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Collisional shifts in one- and two-dimensional shallow blue-detuned 87Sr optical lattice clocks
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We study the influence of ultracold collisions induced by the inhomogeneous excitation on the clock-transition
frequency in one- and two-dimensional shallow blue-detuned (BD) 87Sr optical lattice clocks with a magic
wavelength of λb = 389.889 nm. The minimal lattice potential required to tightly confine atoms in each single
lattice site is much larger than that required for a red-detuned (RD) lattice operating at λr = 813.4 nm because
of the relatively smaller magic wavelength. For a deep optical lattice, the two-body interactions of atoms in a
single lattice site mainly contribute to the clock-transition frequency shift, while the intersite collisions primarily
affect the collisional shift in a shallow optical lattice. For an effective misalignment angle �θ ∼ 10 mrad of the
probe beam with respect to the lattice axis, the fractional collisional shifts in both one- and two-dimensional BD
lattices are at the 10−16 level.
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I. INTRODUCTION

An optical lattice clock [1–4] with a large number of
quantum absorbers separately trapped in the Lamb-Dicke
regime and with a zero net ac Stark shift of the clock transition
provides an opportunity to realize an exceptionally low insta-
bility of 10−18 in one second. However, this vast potential has
not yet been realized due to thermal-noise-limited laser sources
[5–8], the Dick effect resulting from the unavoidable dead time
during periodic interrogations [9,10], the collisional frequency
shift caused by the excitation inhomogeneity [11–13], and the
polarization-dependent and higher-order light shifts [14–17].

Recently, by applying a cavity-stabilized laser system with
a reduced thermal noise floor, a measurement consistent with
a clock instability of 5 × 10−16/

√
τ has been achieved based

on a ytterbium optical lattice clock [18]. In addition, a syn-
chronous frequency comparison between a one-dimensional
(1D) 87Sr lattice clock and a three-dimensional (3D) 88Sr
lattice clock has reached an extremely low Allan standard
deviation of 1 × 10−17 approaching the quantum projection
noise limit in an averaging time of 103 s by cancelling out the
Dick effect [19].

The density-dependent collisional frequency shift induced
by the inhomogeneity in the probe excitation was first probed
in a 1D spin-polarized 87Sr lattice clock [11]. For 87Sr
atoms tightly confined in a two-dimensional (2D) lattice, the
antisymmetric spin state (singlet) and the symmetric triplet
states are well separated [20], for which the small excitation
inhomogeneity hardly induces a transition between the singlet
and triplet states. As a result, the collisional frequency shift of
clock transition is significantly suppressed [21]. Additionally,
collisional shift can be dramatically suppressed by confining
atoms in a 3D lattice with a filling factor less than or equal
to 1 per lattice site [22]. However, the huge vector and tensor
light shifts inhibit the realization of a 3D fermionic lattice
clock. On the other hand, the scattering losses induced by the
inelastic collisions in Sr and Yb optical lattice clocks have
been experimentally investigated in Refs. [23–25].
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The nonscalar light shifts can be reduced via a blue-detuned
(BD) lattice with a trap potential as shallow as possible. For
a BD 87Sr lattice clock with a magic wavelength of λb =
389.889 nm [26], atoms are trapped in the intensity minima
of the trapping field and are therefore minimally perturbed by
the lattice field, which is completely contrary to the case of a
red-detuned (RD) lattice operating at a magic wavelength λr =
813.4 nm. In addition, working with dipole traps as shallow
as possible is required not only for reducing the multipolar
perturbation [27], but also for the technical aspects.

So far, a shallow BD lattice clock has not been studied
in depth. In this article, based on 87Sr atoms, we investigate
the collisional shifts in both 1D and 2D shallow BD optical
lattice clocks, where the influence of intersite collisions on
the clock-transition frequency cannot be ignored besides the
two-body interactions of atoms at the same lattice site. Due
to the relatively smaller magic wavelength comparing with
λr , atoms cannot be tightly confined in a single BD lattice
site with a trap potential similar to that used in the RD lattice
estimated in Ref. [28]. We compare influences of the two-body
interactions of atoms in a single lattice site and the intersite
collisions of atoms in different lattice sites on the density-
dependent frequency shift and find that the former interactions
mainly contribute to the frequency shift in a deep lattice while
the latter collisions primarily affect the collisional shift in a
shallow lattice. We also study the dependence of collisional
shift on atomic temperature and the area of the probe pulse.

This article is organized as follows: In Sec. II we consider
the spin-polarized atoms with s-wave interactions in a 1D
shallow BD lattice. Based on the conclusions derived from
a simple four-atom system, the many-particle system can be
reduced to a solvable spin- 1

2 model, and the collision-induced
frequency shift is studied by applying this simple model in
Sec. III. Section IV describes the suppression of collisional
shift in a 2D shallow BD lattice. Finally, we summarize our
discussion in Sec. V.

II. SPIN-POLARIZED ATOMS IN 1D OPTICAL LATTICE

A. Physical model

We consider an ensemble of spin polarized fermionic
87Sr (I = 9/2) trapped in a 1D BD optical lattice with a magic
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FIG. 1. (Color online) Scheme of 1D BD optical lattice clock.
(a) A BD lattice is formed by a linearly polarized standing wave
operating at λb in the vertical x direction. A RD linearly polarized
traveling beam overlaps the BD lattice in the same direction, and its
beam waist ws,r is much smaller than that of the lattice beam ws,b,
while its intensity is large enough that atoms can be weakly confined
in the transverse y-z plane. The direction of magnetic field bias B0

is chosen to be along the z axis. (b) A linearly polarized probe beam
couples to the clock transition 1S0-3P0 with a bare Rabi frequency
�0 and detuning δ. The frequency difference induced by the gravity
between two adjacent lattice sites is �b. For a shallow lattice, an
atom cannot be tightly confined in a single lattice site. All the field
polarizations are in the z direction.

wavelength of λb along the vertical x axis. The typical length
of 1D lattice region is L = 102 μm corresponding to about
5 × 102 lattice sites. Due to a negative dynamic polarizability
of the atom in a BD dipole trap and the inhomogeneity of the
lattice intensity in the y-z plane, atoms cannot be confined in
the transverse direction only by the lattice field, for which we
apply another RD traveling beam with a magic wavelength
λr to overlap the BD lattice in the x direction, as shown in
Fig. 1(a). The waist radium ws,r of the RD beam is much
smaller than that of the BD lattice beam ws,b. Thus, one can
ignore the inhomogeneity of lattice beam in the y-z plane
within an area of πw2

s,r , and atoms can be trapped in the
transverse direction via the RD traveling beam. On the other
hand, due to the shallow lattice potential, an atom can tunnel
to the neighboring lattice sites [as shown in Fig. 1(b)], which
induces the extra intersite collisions among atoms in different
lattice sites besides the two-body interactions of atoms in the
same lattice site.

Here we follow a method similar to the many-body
treatment of the collisional shift developed in Ref. [29]. The
Hamiltonian describing cold polarized fermionic alkaline-
earth-metal atoms with an s-wave interaction in a 1D optical
lattice is given by [30]

H =
∑

α=e,g

∫
d3r
†

α(r)

(
− h̄2

2ma

∇2 + U (r)

)

α(r)

+ h̄ωa

2

∫
d3r[ρe(r) − ρg(r)]+4πh̄2

ma

a−
eg

∫
d3rρe(r)ρg(r)

− h̄�0

2

∫
d3r

[

†

e (r)eikL·r−iωLt
g(r) + H.c.
]
, (1)

where the density operator ρα(r) = 
†
α(r)
α(r) and ma is the

atomic mass. The fermionic field operator 
†
α(r) creates a 87Sr

atom in the electronic state α = g (1S0) or e (3P0) at position
r. The first term on the right side of Eq. (1) describes the
external dynamics of atoms in an optical potential combining
gravity [31]

U (r) = U0,b cos2(kbx) exp
[ − 2

(
y2 + z2

)
/w2

s,b

] + magx

+U0,r exp
[ − 2(y2 + z2)/w2

s,r

]
,

where g is the acceleration of Earth’s gravity, kb is the wave
vector of the lattice field, and U0,b and U0,r are the dipole
trap potentials of the BD and RD laser fields, respectively.
The second term is the Hamiltonian of the internal dynamics
of free atoms. The third term describes the collision between
two atoms in the antisymmetric electronic state |−〉 = (|ge〉 −
|eg〉)/√2 with a scattering length a−

eg . The last term denotes the
atom-field interaction between the clock transition (frequency
ωa) and the probe beam (frequency ωL and wave vector kL)
with a corresponding bare Rabi frequency �0 and the detuning
δ = ωL − ωa .

B. External dynamics of atom

We consider the external dynamics of an atom in a BD
optical lattice. In the vertical x direction, atoms move in a
periodic optical potential combining an accelerated potential,
which can be described by a Hamiltonian density hV (x) ≈
− h̄2

2ma
∂2
x + U0,b cos2(kbx) + magx. The existence of gravity

strongly suppresses the intersite tunneling effect resulting in
a separation of a lattice band into isolated sites, which is
called the Wannier-Stark ladder. We assume all atoms are in
the bottom energy band. Two adjacent lattice sites are then
shifted in energy by �b = magλb/(2h̄) = 2π × 416.5 Hz for
87Sr. Following the method in Ref. [28], one can derive the
metastable Wannier-Stark state �j (x) of an atom at the j th
lattice site.

Figure 2(a) displays the spatial distribution of an atom
moving about the 0th lattice site for different lattice potentials.
The atom is tightly confined at the center of a single lattice
site for a sufficiently large trap potential, for which the atomic
state can be approximately described by a Gaussian function
(i.e., the zeroth-order eigenfunction of a harmonic potential).
However, atoms can tunnel into the neighboring sites for a
lower lattice potential. As shown in Fig. 2(b), the curvature
of the ground band increases as the lattice potential being
decreased, which leads a large Doppler broadening and, as a
result, a large-scale spatial distribution of the atom and a strong
tunneling effect.

Figure 3 shows the longitudinal sideband spectra of lattice
trapped atoms, where we do not include the effect of the
transverse motional states. The magnitude of sidebands is
proportional to the atomic tunneling effect, which can be
suppressed down to 10% of the carrier magnitude for a lattice
potential of U0,b = 15Eb. Due to

Eb/�b

Er/�r

≈ 9,

where Er = 8π2h̄2/(maλ
2
r ) is the recoil energy of a RD photon,

this minima lattice potential required to tightly confine atoms
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FIG. 2. (Color online) (a) The normalized spatial distribution of
single 87Sr atom in a 1D BD optical lattice combining an accelerated
potential for different lattice trap depths. (b) The corresponding
bottom energy bands E0,qx

for different lattice potentials as a
function of the atomic momentum qx in the x direction. Curves with
same style in both figures correspond to the same lattice potential.
Eb = 8π 2h̄2/(maλ

2
b) is the recoil energy of a BD photon.

in each single BD lattice site is much larger than that for a RD
lattice (i.e., 5Er as estimated in Ref. [28]). Here we should note
that, for a typical intensity of the lattice field of 10 kW/cm2,
the BD lattice potential is about 56.4Eb (41 μK). In this paper,
we only consider the BD lattice with a potential smaller than
this value.

In the transverse y-z plane, the confinement on atoms is
realized by an isotropic 2D harmonic potential, for which the
atomic dynamics is approximately described by a Hamiltonian
density

hT (y,z) ≈ − h̄2

2ma

(
∂2
y + ∂2

z

) + U0,r

2(y2 + z2)

w2
s,r

for |y|,|z| � ws,r . Here we have omitted the influence of the
inhomogeneity of the BD field intensity in the transverse plane
on the atomic external dynamics since its beam waist ws,b is
much larger than that of the RD traveling wave ws,r . The
transverse harmonic eigenmodes can be expressed as

φνβ
(β) = e−β2/(2β2

0 )

π1/4
√

2νβ β0νβ !
Hνβ

(β/β0),

where the integral number νβ = 0,1, . . ., β = y,z, Hn is
the nth-order Hermite polynomial, the characteristic length
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FIG. 3. Longitudinal sideband spectra with all atoms initially
prepared in ground state |g〉. The effective Rabi frequency is about
2π × 1.2 Hz and the Rabi pulse duration is 424 ms.

β0 ≡ √
h̄/(maωβ), and the frequency of harmonic oscillator

is ωβ . One can expand the field operator 
α(r) in the
harmonic oscillator eigenmodes and the Wannier-Stark states,

α(r) = ∑

ν,j cα,ν,j�j (x)φνy
(y)φνz

(z), where the annihilation
operator cα,ν,j reduces a fermion in the electronic state |α〉 and
transverse modes ν = (νy,νz) at the j th lattice site.

As we know, the initially spin-polarized identical fermions
are immune to the s-wave ultracold collisions. However, here
we assume that the probe beam is slightly misaligned in
the x axis with a small component along the z direction:
kL = kL,xex + kL,zez (|kL,z/kL,x | � 1), which leads to an
inhomogeneous excitation during the measurement process.
In this case, the previously indistinguishable fermions become
slightly distinguishable, which results in a density-dependent
frequency shift. Typically, the effective misalignment angle
of the probe beam with respect to the lattice axis is about
�θ ∼ 10 mrad [11].

The coupling coefficients of the atom-field interaction in
the vertical and transverse directions are given by

εj,j ′ ≡
∫

�∗
j (x)eikL,xx�j ′(x)dx,

ενz,ν ′
z
≡

∫
φ∗

νz
(z)eikL,zzφν ′

z
(z)dz,

respectively, which can be further approximated as ενz
≈

Lνz
(η2

z )e−η2
z /2 if the transverse sideband transitions are neg-

ligible [29], where Ln is the Laguerre polynomial and the
Lamb-Dicke parameter ηz is defined as ηz ≡ kL,z

√
h̄/(2maωz).

Thus, the mode-dependent Rabi frequency can be expressed
as �νz,j ;ν ′

z,j
′ = ενz,ν ′

z
εj,j ′�0.

We assume that the harmonic oscillator frequencies
ωβ=y,z are much larger than the Rabi frequencies �νz,j ;ν ′

z,j
,

�νz,j ;νz,j ′ �=j , and �νz,j ;ν ′
z �=νz,j ′ �=j , for which both the transverse

and longitudinal sideband transitions can be neglected. Hence,
Hamiltonian H can be rewritten in the rotating wave approxi-
mation (RWA) as

H/h̄ =−δ
∑
ν,j

ρe,ν,j+
∑
α,ν,j

ων,j ρα,ν,j−
∑
ν,j

(
�νz,j

2
σ
†
ν,j+H.c.

)

+4πh̄a−
eg

ma

∑
{νi ,ji }

A{νi ,ji }c
†
e,ν1,j1

ce,ν2,j2c
†
g,ν3,j3

cg,ν4,j4 , (2)

where the density operator ρα,ν,j ≡ c
†
α,ν,j cα,ν,j , the

Rabi-flopping operator σ
†
ν,j ≡ c

†
e,ν,j cg,ν,j , the single

particle energy ων,j = �bj + ωy(νy + 1/2) + ωz(νz + 1/2),
and the mode overlap coefficient A{νi ,ji } =∏

β=y,z[
∫

φ∗
ν1β

(β)φν2β
(β)φ∗

ν3β
(β)φν4β

(β)dβ] [
∫

�∗
j1

(x) �j2 (x)
�∗

j3
(x)�j4 (x)dx]. All the characteristics of ultracold collisions

are included in A{νi ,ji }.

C. Four-atom system

We first focus on a simple model: four atoms distributed in
two adjacent lattice sites with each site being populated by two
atoms, and all the other lattice sites are empty. This system can
be exactly solved via the numerical calculation. We assume all
atoms are initially prepared in the electric state |g〉.
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FIG. 4. (Color online) Collisional shift in four-atom system. Only
two adjacent lattice sites are not empty, and each site is populated
by two atoms with the initially occupied transverse modes of ν1 =
(31,43) and ν2 = (61,71). (a) Rabi flopping for different Rabi pulse
areasA. (b) The collisional shift as a function of the excitation fraction
for different pulse areas. The final excitation is varied by changing
the detuning δ. The BD lattice potential is U0,b = 12Eb and the RD
transverse trap depth is U0,r = −37Er (−6 μK). The beam waist
of RD laser field is about ws,r = 30 μm, while that of the lattice
laser is much larger than ws,r . The s-wave scattering length |a−

eg| is
about 200 a0 (Bohr radii), and the time duration of a π Rabi pulse
is chosen to be tf = 80 ms. The typical misalignment angle of the
probe beam is about �θ � 10 mrad. Curves with the same style in
both figures correspond to the same pulse area A. The dash-dotted
line in (b) denotes the collisional shift without involving the intersite
collisions.

Figure 4(a) displays the Rabi flopping of four atoms
between two clock-transition states for different Rabi pulse
areas A = tf �̄ (tf the time duration of a π Rabi pulse, �̄ =
1
4

∑
ν,j �ν,j the average Rabi frequency, and �ν,j ≡ �ν,j ;ν,j ),

which quickly decays after two cycles due to the inhomo-
geneous excitation of the probe beam. Figure 4(b) shows
the collisional shift δωeg of the clock-transition frequency
changing with the excitation fraction for different Rabi pulse
areas. As we can see, a lower excitation always leads to a
larger collisional shift, and δωeg is sensitive to the pulse area
A. For A > π , δωeg is positive for any excitation fraction and
approaches zero only as Ne(tf )/N → 1 (Ne the number of
atoms in the electric state |e〉 and N is the total atomic number)
and A → π . However, δωeg changes sign for A < π , and the
zero-crossing point moves toward smaller Ne(tf )/N with the
pulse area being decreased.

We also compare the collisional shift in two different cases,
as shown in Fig. 4(b); that is, the case with the existence of
the two-body interactions of atoms in different lattice sites
and the case without involving the intersite collisions. One can
see that for the higher excitation Ne(tf )/N → 1, the influence
of intersite collisions on δωeg is weaker. However, its effect
becomes more obvious for Ne(tf )/N → 0. For a clock laser
whose frequency is locked at the point of Ne(tf )/N = 0.5, the
effect of intersite collisions should be considered carefully.

Based on this simple four-atom system, one can obtain
two conclusions: (i) For two atoms in a same lattice site,
only collisions with (ν2,ν4) = (ν1,ν3) or (ν2,ν4) = (ν3,ν1),
which describe the exchange of the transverse modes, mainly
contribute to the collisional frequency shift. Thus, the mode
overlap coefficient can be simplified as A

j

ν,ν ′ ≡ Aν,j ;ν,j ;ν ′,j ;ν ′,j
by using its symmetry [29]. (ii) For two atoms in different

sites, the two-body interactions are dominated by the terms
of (j2,j4) = (j1,j3) or (j2,j4) = (j3,j1) with the transverse
modes satisfying the condition (i). The mode overlap coeffi-
cient in this case can be simplified as A

j,j ′
ν,ν ′ ≡ Aν,j ;ν,j ;ν ′,j ′;ν ′,j ′ .

Therefore, the primary collision processes conserve the num-
ber of atoms per state; that is, collisions mainly happen
between two states that are initially occupied by atoms.

III. SPIN- 1
2 MODEL AND COLLISIONAL SHIFT

According to the conclusions derived above, it is possible to
reduce Hamiltonian H to a spin- 1

2 model. We assume a set of
transverse eigenmodes {ν̃(j )} are initially populated by atoms,
where ν̃(j ) denotes a set of the populated transverse modes
in the j th lattice site. Additionally, since the mode overlap
coefficients A

j

ν,ν ′ and A
j,j ′
ν,ν ′ are the slowly varying functions

of |νβ − ν ′
β | (β = y,z), we can approximate them by their

average values over all the possible collision terms; that is [29],

Ā
j
ν̃ ≡ 1

N2
j

∑
ν,ν ′∈ν̃(j )

A
j

ν,ν ′ ,

Ā
j,j ′
ν̃ ≡ 1

NjNj ′

∑
ν∈ν̃(j ),ν ′∈ν̃(j ′)

A
j,j ′
ν,ν ′ ,

where Nj is the number of atoms in the j th lattice site. On the
other hand, we can divide the Rabi frequency �νz,j into a mean
value �̄ν̃,j = 1

Nj

∑
ν∈ν̃(j ) �νz,j over the transverse modes ν̃ in

the j th lattice site and a small difference δ�νz,j = �νz,j −
�̄ν̃,j , which can be considered as a perturbation.

By defining the spin operators

Sx
ν,j ≡ 1

2 (c†e,ν,j cg,ν,j + c
†
g,ν,j ce,ν,j ),

S
y

ν,j ≡ 1
2i

(c†e,ν,j cg,ν,j − c
†
g,ν,j ce,ν,j ),

Sz
ν,j ≡ 1

2 (c†e,ν,j ce,ν,j − c
†
g,ν,j cg,ν,j ),

Eq. (2) can be reexpressed as

H/h̄ = −δ
∑

j

Sz
j −

∑
j

(
�̄ν̃,j

2
S+

j + H.c.

)
−

∑
j

Uν̃,j
�Sj · �Sj

−
∑
ν,j

(
δ�νz,j

2
S+

ν,j + H.c.

)
−

∑
j,δj>0

Vν̃,j,δj
�Sj · δ �Sj,δj ,

(3)

where we have defined the spin vector �Sj = Sx
j ex + S

y

j ey +
Sz

j ez, the component in each direction Sα
j = ∑

ν∈ν̃(j ) S
α
ν,j (α =

x,y,z), the effective strength of interaction between two atoms
in a same lattice site

Uν̃,j = 4πh̄

ma

a−
eg

(
Ā

j
ν̃ + 2

∑
δj>0

Ā
j,j+δj
ν̃

)
,

and the effective collision strength of atoms in two different
lattice sites

Vν,j,δj = 8πh̄

ma

a−
egĀ

j,j+δj
ν̃ .

Since the two-body collisions do not change the number
of atoms in an external atomic state as we discussed above,
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the primary part of intersite collisions can be equivalently
involved into the interactions of atoms in a single lattice site
(i.e., the second term in the round brackets of the expression
of Uν̃,j ), which leads a spin fluctuation δ �Sj,δj = 1

2 (�Sj+δj +
�Sj−δj ) − �Sj . On the other hand, since Ā

j,j+δj
ν̃ rapidly decreases

with increasing the distance δj between two atoms, the intersite
collisions, which only cover several neighboring lattice sites,
mainly affect the clock-transition frequency shift.

A. Hamiltonian in rotated frame

For simplicity we express Hamiltonian H in a rotated
frame. Based on the real and imaginary parts of the averaged
Rabi frequency �̄ν̃,j [i.e., �̄r

ν̃,j = 1
2 (�̄ν̃,j + �̄∗

ν̃,j ) and �̄i
ν̃,j =

1
2i

(�̄ν̃,j − �̄∗
ν̃,j )] and the detuning δ of the probe beam,

one can define a unit vector εν̃,j = εx
ν̃,j ex + ε

y

ν̃,j ey + εz
ν̃,j ez,

where the three components are εx
ν̃,j = �̄r

ν̃,j /ων̃,j , ε
y

ν̃,j =
�̄i

ν̃,j /ων̃,j , εz
ν̃,j = δ/ων̃,j , and the total frequency ων̃,j =√

(�̄r
ν̃,j )2 + (�̄i

ν̃,j )2 + δ2. By choosing the vector ε as a new
rotation axis (a new z direction), we can define a new spin vec-
tor �sν,j = sx

ν,j ex + s
y

ν,j ey + sz
ν,j ez with the three components

being expressed as

sx
ν,j = cos φν̃,j cos θν̃,j S

x
ν,j− sin φν̃,j cos θν̃,j S

y

ν,j+ sin θν̃,j S
z
ν,j ,

s
y

ν,j = sin φν̃,j S
x
ν,j + cos φν̃,j S

y

ν,j ,

sz
ν,j =− cos φν̃,j sin θν̃,j S

x
ν,j+ sin φν̃,j sin θν̃,j S

y

ν,j+ cos θν̃,j S
z
ν,j ,

where the rotation angles θν̃,j and φν̃,j can be derived from

cos θν̃,j = εz
ν̃,j , sin θν̃,j =

√(
εx
ν̃,j

)2 + (
ε

y

ν̃,j

)2
,

cos φν̃,j = εx
ν̃,j

sin θν̃,j

, sin φν̃,j = − ε
y

ν̃,j

sin θν̃,j

.

One can show that �s 2
j = �S2

j and �sj · δ�sj,δj = �Sj · δ �Sj,δj , where
�sj = ∑

ν∈ν̃(j ) �sν,j .
Similar to the averaged Rabi frequency �̄ν̃,j , the real

and imaginary parts of the tiny Rabi frequency difference
δ�νz,j are given by δ�r

νz,j
= 1

2 (δ�νz,j + δ�∗
νz,j

) and δ�i
νz,j

=
1
2i

(δ�νz,j − δ�∗
νz,j

), respectively. In the rotated frame, δ�νz,j

should be changed to (δ�x
νz,j

,δ�
y

νz,j
,δ�z

νz,j
), where

δ�x
νz,j

= (
δ�r

νz,j
cos φν̃,j + δ�i

νz,j
sin φν̃,j

)
cos θν̃,j ,

δ�
y

νz,j
= δ�r

νz,j
sin φν̃,j − δ�i

νz,j
cos φν̃,j ,

δ�z
νz,j

= −(
δ�r

νz,j
cos φν̃,j + δ�i

νz,j
sin φν̃,j

)
sin θν̃,j .

Based on the expressions of the new spin vector �sν,j and
Rabi frequency differences δ�α

νz,j
(α = x, y, z), Hamiltonian

(3) can be rewritten in a simple form

H/h̄ = −
∑

j

ων̃,j s
z
j −

∑
j

Uν̃,j �sj · �sj −
∑
α,ν,j

δ�α
νz,j

sα
ν,j

−
∑
j,δj

Vν̃,j,δj �sj · δ�sj,δj , (4)

which is the basis of the following discussion. In the case
of a homogeneous excitation (δ�α

ν̃,j = 0), �s 2
j and sz

j are two

conserved quantities. The system will be only in the sj =
Nj/2 manifold and no collision-induced frequency shift exists
because the Pauli exclusion principle ensures the maintenance
of the initial zero s-wave interaction [32]. On the other hand,
for a sufficiently large lattice potential, the intersite collisions
can be sufficiently suppressed (i.e., Āj,j+δj

ν̃ → 0), and one can
ignore its influence on the clock-transition frequency shift.

Initially, all the atoms are prepared in the ground electric
state |g〉. For a fixed set of the populated transverse modes
ν̃(j ) in the j th lattice site, the atomic state at time t = 0
can be expressed as |ψν̃,j (t = 0)〉 = |Nj

2 , − Nj

2 〉 in the spin
momentum representation. Furthermore, by applying the
Wigner rotation matrices one can obtain the initial state

|ψν̃,j (t = 0)〉

=
Nj /2∑

mj =−Nj /2

e−imj φν̃,j

[
Nj !

(Nj/2 − mj )!(Nj/2 + mj )!

]1/2

× cosNj /2−mj

(
θν̃,j

2

)
sinNj /2+mj

(
θν̃,j

2

)
|Nj/2,mj 〉

in the rotated spin momentum space.

B. Perturbations in the spin- 1
2 model

In the presence of the excitation inhomogeneity (δ�α
ν,j �=

0), �s 2
j are no longer conserved, and more manifolds should be

involved. However, according to the conclusion in Ref. [29],
since the misalignment of the probe beam is slight, the third
term in Eq. (4) can be viewed as a perturbation. To first order
in perturbation theory, it is enough to consider the transition
within the sj = Nj

2 and Nj

2 − 1 manifolds.
Now we prove that the fourth term in Eq. (4) is a

perturbation. If |Vν̃,j,δj | is much smaller than |Uν̃,j |, it is natural
to view Vν̃,j,δj �sj · δ�sj,δj as a perturbation of Uν̃,j �sj · �sj . But
|Vν̃,j,δj | � |Uν̄,j | is not a necessary condition. Since the Rabi
flopping during the time interval (0 ∼ tf ) is mainly determined
by the homogeneous excitation, we can only compare the
average values of Uν̃,j 〈�sj · �sj 〉 and Vν̃,j,δj 〈�sj · δ�sj,δj 〉 based
on the zeroth-order wave functions (i.e., δ�α

ν,j = 0), and it
is easily to obtain

∥∥∥∥Vν̃,j,δj 〈�sj · δ�sj,δj 〉
Uν̃,j 〈�sj · �sj 〉

∥∥∥∥ ≈
∥∥∥∥Vν̃,j,δj

Uν̃,j

Nj−δj + Nj+δj − 2Nj

Nj

∥∥∥∥
for Nj � 1. Here, 〈· · ·〉 denotes the quantum average over
all the possible spin states. Typically, Nj � |Nj − Nj−δj |,
|Nj − Nj+δj |, and |Vν̃,j | < |Uν̃,j |. Therefore, the last term
in Eq. (4) can be viewed as a perturbation compared with
the second term. On the other hand, we can view δ�sj,δj

as a perturbation compared with �sj for reasons that (i) the
homogeneous excitation dominates the Rabi flopping during
the time interval (0 ∼ tf ) and (ii) the averaged atomic number
slowly varies along the lattice axis. To a good approximation,
one can use the zeroth-order value of δ�sj,δj for the calculation
of the collisional shift.
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C. Expression of collisional shift

Since collisions do not change the number of atoms in each
lattice site, we can express the time-evolving many-body state
of the whole system |ψ{ν(j )}(t)〉 ≡ ∏

j |ψν,j (t)〉 as

|ψ{ν(j )}(t)〉 =
∏
j

( ∑
mj

cmj
(t)e−iωNj /2,mj

t |Nj/2,mj 〉

+
∑
mj ,kj

bmj ,kj
(t)e−iωNj /2−1,mj

t |Nj/2 − 1,mj ,kj 〉
)

,

where the eigenfrequencies

ωNj /2,mj
= mjων̃,j − Uν̃,j

2

Nj

2

(
Nj

2
+ 1

)
,

ωNj /2−1,mj
= mjων̃,j − Uν̃,j

2

Nj

2

(
Nj

2
− 1

)
.

The normalization of amplitudes cmj
and bmj ,kj

are given by∑
mj

|cmj
(t)|2 + ∑

mj ,kj
|bmj ,kj

(t)|2 = 1.
In order to determine the time-dependent coefficients cmj

(t)
and bmj ,kj

(t), we begin by writing a perturbation expansion
for the coefficients, cmj

(t) ≈ c(0)
mj

(t) + c(1)
mj

(t) + c(2)
mj

(t) and

bmj ,kj
(t) ≈ b

(0)
mj ,kj

(t) + b
(1)
mj ,kj

(t) + b
(2)
mj ,kj

(t). Since atoms are

all prepared in the ground state initially, we have c(0)
mj

(t) =
c(0)
mj

(0), b
(0)
mj ,kj

(t) = 0, and
∑

mj
|c(0)

mj
(0)|2 = Nj . According to

the Schrödinger equation ih̄ ∂
∂t

|ψ{ν(j )}(t)〉 = H |ψ{ν(j )}(t)〉 and
time-dependent perturbation theory, one can derive the expres-
sions of coefficients c(1)

mj
and c(2) and b

(1)
mj ,kj

and b
(2)
mj ,kj

. Besides
the required transition matrix elements for the perturbative
calculations, which have already been given in Ref. [21], some
other formulas should be applied; namely,

Nj∑
n=1

e−i2πkj n/Nj = 0,

Nj −1∑
kj =1

e−i2πkj n/Nj = −1,

Nj −1∑
kj =1

Nj∑
n=1

δ�α
n,j e

−i2πkj n/Nj = 0,

Nj∑
n,n′=1

δ�α
n′,j δ�

α
n,j e

−i2πkj (n′−n)/Nj = Nj

Nj∑
n=1

(
δ�α

n,j

)2
.

For a set of the populated transverse states {ν̃(j )}, the
time-dependent population in the excited state can be
expressed as

Ne
{ν̃(j )}(t) =

∑
j

(
Nj

2
+ 〈

Sz
ν̃,j (t)

〉)

=
∑

j

(
Nj

2
+ sin θν̃,j

〈
sx
ν̃,j (t)

〉 + cos θν̃,j

〈
sz
ν̃,j (t)

〉)

by applying the expression of the many-body state |ψ{ν(j )}(t)〉.
After some algebra, one can show that Ne

{ν̃,j}(t) depends on
�νz,j only through the mean Rabi frequency �̄ν̃,j of the

j th lattice site and the standard deviation of Rabi frequency
��ν̃,j =

√
1

Nj

∑
ν(�νz,j − �̄ν̃,j )2. The collisional shift is mea-

sured by locking the laser frequency at two points of equal
height in the clock-transition line shape and can be expressed
as [29]

δωeg = Ne
{ν̃,j}(tf ,δ0) − Ne

{ν̃,j}(tf , − δ0)

2∂N
e,(0)
{ν̃,j}(tf ,δ)/∂δ

∣∣
δ=δ0

, (5)

where the superscript (0) denotes a homogeneous excitation
(i.e., δ�α

νz,j
= 0). Due to 〈Nj/2,mj |sx,y,z

j |Nj/2 − 1,m′
j ,kj 〉 =

0, δωeg does not have the first-order correction related to
��ν̃,j .

So far we have assumed a fixed set of populated transverse
eigenstates {ν̃(j )}. At finite temperature T , the quantities Uν̃,j ,
Vν̃,j,δj , �ν̃,j , and δ�α

νz,j
should be thermally averaged; that is,

〈O〉T =
∑

ν̃ O(ν̃)e−E(ν̃)/(kBT )∑
ν̃ e−E(ν̃)/(kBT )

.

Here we can express the two-body interaction strength 〈Uν̃,j 〉T
as 〈U 〉T = uξ 2

T , where the thermal-independent part is

u= 4πa−
eg

√
ωyωz

∫
|�0(x)|2

(
|�0(x)|2+

∑
δj>0

2|�δj (x)|2
)

dx

(6)

and the temperature-dependent dimensionless parameter

ξ =
〈 ∫

dβ

β0

∣∣∣∣φνβ
(β)φν ′

β
(β)

∣∣∣∣
2〉

a,T

.

The notation 〈· · ·〉a,T denotes an average over the different
transverse eigenmodes combing the thermal average.

D. Collisional shift in 1D BD lattice

We assume that the number of atoms loaded into a single
lattice site obeys a Poissonian probability distribution with
a mean value determined by the assumed distribution of
atoms N̄j = N√

2πσ̃ 2
exp[−j 2/(2σ̃ 2)], where σ̃ = 2ws,r/λb is

the standard deviation of the Gaussian distribution in units of
the lattice constant λb/2 and N is the total number of atoms
trapped in lattice region [24].

Figure 5(a) displays the strength u of the two-body interac-
tion changing with the lattice potential. One can see that, for
a shallow optical lattice, the intersite interactions can surpass
the collisions of atoms in a single lattice site and primarily
contribute to the clock-transition frequency shift [Fig. 5(b)],
which coincides with the spatial distribution of atom shown
in Fig. 2(a). Increasing the lattice potential can suppress
the intersite collisions, but it also increases the collisional
shift since the strength of the two-body interaction is in a
weakly interacting regime (u � 〈�〉T ). For U0,b > 15Eb, the
collision-induced frequency shift is mainly affected by the
collisions of atoms at a single lattice site. For our system, the
minimal lattice potential required to sufficiently suppress the
intersite collisions is about 15Eb (14.5 μK), which is much
larger than that required for a RD lattice. This is because λr is
about two times larger than λb, which leads to Eb ≈ 4.35Er

and �r ≈ 2.1�b. If the frequency of a local oscillator is
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FIG. 5. (Color online) (a) Interaction strength u as a function
of lattice potential with (triangles) and without (squares) involving
the intersite collisions. (b) Collisional shift changing with final
excited-state fraction for different lattice potentials. The lattice
potential is increased from 5Eb to 30Eb with each step of Eb. Solid
lines: δωeg including the intersite interactions. Dashed lines: δωeg

without involving the intersite collisions. For both figures, the atomic
temperature is about T = 3 μK and the atomic number is N = 3000.
All the other parameters are the same as for Fig. 4.

phase locked at the half-height point of the clock-transition
spectrum (Ne ∼ Ng , where Nα=e,g is the total number of atoms
in the electric state |α〉), the fractional collisional shift is about
δωeg/ωa ≈ 4.6 × 10−16 for a lattice potential of U0,b = 15Eb.

Since each lattice site traps a different number of atoms,
the collisional shifts in different single lattice sites vary
over the whole lattice region. This inhomogeneity, which
is caused by the atomic distribution, decreases for higher
excitations, as shown in Fig. 6(a), because all the collisional
shifts should approach zero as Ne(tf )/N → 1. In addition,
this inhomogeneity introduces an extra statistical uncertainty
into the phase locking of a local oscillator because a different
collisional shift is involved in each interrogation. Reducing
the number of atoms trapped in each lattice site can suppress
this kind of inhomogeneous frequency shift, which, however,
decreases the signal-to-noise ratio. Thus, a 2D optical lattice
is a better choice since the number of atoms in each lattice site
can be reduced to less than two but a large number of quantum
absorbers still remain.
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N 3000
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FIG. 6. (Color online) (a) Collisional shifts for different numbers
of atoms with shaded area denoting frequency shifts in each single
lattice site. The temperature of atoms is T = 3 μK. (b) Collisional
shifts for different atomic temperature with a ∼10% variation of the
π Rabi pulse area A. All the other parameters are the same as for
Fig. 4.
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FIG. 7. (Color online) HP shift in 1D BD lattice as a function of
lattice potential U0,b.

Figure 6(b) shows the collisional shift for different atomic
temperatures. Reducing the atomic temperature can decrease
the number of transverse eigenmodes possibly populated by
atoms. As a result, the inhomogeneous excitation can be
suppressed, and hence the collisional shift is reduced. On the
other hand, due to a ∼10% variance of the π Rabi pulse area
A in experiment, the collisional shift distributes in a band
area. Reducing the temperature of atoms can also decrease the
influence of the variance of A.

Figure 7 displays the hyperpolarizability (HP) shift in a BD
lattice changing with lattice potential, where we have used the
fact that the difference between HPs of the upper and lower
clock levels is about �β = 0.1 mHz/(kW/cm2)2 at λb [26].
Since atoms are trapped in the intensity minima of the lattice
field and because we choose a shallow optical lattice here, the
higher-order light shift can be quite a bit smaller than 1 mHz,
which is attractive to realize a high-performance optical clock.

IV. SPIN-POLARIZED ATOMS IN 2D OPTICAL LATTICE

Above we have considered the effect of intersite collisions
on the collision-induced frequency shift in a 1D optical lattice.
As demonstrated in Ref. [21], by tightly confining atoms in a
2D lattice, the two-body interaction energy u can exceed the
thermally averaged Rabi frequency 〈�〉T , which significantly
suppresses the transition between the atomic singlet and triplet
states and results in a reduction in collisional shift. In this
section, we consider an ensemble of spin-polarized 87Sr (I =
9/2) atoms trapped in a 2D BD optical lattice, as shown in
Fig. 8. A 2D array of isolated tube-shaped potentials oriented
along the z axis is formed by two BD standing waves, and
an extra RD elliptical Gaussian traveling beam is applied to
weakly confined atoms in the z direction. The beam waist w

y
s,r

in the y direction is large enough that the traveling wave does
not affect the BD potential shape in the range of the lattice
region except by introducing an extra potential bias.

The Hamiltonian density in the lattice region can be
approximately expressed as

h(x,y,z) =
∑

β=x,y,z

− h̄2

2ma

∂2
β +

∑
β=x,y

U
β

0,b cos2(kbβ)

+
√

1

3
magx +

√
2

3
magy + U0,r

2z2(
wz

s,r

)2 .
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FIG. 8. (Color online) 2D BD optical lattice is formed by two
standing waves along ex and ey with light polarization in z direction
and lattice length of L = 50 μm. The confinement on atoms in the
z direction is realized by a RD z polarization traveling elliptical
Gaussian wave propagating in the ex direction, whose beam waists in
the y and z directions are wy

s,r � L and wz
s,r = 30 μm, respectively.

The quantum axis is chosen to be in the z direction, and the gravity
is along the

√
1/3ex + √

2/3ey direction.

In this case, the fermionic field operator should be
expanded as


α(r) =
∑
�j,νz

cα, �j,νz
�jx

(x)�jy
(y)φνz

(z) (α = e,g),

where �j = (jx,jy), �jx
(x), and �jy

(y) are, respectively, the
Wannier-Stark states in the x and y directions with indices
jx and jy denoting the numbers of lattice sites along the cor-
responding directions, and φνz

(z) are the harmonic oscillator
eigenmodes in the z direction.

Following the same process as in Sec. III, the Hamiltonian
of the spin- 1

2 model for fermionic atoms in a 2D lattice is
given by

H/h̄ = −δ
∑

�j
Sz

�j−
∑

�j

(
�̄ �j,ν̃z

2
S+

�j +H.c.

)
−

∑
�j

U �j,ν̃z

�S �j · �S �j

−
∑
�j,νz

(
δ� �j,νz

2
S+

�j,νz

+H.c.

)
−

∑
�j,δ �j

V �j,δ �j,ν̃z

�S �j · δ �S �j,δ �j ,

(7)

where ν̃z denotes a set of harmonic oscillators populated by
atoms, two interaction strengths are defined as

U �j,ν̃z
= 4πh̄

ma

a−
eg

(
Ā

�j
ν̃z

+ 2
∑
δ �j>0

Ā
�j+δ �j
ν̃z

)
,

V �j,δ �j,ν̃z
= 8πh̄

ma

a−
egĀ

�j+δ �j
ν̃z

,

and the spin difference δ �S �j,δ �j = 1
2 (�S �j+δ �j + �S �j−δ �j ) − �S �j .

Again, the primary part of intersite interactions has been
effectively involved in U �j,ν̃z

. The last two terms in Eq. (7)
can be considered as perturbations. The thermally averaged
two-body interaction energy is expressed as 〈U �j,ν̃z

〉T = uξ ,

where the thermal-independent part is

u = 4π

√
h̄ωz

ma

a−
eg

∏
β=x,y

∫
|�0(β)|2

×
(

|�0(β)|2+
∑
δjβ>0

2|�δjβ
(β)|2

)
dβ. (8)

The first term in round brackets corresponds to the collisions
of atoms in a single lattice site, while the second term denotes
the primary part of intersite interactions.

The strength u of the two-body interactions without
involving the intersite collisions [i.e., omitting the second term
in the round brackets of Eq. (8)] can be in a weakly interacting
regime (u � 〈�〉T ) for a shallow optical lattice and reaches
a strongly interacting regime (u � 〈�〉T ) by enlarging the
lattice potentials, as show in Fig. 9(a). However, when we take
into account the effect of intersite collisions, the interaction
strength u is always larger than the thermally averaged Rabi
frequency 〈�〉T [Fig. 9(b)], and hence atoms are in a strongly
interacting regime.

For simplicity, we assume that N = 3000 atoms are trapped
in the center of the lattice region with each lattice site being
populated by two atoms. Figure 10(a) displays the dependence
of the collision-induced frequency shift δωeg on the lattice
potential Ux

0,b in the x direction and the thermally averaged

FIG. 9. (Color online) (a) Interaction energy u as functions of
lattice potentials in x and y directions without involving the intersite
collisions. The varying range of u covers both of the weakly and
strongly interacting regimes. (b) The interaction strength u including
the intersite collisions, which is only in the strongly interacting
regimes. For both figures, the s-wave scattering length |a−

eg| is about
40a0 [21], the atomic temperature is T = 3 μK, and the RD trap
depth is U0,r = −37Er (−6 μK).
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FIG. 10. (Color online) (a) Collision-induced frequency shift involving intersite collisions as functions of lattice potential in the x direction
and the thermally averaged Rabi frequency 〈�〉T . The lattice potential in the y direction is fixed at U

y

0,b = 30Eb. (b) Collisional shift including
intersite interactions as functions of the lattice potentials in the x and y directions with 〈�〉T = 2π × 22.5 Hz. (c) Collisional shift without
involving intersite interactions. The thermally averaged Rabi frequency is the same as for (b). All the other parameters are the same as for Fig. 9.

Rabi frequency 〈�〉T , from which one can obtain the features
of the 2D lattice clock: (i) Increasing the interaction strength
u can suppress the collisional shift δωeg for u � 〈�〉T , and
(ii) δωeg increases with enlarging 〈�〉T due to the larger
excitation inhomogeneity. Figure 10(b) shows the collisional
shift δωeg in a 2D optical lattice clock, which includes the
intersite interactions, as functions of the lattice potentials in
two directions Ux

0,b and U
y

0,b. Since the interaction energy u

always surpasses the thermally averaged Rabi frequency 〈�〉T ,
δωeg is suppressed as U

x,y

0,b is increased. However, since we
choose a shallow optical lattice here, the fractional collisional
shift is at the 10−16 level.

In order to clearly demonstrate the effect of intersite
collisions on the clock frequency shift, we show δωeg without
involving the intersite collisions in Fig. 10(c) for comparison.
One can see that δωeg strongly increases as U

x,y

0,b is increased
in the weakly interacting regime. However, when the strength
u of two-body interactions exceeds the thermally averaged
Rabi frequency 〈�〉T , δωeg is significantly suppressed in the
strongly interacting regime because the singlet and triplet
states are well separated. Therefore, the intersite collisions
strongly affect the clock-transition frequency in the weakly
interacting regime, while the collisions of atoms at a single
lattice site mainly contribute to the collisional shift in the
strongly interacting regime.

V. SUMMARY

In a BD lattice, atoms are trapped in the intensity minima
of a lattice field, which strongly reduces the higher-order light
shift and makes the BD lattice clock an attractive candidate
to realize a high-performance optical clock. In this paper, we
have investigated the collisional shift in a shallow BD optical
lattice, where the intersite interactions of atoms in different
lattice sites can no longer be neglected. Since the BD magic
wavelength λb is less than half of the RD one λr , a relatively
much larger lattice potential is required to tightly confine atoms
in each lattice site.

For a 1D optical lattice, since atoms can be only tightly
confined in one direction while the atomic dynamics should
be thermally averaged in the other two directions, the energy
separation between the singlet and triplet states is much
smaller than the thermally averaged Rabi frequency (i.e.,
the weakly two-body interacting regime). In this case, the
collision-induced frequency shift monotonically increases as
the strength of the two-body interactions is increased (i.e., a
larger lattice potential leads to a larger collisional shift). One
may expect to decrease the lattice potential in order to reduce
the interaction energy of atoms in a single lattice site. However,
the intersite collisions strongly increase and mainly affect the
clock-transition frequency for a shallow optical lattice, for
which the collisional shift cannot be strongly reduced and a
relatively larger Doppler shift will be introduced to an optical
lattice clock.

For a 2D optical lattice, atoms can be tightly confined in
two directions, which makes the collision strength of atoms
at a single lattice site cover both the weakly and strongly
interacting regimes. In the strongly interacting regime, since
the singlet and triplet states are well separated in energy, the
collisional shift can be dramatically suppressed by increasing
the atomic interaction energy. One may expect that, if the
lattice potentials are reduced from the strongly interacting
regime to the weakly interacting regime, the collisional
shift would first strongly increase and then significantly
decrease when the strength of atomic interaction is smaller
than the thermally averaged Rabi frequency. However, due
to the large intersite collisions in a shallow optical lattice,
the two-body interaction strength is always larger than the
thermally averaged Rabi frequency. Hence, the collisional
shift monotonically increases with the lattice potentials being
reduced.

For both 1D and 2D lattice clocks, the fractional collisional
shifts are at the 10−16 level for an effective misalignment
angle �θ ∼ 10 mrad of the probe beam. Suppressing fermion
collision shifts requires the homogeneous excitation, the
exact control of the Rabi pulse area, and the reasonably

032705-9



DESHUI YU PHYSICAL REVIEW A 85, 032705 (2012)

homogeneous atomic distribution. Additionally, a 3D BD
optical lattice is still an interesting and challenging choice,
where a high number of quantum absorbers is maintained but
lattice traps well separate each atom.
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