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Mass polarization effect on the resonant energies of p̄-He+ ions and the protonium formation in
low-energy antiproton–hydrogen-atom collisions
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We present a time-dependent method to investigate the mass polarization effect on the resonant energies of
p̄-He+ and the state-specified protonium formation in low-energy antiproton–hydrogen-atom collisions in Jacobi
coordinates. Comparing with our previous calculations in the V-shaped coordinates by neglecting the mass
polarization, we confirm that the mass polarization effect on the protonium formation is negligibly small. We also
calculated the resonant energies of p̄-He+ in the V coordinates and Jacobi coordinates. The differences of the
resonant energies between the two calculations are less than 4 meV. This also confirms that the mass polarization
effect is negligibly small even in the resonant region.
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I. INTRODUCTION

The first production of cold antihydrogen atoms [1] and the
recent success of trapped antihydrogen [2] in experiments have
stimulated further theoretical studies on antimatter physics.
Even for the capture of antiprotons by hydrogen atoms,
a simple Coulomb three-body system, the exact quantum
solutions do not exist due to the huge mass difference between
an antiproton and electron. Cohen [3] calculated the state-
specified protonium-formation cross sections by the classical
trajectory Monte Carlo method, not a quantum simulation.
Esry and Sadeghpour [4] showed that hundreds or even
thousands of adiabatic potentials have to be taken into account
for a real antiproton and hydrogen atom system and they had
to solve the scattering equations by reducing the antiproton
mass artificially. Using the diabatization technique, Hesse
et al. [5] have extended the calculation of the protonium-
formation cross sections for scaled proton and antiproton
masses of 100me, which is much lighter than the real antiproton
mass, 1836me with me the mass of an electron. So far,
the best available quantum calculations of the state-specified
protonium formation are obtained by using a time-dependent
method [6,7] in the V coordinates as shown in Fig. 1(b),
in which the mass polarization (MP) (−∇r · ∇R/mz) [8] is
neglected, where mz is the mass of nucleus Z. The justification
of the V coordinates is based on that the MP does not contribute
to the initial state (a hydrogen atom and a free antiproton) or
the final states (a protonium and a free electron). It only affects
the dynamics when the three particles are close to each other
and the effect should be small.

Recently, Sakimoto [9] has investigated the capture of
antiproton by a He+ ion using the R-matrix method [10]. He
found that the MP shifts the resonant energies significantly
and the capture cross sections obtained in the two coordinates
differ by orders in the resonant region. Since the MP effect
should be smaller in the capture process of antiproton by He+
than by hydrogen atoms due to the mass difference between
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a proton and α particle, he wonders if the V coordinates are
applicable to the protonium-formation calculations.

To check the validity of the V coordinates and MP effect
on the protonium formation and the resonant energies of
p̄-He+, we extended our time-dependent method in the V
coordinates to the Jacobi coordinates [Jacobi set 2 as shown
in Fig. 1(c)], the same coordinates as used by Sakimoto [9].
Comparing the resonant energies obtained in the V coordinates
and Jacobi coordinates, we find that the MP effect shifts the
resonant energies by less than 4 meV, much smaller than the
values reported by Sakimoto [9]. Furthermore, we calculate
the state-specified protonium-formation cross sections in the
Jacobi coordinates and show that the results are in good
agreement with the ones obtained in the V coordinates. Since
the computational resource needed for the Jacobi coordinates
is more than hundred times larger than that needed for the V
coordinates, the V-coordinate method is very useful for the
protonium-formation study and the issue raised by Sakimoto
[9], the invalidity of the V-coordinate method, is questionable.

II. THEORETICAL METHODS

In Jacobi set 2 as shown in Fig. 1(c), the Hamiltonian of
a Coulomb three-body system composed of an electron, an
antiproton, and a nucleus with charge Z is written as (atomic
units h̄ = me = e = 1 are used throughout the paper unless
stated otherwise)

H = −∇2
r

2μe

− ∇2
R

2μp

− Z

R
− Z

|r + b0R| + 1

|r − b1R| , (1)

where

μe = me(mz + mp̄)

me + mz + mp̄

, μp = mzmp̄

mz + mp̄

,

b0 = mp̄

mp̄ + mz

, b1 = mz

mp̄ + mz

.

Here mp̄ is the mass of antiproton, and R,r are the position
vectors of the antiproton with respect to the nucleus and the
electron to the center of mass of the antiproton and nucleus,
respectively. For a Coulomb three-body system, the total
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FIG. 1. Schematics of the coordinate systems for an antiproton
and a hydrogen-like atomic ion: (a) Jacobi set 1 which describes the
initial state naturally; (b) V coordinate; and (c) Jacobi set 2 which
describes the capture states naturally.

angular momentum and the parity are good quantum numbers,
thus the wave function for a given total angular momentum (J )
and its projection onto the z direction (MJ ) can be expressed
as

�JMJ
(r,R) =

∑
L,l

F
L,l
JMJ

(r,R)�L,l
JMJ

(2)

with

�
L,l
JMJ

=
∑
m,M

〈LM lm|JMJ 〉YLM (R̂)Ylm(r̂),

where L, l and M, m are the angular momenta and their
projections onto the z direction for the relative motions of R
and r.

A. Resonant energy

For Z > 1, the antiproton can be captured via resonant
states. The resonant energies of the Coulomb three-body
system can be calculated by an autocorrelation function
[11,12] defined as

C(t) = 〈�(r,R)|e−iH t |�(r,R)〉. (3)

For any given wave function �(r,R), it can be expanded as

�(r,R) =
∑

Ci�
r
i (r,R) +

∫
C(ε)�ε(r,R)dε,

where �r
i (r,R) is a bound or resonant state wave function, and

�ε(r,R) is a continuum wave function of the total Hamiltonian
in Eq. (1), and Ci and C(ε) are the corresponding coefficients.
Mathematically, the defined autocorrelation function can be
written as

C(t) =
∑

i

|Ci |2e−iεr
i t +

∫
|C(ε)|2e−iεt dε, (4)

where {εr
i } are the complex resonant energies. The time-

dependent wave function |�(t)〉 = e−iH t |�(r,R)〉 is obtained
by solving the following time-dependent Schrödinger equation

i
∂

∂t
|�(t)〉 = H |�(t)〉 (5)

numerically [13] with the initial condition |�(0)〉 = |�(r,R)〉.
Then we can obtain the autocorrelation function as C(t) =
〈�(0)|�(t)〉. Since we introduce an optical absorber [14] in
the outer region, only the resonant states contribute to the
autocorrelation function after a long time propagation. The

peak positions of the Fourier transformation

C(ω) =
∫

C(t)eiωtdt (6)

provide the resonant energies.

B. Protonium formation

Instead of obtaining the scattering wave function by solving
the time-integral equation in the V coordinates, we obtain it
in the Jacobi coordinates [set 2 as shown in Fig. 1(c)]. The
numerical procedure is similar to our previous work [15] so
that we only present how to prepare the initial wave function,
which is different from the one used in the V coordinates. Here
we choose Z = 1 and mz = mp = mp̄ with mp the mass of
proton. The initial wave function is expressed as

�0(r1,R1) = ψ1s(r1)eik0·R1

in Jacobi set 1 as shown in Fig. 1(a), where k0 is the momentum
of the antiproton in the center of mass frame. Since the
Jacobian of the mapping (r1,R1) → (r,R)

J =
∣∣∣∣∂(r1,R1)

∂(r,R)

∣∣∣∣ = 1, (7)

the initial wave function in Jacobi set 2 is written as

�0(r,R) = ψ1s(r + b0R)eik0·[(1−a0b0)R−a0r]

=
∑
JMJ

∑
L,l

F
L,l
J (r,R)�L,l

JMJ

for a given JMJ , where a0 = me/(me + mp). Note that in the
V coordinates or Jacobi set 1, only the electron s-partial wave
is involved. In Jacobi set 2 we need a lot of partial waves to
describe the initial electron wave function since the origin of
vector r is shifted from the proton to the middle point of the
proton and antiproton. The scattering wave function is obtained
from the time-integral equation as [6]

�+
J (0) = −i

∫ 0

−∞
eiHτ eητ e−iE0τVres�0dτ + �0, (8)

with

Vres = − 1

R
+ 1

|r − b1R| ,

which represents the interaction between the antiproton and
hydrogen atom. η is an infinitesimal introduced to adiabatically
switch on the interaction. In the simulation we replaced eηt

by e−η2t2
to accelerate the evolution [15]. Once we have the

scattering wave function, we can obtain the state-specified
protonium-formation cross section as

σ l
NL(J ) = 4μeμpkNL

k0

∣∣〈�L,l
f

∣∣Vf |�+
J (0)〉∣∣2

, (9)

with

Vf = − 1

|r + b0R| + 1

|r − b1R| ,

which represents the electron protonium interaction, and

�
L,l
f = jl(kNLr)ψNL(R)�L,l

JMJ
,
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which represents the final state wave function for the
protonium with principle quantum number N and angular
momentum L and the ejected electron with angular momentum
l and momentum kNL. We also calculated the cross sections
by monitoring the outgoing electron current as described in
Ref. [15] to check the convergence.

III. RESULTS AND DISCUSSION

Since Sakimoto [9] found that the MP is important in
the formation of p̄-He+ for both the resonant energies and
the formation cross sections, we will check the resonant
energies. We calculate the autocorrelation function C(t) in
Eq. (3) using the generalized pseudospectral method and the
split-operator method in the energy representation [13]. To
compare with Sakimoto’s results, we also ignored the fine and
hyperfine structures, which are very small for an antiprotonic
helium [16]. We show the resonant energies for J = 32 in the
same energy regime in Fig. 2. In the simulation we recast the
Hamiltonian of p̄-He+ as (we choose Z = 2 and mz = 4mp)

H = Hr + HR + V,

with

Hr = − 1

2μe

∇2
r − 1

r
,

HR = − 1

2μp

∇2
R − 2

R
,

V = 1

r
− 2

|r + b0R| + 1

|r − b1R| .

Here V stands for the residual correlation between the electron
and p̄-He++ core apart from the Coulomb interaction (−1/r).
When the antiproton is deeply bound by the α particle and the
electron is in a highly excited state, the resonant energy can be
simply expressed in a good approximation as

Er = 2.0 − 2up

N2
− μe

2n2
(10)
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FIG. 2. (Color online) Resonant energies of p̄-He+ calculated in
the Jacobi coordinates (dashed curve) and in the V coordinates without
the mass polarization term (dotted curve). The vertical lines show the
predicted values by Eq. (10) and the solid curve shows the resonant
energy without the residual correlation between the antiproton and
electron.

since V approaches zero. Here N (n) is the principle quantum
number of p̄-He++ (hydrogen-like atom). Hereafter we choose
the ground state energy of He+ as zero. To check the validity of
the numerical method, we switch off the residual correlation
V and obtain the resonant energies as shown in the upper
curve in Fig. 2. The peak positions of the curve are in good
agreement with the prediction from Eq. (10), the vertical lines
in the middle of the figure. The width of the peaks is attributed
to the finite time propagation. The peaks in the figure represent
N = 39, 3 � n � 10. N = 40 and n = 2 state is also located
in this energy regime as indicated in the figure. Then we
switch on the residual correlation V and calculate the spectra
in the Jacobi coordinates (dashed curve) and the V coordinates
(dotted curve). The two calculations are in good agreement as
shown in Fig. 2. Analyzing the numerical value in detail, we
find that the MP shifts the resonant energies by less than 4 meV,
which is negligibly small. To avoid missing any resonant states,
we choose different initial wave functions (in case that it is
orthogonal with a resonant state) and propagation time (in
case that we miss short-lifetime states). The results in Fig. 2
are obtained by choosing

�(r,R) = (1 + r/10)e−r/2−R
∑
L,l

�
L,l
JMJ

, (11)

which covers all the resonant states in this energy range. The
results showed in Fig. 2 are obtained by time propagation of
one million time steps with �t = 0.2 a.u. We also varied the
number of grids in space to check the convergence.

Based on the perturbation theory, we can estimate that the
upper limit of the MP (−∇r · ∇R/mz) is smaller than 40 meV
if we replace ∇R (∇r) by 2μp/N (1/n) with N = 39, n =
3. Note that this is an upper limit and the real shift due to
the MP is much smaller since this term vanishes for a single
configuration as 〈

�
L,l
JM

∣∣∇R · ∇r
∣∣�L,l

JM

〉 = 0.

We did not find the large energy shifts (larger than this upper
limit) reported by Sakimoto [9].

As shown in Fig. 2, we see that the residual correlation
V does not modify the resonant energies significantly. Since
an antiproton is very heavy, its wave function mainly locates
near N2/(Zμp) ≈ 0.5 a.u. for N = 40. The electron wave
function locates in the range around n2 ≈ 4 for n = 2. For
other higher n, the electron is well separated from p̄-He++ so
that the residual correlation should be even smaller. Therefore,
the largest split should be around N = 40, n = 2 peak which
is consistent with our calculations. From all the discussion and
our calculations, we may conclude that the MP does not affect
the resonant energies significantly.

In principle, if we replace the plane wave by a Coulomb
wave, we can also study the formation cross section of p̄-He++

in the collision of antiprotons with He+ ions. However, it
requires huge computational work and it is not our goal to study
this process but to investigate the MP effect on the resonant
energies.

Sakimoto [9] stated that the V coordinates could be more
problematic in the protonium-formation process since the anti-
proton and proton masses are equal. We have to investigate
the MP effect on the protonium formation. We calculate
the state-specified protonium-formation cross sections in the
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FIG. 3. (Color online) Partial protonium-formation cross sections
obtained in the Jacobi coordinates (solid curve with open circles) and
V coordinates (solid curve) as a function of the number of electron
partial waves.

Jacobi coordinates. Figure 3 shows the partial cross section
defined as

σ (J ) =
∑
N,L,l

σ l
NL(J )

for a given J = 25 at Ec = 0.1 a.u., the incident energy in the
center of mass frame, as a function of the number of electron
partial waves (nl) involved in the calculation. The number of
channels (L,l) involved in the simulation is proportional to n2

l

and the computational time goes up to n4
l . In the figure we see

that the cross section converges very fast in the V coordinates
below nl = 3. On the other hand, the cross section converges
slowly in the Jacobi coordinates. The converged results of the
two coordinate sets are very close to each other and this means
that the MP does not affect the partial protonium-formation
cross sections much. The numerical values show that the
difference is less than 1%.

Since the number of electron partial waves needed in the two
coordinate systems differs almost by an order of magnitude,
we need to check how the MP affects the individual formation
cross sections. Figure 4 shows the formation cross sections,
defined by

σN (J ) =
∑
L,l

σ l
NL(J ),

as a function of the principle quantum number N of the
protonium. We see that the two calculations are in reasonable
agreement over a broad range which covers more than six
orders. Since the plot is in a logarithm scale, in which
we cannot see the difference distinctly, we compared the
numerical values directly. The differences between the two
calculations are less than 10%. As the formation cross sections
become larger, the differences get smaller. The differences
may also come from the numerical inaccuracy in the Jacobi
coordinates as we will discuss later. Nevertheless, we can
safely say that the MP effect on the state-specified protonium-
formation cross sections is less than 10%.

In Fig. 3 we have seen that the partial cross sections are
larger than the converged one if we do not include enough
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FIG. 4. (Color online) Principle quantum number dependent
protonium-formation cross sections calculated in the Jacobi coor-
dinates (solid curve) and V coordinates (dotted curve). Unconverged
results (dashed curve) are also plotted. The number in parentheses is
the number of electron partial waves nl used in the calculation.

electron partial waves. Initially, the electron is located around
the proton and its wave function is analytically known if we
choose the proton as the origin of the electron coordinates.
In Jacobi set 2 we choose the middle point of the proton and
antiproton as the origin of the electron coordinates, and the
initial electron wave function can be written as

ψ1s(r + b0R) =
Lmax∑
l=0

Fl(r,R)Pl(cos θ ), (12)

where θ is the angle between r and R. Define

S(R) =
Lmax∑
l=0

2

2l + 1

∫ ∞

0
F 2

l (r,R)r2dr, (13)

then we can study how many partial waves are needed to
describe the initial electron wave function at a given R. We
plot S(R) in Fig. 5. For a large R we need many partial waves to
describe the initial electron wave function. If the number of the
partial waves is not large enough, the electron is “distributed”
to a place far away from the proton and becomes loosely bound.
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FIG. 5. (Color online) S(R) for different Lmax.
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For example, if we only take s wave into account, the electron
is symmetrically distributed around the middle point of the
proton and antiproton, not around the proton. The loosely
bound electron is easily knocked out when the antiproton
approaches the proton. This increases the formation cross
sections unphysically. When R is large, we need both a lot of
partial waves and many grid points in r to accurately describe
the initial wave function. All these make the calculations in the
Jacobi coordinates very difficult. Insufficient space grid points
will also result in numerical inaccuracy.

Interestingly, although the partial cross sections are overes-
timated by almost 8 times for nl = 9, the relative dependence
on N does not differ much as shown in Fig. 4. This also
infers that the MP effect is not important for the state-specified
protonium formation, or at least not important for the relative
formation cross sections. Although in Jacobi set 2 we need
a large nl to get a convergent result, the ejected electron is
mainly distributed at low angular momentum states. This is in
agreement with the results of the V coordinates.

We have presented two examples, the resonant energies
of p̄-He+ and the protonium-formation cross sections of
p̄+H, and have shown that the MP is not important, or more
specifically, its contribution to dynamical processes is less
than a few percent. Now we estimate the MP effect on the
capture processes of antiproton in a general way without
numerical calculations. In the V coordinates one can also
perform high precision calculations by including the mass
polarization term −∇R · ∇r/mz properly [17]. The MP term,
unlike the Coulomb interaction which affects either the initial
state or final states or both, does not affect the initial and
final states if one particle is far away from the other two. The

MP contribution reaches its maximum when the electron and
antiproton are located close to each other. For He atoms, it
is well known that the MP modifies the ground state energy
about 0.6 meV [18]. If we scale the MP contribution by

√
μp

since the momentum of the antiproton is
√

μp times large
than that of the electron for a given energy, the MP term
is about 20 meV, which is less than 1% of the Coulomb
interaction. Thus the maximum contribution of the MP to
the state-specified protonium-formation cross section is a few
percent regardless of the incident energy and the total angular
momentum.

To summarize, we have studied the resonant energies
of p̄-He+ and the protonium-formation cross sections in
antiproton–hydrogen-atom collisions in the Jacobi coordinates
and the V coordinates. Although the computational effort
needed for the Jacobi coordinates is much larger than that for
the V coordinates, the calculated results, both of the resonant
energies of p̄-He+ and of the state-specified protonium-
formation cross sections, are in good agreements for the two
coordinate sets. Thus, it is proved that the V coordinates are
very useful for the Coulomb three-body system involving an
antiproton and a hydrogen-like ion, and that the MP has a small
contribution to both the energy structures and the capture cross
sections for such a system. The large MP effects reported by
Sakimoto [9] are questionable and need to be reinvestigated.
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