporal evolution of probabilities as-
sociated to Na+ + Rb(5s) and Na(3s,3pσ,3pπ ) + Rb+ channels
in Na+ + Rb(5s) collisions for E = 5 keV and b = 9 a.u. The
Na+ + Rb(5s) probability has been shifted down by 0.7 for the sake of
clarity. The lines with symbols correspond to probabilities obtained by
means of MOCC calculations in which nonadiabatic couplings have
been artificially canceled, as indicated in the legend and explained in
Sec. IV B.

projectile crosses the target. By canceling
successively the rotational 〈Na(3pσ )|iLy |Rb(5pπ )〉
and 〈Na(3pπ )|iLy |Na(3pσ )〉 couplings, we observe
that the main population pathway is Rb(5pσ ) →
Rb(5pπ ) → Na(3pσ ) → Na(3pπ ). However, when
〈Na(3pπ )|iLy |Na(3pσ )〉 = 0, secondary radial transitions
Rb(5pπ ) → Na(3pπ ) operate for |Z| � 10 a.u. when the
corresponding molecular curves pseudocross (around R =
17 a.u. in Fig. 5). Similarly, when 〈Na(3pσ )|iLy |Rb(5pπ )〉 =
0, we note remaining radial transitions Rb(5pσ ) → Na(3pσ )
starting at Z = −20 a.u. and a long-range rotational flow
Na(3pπ ) → Na(3pσ ) in the receding phase of the collision.
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FIG. 8. (Color online) Temporal evolution of probabilities asso-
ciated to Na+ + Rb(5pσ ,5pπ ) and Na(3pσ,3pπ ) + Rb+ channels
in Na+ + Rb(5pσ ) collisions for E = 5 keV and b = 17 a.u. The
lines with symbols correspond to probabilities obtained by means
of MOCC calculations in which nonadiabatic couplings have been
artificially canceled, as indicated in the legend and explained in
Sec. IV B.
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FIG. 9. (Color online) Temporal evolution of probabilities associ-
ated to Na+ + Rb(5pσ,5pπ ) and Na(3pσ,3pπ,4s) + Rb+ channels
in Na+ + Rb(5pπ ) collisions for E = 5 keV and b = 13 a.u. The
lines with symbols correspond to probabilities obtained by means
of MOCC calculations in which nonadiabatic couplings have been
artificially canceled, as indicated in the legend and explained in
Sec. IV B.

Both Na(3pσ ) and Na(3pπ ) are thus populated through
multiple pathways which interfere and lead to oscillation
patterns, besides pure Stueckelberg ones, in the bP (b) profiles
(see Fig. 6).

In Na+ + Rb(5pπ ) collisions, the dynamics are rather
tailored by radial transitions following the initial rotational
redistribution of the flux, Rb(5pπ ) → Rb(5pσ ). In Fig. 9, we
show by canceling the appropriate couplings that Na(3pσ )
is populated according to the path Rb(5pπ ) → Rb(5pσ ) →
Na(3pσ ), while Na(3pπ ) is mostly populated through direct
transitions from the entry channel. On the way out of the
collision, a small part of the electron flux is promoted
onto higher-lying capture states by means of a ladder-type
mechanism involving the Rb(5pσ ) as first rung and successive
radial transitions in the regions of pseudocrossings between
adjacent molecular curves, Rb(5pσ ) → Na(4s) → · · ·.

C. Differential cross sections

Before presenting the comparison of measured and com-
puted state-selective DCSs, it is important to gauge whether
the experimental angular resolution makes it possible to detect
diffractionlike patterns. Therefore, we present in Fig. 10 the
reduced DCS sin(θ )dσ/dθ of the capture process Na+ +
Rb(5s) → Na(3s) + Rb+ at E = 2 keV. Clear oscillations
appear in the calculated DCS and Gaussian convolution with
�θ = 42 μrad conserves the oscillatory behavior, even though
the contrast is significantly reduced. Small peaks in the primary
DCS also transform into shoulders in the convoluted DCS
whenever those peaks are located in the near neighborhood
of main peaks. The measured DCS is superimposed to the
calculated ones in Fig. 10(a) to ascertain that the predicted
oscillations are effectively detected. Further, we show in the
same figure that the angular spacing between adjacent maxima
indeed corresponds to the expected diffraction one, λ/2bmax,
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FIG. 10. (Color online) Reduced DCS sin(θ )dσ/d� for the
Na+ + Rb(5s) → Na(3s) + Rb+ capture process at E = 2 keV. In
(a), we display the MOCC results with (—) and without (- - -)
convolution, as well as the result of measurements (histogram);
the upper arrow indicates the predicted diffraction spacing between
adjacent maxima. In (b), we present the MOCC results involving (—)
or not (- - -) the cutoff function Fcut(b).

with bmax ∼ 11 a.u. In this respect, our present measurements
go beyond previous MOTRIMS experiments on Na+ + Rb
collisions [11].

In Fig. 10(b) we illustrate the effect of the cutoff function
Fcut(b) introduced in the DCS calculations [see Eq. (13)].
Fcut(b) cancels out the contribution of large θ angles to the
DCS [θ > 2 mrad in the illustration of Fig. 10(b)]. These
large angles are associated with transitions occurring at small
internuclear distances, R < 4 a.u., where any description of
the NaRb+ electronic structure with frozen core atomic model
potentials (including our one) is inaccurate. Furthermore,
large θ contributions to the DCS do not show up in the
measurements; we therefore assume that these contributions
are spurious and accordingly prevent their appearance in our
computations by means of Fcut(b).

In what follows, we separately present the reduced DCS
associated to Na+ + Rb(5s) and Na+ + Rb(5p) collisions.
The calculated and measured DCS have been normalized with
respect to each other so that the integrated cross sections,
2π

∫
dθ sin(θ )dσ/dθ , coincide. Moreover, the reduced DCS

are displayed as functions of Eθ since, in a classical picture
of scattering, where the trajectory deflection is assumed to
be induced by the repulsive Coulomb interaction between
the projectile and target cores (of respective charges QP and
QT ), small deflection angles are given by θ = QP QT /(Eb) in
the c.m. frame [44]; transitions occurring at a given impact
parameter b thus appear at a fixed Eθ value regardless
of E.
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FIG. 11. (Color online) Reduced DCS sin(θ )dσ/d� for the
Na+ + Rb(5s) → Na(3s) + Rb+ capture process at E = 2 keV (top)
and E = 5 keV (bottom). In both cases, the continuous line refers to
the convoluted MOCC result and the histogram corresponds to the
result of MOTRIMS measurement.

1. Na+ + Rb(5s) collisions

We report in Fig. 11 the reduced DCS corresponding to
the capture process Na+ + Rb(5s) → Na(3s) + Rb+at E = 2
and 5 keV. Counting statistics were insufficient to safely
derive an experimental DCS at E = 0.5 keV (see Fig. 4).
The agreement of MOCC and MOTRIMS DCS is very sat-
isfactory, especially at E = 2 keV, where large discrepancies
were found in Ref. [11] between theoretical and MOTRIMS
results. It should be noted that our present reduced DCS
basically reproduce the shape of the bP (b) opacity function of
Fig. 6(a): Keeping in mind the classical inverse proportionality
of Eθ and b, one can link the three maxima and the shoulder
of the bP (b) function to those appearing in the DCS.

In Fig. 12 we notice that no prominent oscillations appear in
the DCS associated with charge transfer from Rb(5s) to Na(3p)
at E = 0.5 keV. This is not an effect of convolution, or alterna-
tively, of inadequate experimental resolution, insomuch as the
primary MOCC DCS neither shows diffraction patterns at this
energy. Nevertheless, as v increases, the spacing π/μvbmax

between diffraction maxima decreases, and our experimental
resolution is good enough to allow the observation of nascent
oscillations at E = 5 keV. We also note that the reduced
DCS moves toward smaller Eθ values as E increases. This
is because of the increasing contribution of the 3pσ state to
the total 3p capture channel; this contribution varies from
3.5% at E = 0.5 keV up to 13.3% at E = 5 keV, and the 3pσ

DCS peaks at lower θ than the 3pπ one since the former state
is populated at larger R (see Fig. 7).

The good agreement found up to now between theoretical
and measured DCS disappears as we consider in Fig. 13 charge
transfer from Rb(5s) to the sum of excited Na(4s), Na(3d),
Na(4p), and Na(5s) states which cannot be experimentally
disentangled at E = 5 keV (see Fig. 2). The population of
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FIG. 12. (Color online) Same as Fig. 11 but for charge transfer
from Rb(5s) to Na(3p).

these states consist of 2.12% of the total capture flux (see
Table IV). Transitions to these high-lying states mostly occur in
a range of small impact parameters (b < 5 a.u.) that our MOCC
calculations involving Fcut(b) cannot describe. Calculations
without Fcut behave better as they yield a maximal DCS around
Eθ = 7 eV rad; however, they still do not allow to obtain a
DCS that merges with the measured one. This illustrates the
difficulty to provide, for dressed ion-atom collisions at low
E, both accurate DCS for the main capture channels, without
spurious contributions at large θ , and accurate DCS for excited
states weakly populated at small R. This would necessitate
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FIG. 13. (Color online) Same as Fig. 11 but for Na+ + Rb(5s) →
Na(4s,3d,4p,5s) + Rb+. The dashed line corresponds to MOCC
calculations without the cutoff function Fcut(b).
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FIG. 14. (Color online) Same as Fig. 11 but for charge transfer
from Rb(5p) to Na(3p).

the description of the molecularization of the ionic electron
cores [45]; this is beyond our skills for such a complex system
as NaRb+.

2. Na+ + Rb(5 p) collisions

Counting statistics are too low at E = 0.5 keV to derive
reliable DCS from the measurements in Na+ + Rb(5p) colli-
sions. We shall therefore focus on results for E = 2 and 5 keV.

We present in Fig. 14 the DCS for charge transfer into
the main Na(3p) channel. A remarkable agreement is found
between the computed and measured data. The comparison of
Figs. 12 and 14 shows that the present DCS peak at smaller θ
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FIG. 15. (Color online) Same as Fig. 11 but for charge transfer
from Rb(5p) to Na(4s).
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FIG. 16. (Color online) Same as Fig. 11 but for charge transfer
from Rb(5p) to Na(3d,4p).

values than in the Na+ + Rb(5s) case. This is due to the fact
that transitions occur at larger impact parameters when the
collision is initiated from the Rb(5p) state, as proved in Fig. 6.
The analysis of the collision histories of Figs. 8 and 9 further
allowed us to understand the prominent role of rotational
redistribution at large R and the concurrent importance of
the pseudocrossings of Na+ + Rb(5p) and Na(3p) + Rb+

molecular curves. As the impact energy is decreased, the
system evolves more adiabatically and enters into the region of
smaller internuclear distances; inner transitions then occur and
yield the secondary maximum of the Na(3p) DCS at 2 keV.
The first maximum, located about Eθ = 0.2 eV rad in Fig. 14,
is highly structured in the MOCC DCS before convolution; but
these oscillatory structures cannot be experimentally resolved.

Figure 15 reports our results for charge transfer from
Rb(5p) to Na(4s). Theory and experiment agree in providing
a DCS which exhibits two main contributions at 2 keV,
beyond interference patterns. The first one, peaked at very
low Eθ , is still visible at E = 5 keV; it stems from long-range
transitions occurring as the Na+ + Rb(5pσ ) and Na(4s) +
Rb+ molecular curves pseudocross around R = 25 a.u. (see
Fig. 5). The second one is much broader and peaked about
Eθ = 3 eV rad. This outer contribution is also due to radial
transitions between the same molecular curves, but at the level
of the narrow pseudocrossing located about R = 11 a.u. in
Fig. 5. Therefore, the second contribution is only accessible at
low energies, when the system evolves quite adiabatically in
the ingoing part of the collision, and progressively disappears
as E increases.
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FIG. 17. (Color online) Same as Fig. 11 but for charge transfer
from Rb(5p) to Na(5s,4d,5p) at E = 2 keV.
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FIG. 18. (Color online) Same as Fig. 11 but for charge transfer
from Rb(5p) to Na(4s,3d,4p,5s,4d) at E = 5 keV.

3d and 4p Na states contribute 19.5% to the total capture
flux at 2 keV (see Table V). We accordingly succeeded in
deriving a reliable DCS from the measurements, even if we
were not able to discriminate between the two levels (see
Figs. 3 and 16). In fact, MOCC calculations indicate that 90%
of the (3d + 4p) capture flux is trapped into the 3d shell. The
DCS has a lobe shape similar to that of the outer maximum of
the 4s profile in Fig. 15, with identical locations of maxima.
This is due to the fact that a large part of the electron flow
that ends up in excited molecular states is initiated by primary
radial transitions Na+ + Rb(5pσ ) → Na(4s) + Rb+ around
R = 11 a.u. Rotational Na+ + Rb(5pσ ) → Na+ + Rb(4dπ )
and radial Na+ + Rb(5pπ ) → Na+ + Rb(4dπ ) transitions
also contribute to this ignition, but they occur in the same
R ∼ 10 a.u. range. The Na(3d) DCS thus encodes the patterns
of prototypical (inner) population of Na(4s), which has been
identified in Fig. 15 to the outer maximum of the 4s DCS.

Transitions to even higher excited capture states, 5s, 4d,
and 5p, can be distinguished in the Q spectrum of Fig. 3 at
2 keV. The signal is very weak but we nevertheless succeeded
in constructing the corresponding DCS from the recoil-ion
velocity map; this DCS is presented in Fig. 17 and compared
to MOCC results. The agreement is very good, despite the
weakness of the signal, because transitions to 4d − 5p states
occur through promotion of the electronic flux from lower
lying states in the b � 5 a.u. range. A remarkable agreement
between MOTRIMS and MOCC results is also found in
Fig. 18 for capture into excited states at 5 keV; this restores the
reliability of our MOCC approach which was undermined in
Fig. 13 because of the important role played by inner (R < 5
a.u.) transitions in 5-keV Na+ + Rb(5s) → Na(3d,n � 4) +
Rb+ capture collisions.

V. CONCLUSIONS AND PERSPECTIVES

Single charge transfer in low-energy Na+ + 87Rb(5s,5p)
collisions has been investigated using magneto-optically
trapped Rb atoms and high-resolution recoil-ion momentum
spectroscopy. Our MOTRIMS setup includes transverse ex-
traction of the recoil ions with 3D electrostatic focusing
and fast switch-off of the trapping magnetic field during
data counting. This improves both resolution performances
and signal over background ratio, thereby making it possible
to detect weakly populated charge transfer channels while
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dominant processes are measured with improved accuracy (see
Tables IV–VI).

We have jointly run semiclassical calculations using the
MOCC approach in the framework of the SAE approximation.
Special attention has been paid to the description of ionic
core screening effects in terms of atom-centered model
potentials optimized with effectively complete basis sets. As
expected, the calculations reveal diffractionlike patterns in
the angular DCSs which are due to the fact that a given
capture process occurs in a limited range of impact parameters
b � bmax.

Predicted diffractionlike oscillations have been clearly
resolved by the experiment (see, e.g., Fig. 10). Following
the pioneering work of van der Poel et al. [7], this reiterates
the advantages of MOTRIMS spectroscopy with respect to
conventional scattering geometries which failed in exhibiting
such oscillations. Further, our improved setup goes beyond
previous MOTRIMS ones which also failed in revealing angu-
lar oscillations in the specific case of Na+ + Rb collisions.
However, we note that diffractionlike patterns inherent in
some (extremely) long-range capture processes still remain
beyond the scope of experiments; for instance, charge transfer
from Rb(5p) to Na(3p) typically occur within the range b �
25 a.u., which implies a ∼64-μrad diffraction spacing between
successive angular maxima at E = 2 keV, and therefore
requires an experimental resolution of ∼25 μrad for an
unambiguous detection of these maxima. Such a resolution
should be reached in the future by using an even lower
extraction field.

Besides the experimental evidence of diffractionlike pat-
terns in angular scattering distributions, the MOTRIMS results
can be used as a stringent test of the accuracy of theoretical
approaches. In the present case, MOCC has made a good
job yielding state-selective cross-section ratios and DCS in
close agreement with the measurements (see Tables IV–VI and
Figs. 11–18). However, the present MOTRIMS measurements
have also made it possible to elicit the main shortcoming
of any theoretical SAE description using frozen ionic cores
(beyond the particular case of present MOCC calculations):
Such methods inevitably lead to an inaccurate description of
inelastic transitions occurring at small internuclear distances
where the projectile and target cores overlap (see Fig. 13);
fortunately, such transitions have a (very) small contribution to
cross sections [which are built in terms of the opacity functions
bP (b)] so that an ab initio description of core molecularization
is useless (at least in systems including long-range transitions;
see [45]).

On the basis of the successful complementary of
MOTRIMS and MOCC found in the present work, we plan
to apply these techniques to the case of oriented and aligned
Rb(5p) initial states. Previous studies using conventional
collisional spectroscopies [46,47] were not able to resolve the
oscillatory structures and anisotropies appearing in the small
scattering angle region. Our MOTRIMS setup is thus the ideal
alternative. Furthermore, our improved resolution makes it
possible to gauge orientation and alignment effects not only
for the most populated capture channel, but also for weakly
populated ones.
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