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Ab initio studies of electron correlation and Gaunt interaction effects in the boron isoelectronic
sequence using coupled-cluster theory
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In this paper, we study electron correlation and Gaunt interaction effects in ionization potentials (IPs) and
hyperfine constants A of 2p 2P1/2 and 2p 2P3/2 states along with fine structure splitting (FSS) between them for
the boron isoelectronic sequence using the relativistic coupled-cluster method. The range of atomic number z is
taken from 8 to 21. The Gaunt contributions can be calculated at both the Dirac-Fock and the coupled-cluster
levels from our presentation. Calculated IPs and FSS are compared with the results of the National Institute
of Standards and Technology. Important correlation contributions like the core correlation, core polarization,
and pair correlation effects are studied for hyperfine constants A. Many distinct features of the correlation and
relativistic effects are observed in these studies.
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I. INTRODUCTION

Research in isoelectronic sequences of lighter atoms has
been a subject of recent interest for study of various atomic
properties of low-lying atomic states and the transitions
between them [1–3]. Accurate estimations of these properties
require correlation corrections with the Breit and quantum
electrodynamic (QED) effects [4]. However, individual studies
of all these effects are necessary to realize the relative
strengths between them with increasing atomic number for
different isoelectronic sequences. To implement these effects
in different many-body theories, a suitable form of matrix
elements of their operators is necessary. From our literature
survey, we found a number of such formulations for the Breit
operator [5–9]. However, in our work, we have implemented
the Gaunt interaction, which is the magnetic part of the Breit
interaction [9] and is considered to be an order of magnitude
larger than the other part, called the retardation part [5].
Hence, the Gaunt interaction is assumed to provide a useful
approximation to the Breit interaction [5]. The matrix element
of the Gaunt operator is reformulated to add with the matrix
element of the Coulomb operator in a self-consistent approach
at both the Dirac-Fock (DF) and the coupled-cluster (CC) level
of calculations.

In recent years, a number of theoretical calculations
have been performed on the boron isoelectronic sequence
considering the Breit interaction in the atomic Hamilto-
nian [3,4,10–23]. These calculations have been performed
using different many-body approaches like the configuration-
interaction technique [3,10,22], multiconfiguration DF method
[4,11,12], weakest bound electron potential model theory [23],
relativistic multireference configuration-interaction technique
[13–16], multiconfiguration Hartree-Fock method [17], and
relativistic many-body perturbation theory [18–21]. Eliav et al.
have implemented the Breit interaction in the CC theory and
treated only four members of this sequence to calculate the
ionization potentials (IPs) and fine structure splitting (FSS)
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[24]. Recently, relativistic CC (RCC) calculations of this
sequence were performed by Nataraj et al. [25] for Mg VIII,
Si X, and S XII. They performed RCC calculations on different
transition properties among some low-lying states of these ions
on the basis of the Dirac-Coulomb Hamiltonian. However, the
improvement in the fine structures due to the inclusion of
relativistic effects, which was pointed out by Eliav et al. [26],
is highlighted here for these three elements.

Isoelectronic sequences are also very useful for studying
the trends of relativistic and different correlation effects in
hyperfine properties of different ions [27]. Panigrahy et al.
investigated the different correlation mechanisms on the
magnetic dipole hyperfine constants (A) of Li-like systems
using the relativistic linked-cluster many-body perturbation
theory [27]. As members of the boron isoelectronic sequence,
the hyperfine constants of C II, N III, and O IV were calculated
by Jönsson et al. [28]. QED and interelectronic interaction
corrections in hyperfine properties were analyzed by Ore-
shkina et al. using the large-scale configuration-interaction
Dirac-Fock-Sturm method for a few members of this sequence
[29].

The purpose of the present paper is to analyze correlation
and Gaunt effects in the calculations of IPs, hyperfine constants
A of 2p 2P1/2 and 2p 2P3/2 states, and FSS between them for
boron-like systems using the RCC approach. Systematic inves-
tigations of both these effects with increasing atomic number
provide comparative information about their contributions in
the calculations of these properties. Gaunt contributions at
both the DF and the CC levels of calculations have been
explicitly studied to test the correlation effects on these. Our
final calculated results for IPs and FSS, including correlation
and Gaunt effects, are compared with the results of the National
Institute of Standards and Technology (NIST) [30]. Graphical
variations of these effects are shown with increasing atomic
number. The RCC method, applied in these calculations,
consist of single, double, and partial triple excitations [31].
Different types of correlation effects like the core correlation,
pair correlation, and core polarization in the hyperfine con-
stants are plotted to observe their variations with regard to
(w.r.t.) Z.
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II. THEORY

A. Matrix element of the Gaunt interaction operator

The Breit interaction, introduced by Breit [32], is the
first relativistic correction of the Coulomb interaction. The
frequency-independent form of the Breit interaction between
two electrons, indicated by 1 and 2, is given by

HB = −
−→α1 · −→α2

r12
+ 1

2

[−→α1 · −→α2

r12
− (−→α1 · −→r12)(−→α2 · −→r12)

r3
12

]
,

(2.1)

where α1 and α2 are the corresponding Dirac matrices and r12 is
the distance of separation between the two electrons [33]. The
overall Breit interaction is contributed by the magnetic part,
called the Gaunt interaction [34], as stated earlier, represented
by the first term in Eq. (2.1), and the other part, which includes
the retardation effect, called the retardation part, represented
by the remainder of this equation.

Including the Gaunt interaction with the Coulomb interac-
tion, the atomic Hamiltonian of an N-electron system is written
in the form

H =
N∑

i=1

[
c−→αi · −→pi + (βi − 1) c2 + Vnuc(ri)

+
N∑

j>i

(
1

rij

−
−→αi · −→αj

rij

)]
. (2.2)

The Gaunt interaction can be expanded in terms of
irreducible tensor operators [7,9],

Bg =
∑
ν,L

(−1)ν+LVν(1,2)[X[(1ν)L](1).X[(1ν)L](2)], (2.3)

where ν = L − 1, L, or L + 1 and X[(1ν)L](1) = [α1C(ν)(1)](L)

[7]. In the long-wavelength approximation [7],

Vν(1,2) = rν
<

rν+1
>

, (2.4)

where r< = min(r1,r2) and r> = max(r1,r2).
Knowledge of the general two-electron matrix element of

the Gaunt operator is necessary to include this effect in the CC
theory, which is derived from Ref. [7] and is given as follows:

〈A1B2|Bg|C1D2〉
= 〈A1B2|

∑
ν,L

(−1)ν+LVν(1,2)[X[(1ν)L](1).X[(1ν)L](2)]|C1D2〉

=
∑
L,M

(−1)jA−mA+jB−mB+L−M

(
jA L jC

−mA M mC

)

×
(

jB L jD

−mB −M mD

)
XL(ABCD). (2.5)

Here the effective interaction strength, XL(ABCD), is written
in the following form:

XL(ABCD) = (−1)jA+jB+L+1
√

(2jA + 1)(2jB + 1)(2jC + 1)(2jD + 1)

(
jA L jC
1
2 0 − 1

2

) (
jB L jD
1
2 0 − 1

2

)

×
⎡
⎣ L+1∑

ν=L−1

�o(κA,κC,ν)�o(κB,κD,ν)
4∑

μ=1

rν
μ(ABCD)Rν

μ(ABCD)

⎤
⎦ . (2.6)

The factor

�o(κA,κC,ν) = 1
2

[
1 + aAaC(−1)jA+jC+ν

]
(2.7)

is associated with the parity selection rule of the Gaunt
interaction operator, which is opposite to the Coulomb parity
selection rule. The values of aA and aC are +1 or −1,
according to the positive or negative κ values, respectively. The
coefficients rν

μ(ABCD) and the radial integrals Rν
μ(ABCD)

are presented in Tables I and II, respectively, for values of
μ = 1, 2, 3, or 4. For Table I, we have

P =

⎧⎪⎨
⎪⎩

1
L(2L−1) for ν = L − 1,

− (κA+κC )(κB+κD )
L(L+1) for ν = L,

1
(L+1)(2L+3) for ν = L + 1,

(2.8)

where k = κC − κA and k′ = κD − κB . PA(r)
r

and QA(r)
r

are the
large and small components of the radial part of the wave
functions, respectively [7].

At the DF level, we need the knowledge of direct and
exchange matrix elements of this operator, which are obtained
by replacing A = A, B = B, C = A, and D = B and A = A,

B = B, C = B, and D = A, respectively [9]. However, the
direct contribution to the Gaunt interaction is 0 [5]. So using the
algebras of 3-j symbols from Ref. [9], we give the exchange
matrix element of this operator as follows:

〈A1B2|Bg|B1A2〉

=
∑
L

(2jB + 1)

(
jA L jB
1
2 0 − 1

2

)2
[

L+1∑
ν=L−1

�o(κA,κB,ν)

×
4∑

μ=1

rν
μ(ABBA)Rν

μ(ABBA)

]
. (2.9)

TABLE I. Coefficients rν
μ(ABCD).

ν = L − 1 ν = L ν = L + 1

μ = 1 P (L + k)(L + k′) P P (k − L − 1)(k′ − L − 1)
μ = 2 P (L − k)(L − k′) P P (k + L + 1)(k′ + L + 1)
μ = 3 P (L + k)(k′ − L) P P (k − L − 1)(k′ + L + 1)
μ = 4 P (k − L)(L + k′) P P (k + L + 1)(k′ − L − 1)
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TABLE II. Radial integrals Rν
μ(ABCD).

ν = L − 1, L, or L + 1

μ = 1
∫ ∞

0

∫ ∞
0 PA(r1)QC(r1)Vν(1,2)PB (r2)QD(r2)dr1dr2

μ = 2
∫ ∞

0

∫ ∞
0 QA(r1)PC(r1)Vν(1,2)QB (r2)PD(r2)dr1dr2

μ = 3
∫ ∞

0

∫ ∞
0 PA(r1)QC(r1)Vν(1,2)QB (r2)PD(r2)dr1dr2

μ = 4
∫ ∞

0

∫ ∞
0 QA(r1)PC(r1)Vν(1,2)PB (r2)QD(r2)dr1dr2

The coefficients rν
μ(ABBA) are presented in Table III and

the radial integrals Rν
μ(ABBA) are obtained from Table II by

replacing A = A, B = B, C = B, and D = A. For Table III,
we have

P =

⎧⎪⎨
⎪⎩

1
L(2L−1) for ν = L − 1,

− (κA+κB )2

L(L+1) for ν = L,
1

(L+1)(2L+3) for ν = L + 1,

and k = −k′ = κB − κA.

B. Coupled-cluster theory

The CC method is one of the most powerful highly
correlated many-body methods, due to its all-order structure,
to account for the correlation effects [35,36]. This method is
used here for single-valance electron and has been described
in detail elsewhere [31,35,37–41].

According to the CC theory, the correlated wave function
of a single valance atomic state having valance orbital v is
written in the form

|�v〉 = eT {1 + Sv}|�v〉. (2.10)

Here, |�v〉 is the corresponding DF state. T is the closed-shell
cluster operator, which considers excitations from the core or-
bitals, and Sv is the open-shell cluster operator corresponding
to the valence electron v [41].

The correlated expectation value of an operator Ô at any
particular atomic state �v can be written as

OCC
vv = 〈�v|Ô|�v〉

〈�v|�v〉

= 〈�v|{1 + S†
v}O{1 + Sv}|�v〉

〈�v|{1 + S
†
v}eT †

eT {1 + Sv}|�v〉
, (2.11)

where O = eT †
OeT .

TABLE III. Coefficients rν
μ(ABBA).

ν = L − 1 ν = L ν = L + 1

μ = 1 −P (k
2 − L2) P −P (k

2 − (L + 1)2)

μ = 2 −P (k
2 − L2) P −P (k

2 − (L + 1)2)
μ = 3 −P (k + L)2 P −P (k − (L + 1))2

μ = 4 −P (k − L)2 P −P (k + (L + 1))2

C. Hyperfine constant A

The hyperfine constant A of a state represented by |JM〉 is
given by the following expression:

A = μNgI

〈J ||T(1)||J 〉√
J (J + 1)(2J + 1)

, (2.12)

where μN is the nuclear magneton and gI is the g factor of the
nucleus having nuclear spin I [41,42]. The operator T(1) and
the single-particle reduced matrix element of the electronic
part of this operator is defined in Refs. [43,44].

III. RESULTS AND DISCUSSION

The CC calculations are based on the generation of the
DF orbitals. Therefore, accurate description of the radial part
of the orbital wave functions at the DF level is one of the
building blocks of accurate calculations. Here, these orbitals
are considered to be Gaussian-type orbitals and are generated
in the environment of V N−1 potential of the Dirac-Coulomb
Hamiltonian, where N is the number of electrons of each
single-valance system [41]. The radial wave functions are
generated on 750 grid points which follow ri = r0[eh(i−1) − 1],
with r0 = 2 × 10−6 and h = 0.05. The nuclei are considered
to obey a Fermi-type distribution function [41]. The Gaussian-
type orbitals are obtained by using the universal basis pa-
rameters: α0 and β [41,42]. These parameters, presented in
Table IV, are optimized for each system with respect to the
wave functions obtained from the GRASP 2 code, where the DF
equations are solved using a numerical technique [45].

In DF calculations, the number of basis functions is taken
as 30, 25, and 20 for s, p, and d symmetries, respectively.
However, in CC calculations, 12, 11, and 10 basis functions
are used, including all the bound orbitals for s, p, and d sym-
metries, respectively. These numbers of symmetries and basis
functions are chosen in accordance with the numerical conver-
gence of the core correlation energies. In our discussions, the
DF results are calculated for the Dirac-Coulomb Hamiltonian.
Also, the correlation contributions (	corr) are calculated by
the differences between the CC and the DF results for the
Dirac-Coulomb Hamiltonian, i.e., the Coulomb correlations.
But the Gaunt contributions (	Gaunt) are calculated by the
differences between the CC results for the Dirac-Coulomb-
Gaunt Hamiltonian and the Dirac-Coulomb Hamiltonian.
The percentage correlation contributions (%	corr) and Gaunt
contributions (%	Gaunt) are evaluated with respect to the DF
results and CC results, respectively, for the Dirac-Coulomb
Hamiltonian.

In Table V, the IPs at the DF level are presented along
with the 	corr and 	Gaunt. The total results are rounded off
to the integer place and are compared with the results of
NIST in the same table [30]. Our calculated IPs are presented
within an approximate theoretical uncertainty of ±0.03% [46].
Except for Ca XVI, the final calculated IPs are in good
agreement with the NIST results. However, our results for
the former element are within the uncertainty limits (about
±16 000 cm−1) of the experimental measurements [4]. From
Table V, one can see that the 	Gaunt values are negative
everywhere, and with increasing atomic number their absolute
values increase monotonically, whereas the 	corr values are
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TABLE IV. Universal basis parameters: α0 and β.

Z

8 9 10 11 12 13 14 15 16 17 18 19 20 21

α0 0.00225 0.00275 0.00325 0.00350 0.00425 0.00525 0.00625 0.00725 0.00825 0.00925 0.01025 0.01125 0.01225 0.01325
β 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73

positive for lower atomic number and their values decrease
with increasing Z and become negative at Z � 17 and Z � 18
for 2p 2P1/2 and 2p2 P3/2 states, respectively. According to
Eliav et al., for Z = 10, the estimated correlation contributions
for 2p 2P1/2 and 2p 2P3/2 states are 4806.93 and 4865.75 cm−1,
respectively, where for Z = 18, these values are −1104.40 and
−59.26 cm−1, respectively which are in good agreement with
our calculations. The IP of the 2p 2P3/2 state for Z = 16 calcu-
lated at the DF level is close to the total result. For this case, the
absolute values of 	Gaunt and 	corr are relatively close to each
other, but their signs are opposite. So the overall contribution
of these two effects does not change the DF result significantly.
However, the wave functions responsible for the DF and final
results are different, which is observed in the calculations of
the hyperfine constants as discussed later in the present paper.

As shown in Table V, at higher Z values, 	Gaunt values are
comparable with 	corr values in determinations of IPs.

In Figs. 1 and 2, graphical variations of %	corr and
%	Gaunt to the IPs w.r.t. Z are presented, respectively. The
%	corr values initially decrease rapidly and then vary slowly,
whereas absolute values of the %	Gaunt increase linearly with
increasing Z. In Fig. 1, the %	corr curve of 2p 2P1/2 states
shows slightly more fall compared to the curve of 2p 2P3/2

states. Even in Fig. 2, one can see that the curve of 2p 2P1/2

states is steeper than that of 2p 2P3/2 states. So from these two
figures, it is obvious that with increasing Z, both %	Gaunt and
%	corr are more effective for the former states than that of the
latter states in determining the IPs. The correlation and Gaunt
effects are found to vary from +1 to −0.1% and from −0.01%
to −0.04%, respectively, in the IPs.

TABLE V. Calculated IPs with the correlation and Gaunt effects along with comparisons with the NIST results (in cm−1).

Z State DF 	corr 	Gaunt Totala NISTb

8 2p 2P1/2 618204.38 5808.89 −73.72 623940 624382
2p 2P3/2 617770.18 5803.55 −55.03 623519 623996

9 2p 2P1/2 915988.05 5307.30 −128.55 921167 921430
2p 2P3/2 915158.69 5324.07 −98.90 920384 920686

10 2p 2P1/2 1269209.36 4716.60 −204.62 1273721 1273820
2p 2P3/2 1267767.50 4764.47 −160.38 1272372 1272513

11 2p 2P1/2 1677809.33 4060.48 −305.45 1681564 1681700
2p 2P3/2 1675470.31 4152.24 −242.35 1679380 1679565

12 2p 2P1/2 2141817.07 3385.86 −433.87 2144769 2145100
2p 2P3/2 2138220.31 3536.45 −347.56 2141409 2141798

13 2p 2P1/2 2661309.44 2677.04 −593.23 2663393 2662650
2p 2P3/2 2656009.14 2905.80 −478.73 2658436 2657760

14 2p 2P1/2 3236356.19 1944.52 −787.29 3237513 3237300
2p 2P3/2 3228811.95 2274.68 −638.94 3230448 3230309

15 2p 2P1/2 3867061.50 1193.76 −1019.32 3867236 3867100
2p 2P3/2 3856629.52 1651.45 −830.90 3857450 3857401

16 2p 2P1/2 4553546.98 411.06 −1292.67 4552665 4552500
2p 2P3/2 4539468.86 1032.31 −1057.46 4539444 4539365

17 2p 2P1/2 5295946.59 −371.31 −1610.97 5293964 5293800
2p 2P3/2 5277342.47 444.22 −1321.51 5276465 5276390

18 2p 2P1/2 6094410.81 −1166.35 −1977.55 6091267 6090500
2p 2P3/2 6070267.99 −118.69 −1625.80 6068524 6067844

19 2p 2P1/2 6949103.86 −1973.12 −2395.89 6944735 6943800
2p 2P3/2 6918267.32 −652.16 −1973.18 6915642 6914783

20 2p 2P1/2 7860203.67 −2790.74 −2869.39 7854544 7860000
2p 2P3/2 7821366.32 −1152.48 −2366.49 7817847 7823480

21 2p 2P1/2 8827901.77 −3618.45 −3401.58 8820882 8820000
2p 2P3/2 8779594.34 −1616.56 −2808.45 8775169 8774363

aTotal = DF + 	corr + 	Gaunt (rounded off to the integer).
bNIST results [30].
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FIG. 1. Percentage correlation contributions (CorrCont) to IPs of
2p 2P1/2 (2p1) and 2p 2P3/2 (2p3) states.

In Table VI, the FSS between 2p 2P1/2 and 2p 2P3/2 states
are tabulated with the correlation and Gaunt contributions.
The final calculated results are compared with the results of
NIST [30]. In this table one sees that, except at Z = 8, the 	corr

are negative for the rest of the Z values and their absolute values
increase with increasing Z. But the 	Gaunt are negative for all Z
and their absolute values also increase with increasing Z. In the
cases of Mg VIII, Si X, and S XII, our CC results (DF + 	corr)
are in good agreement with the results of Nataraj et al. [25].
However, the significant improvement in the final results due
to the inclusion of the Gaunt interaction, not only for these but
also for other ions, is apparent in Table VI.

In Fig. 3, variations of the percentage correlation and
Gaunt contributions to the FSS are plotted w.r.t. Z. This
figure highlights that from Z = 9, absolute values of %	corr

first increase rapidly, then slow down, and, after Z = 16,
decrease slowly, whereas absolute values of %	Gaunt decrease
systematically with increasing Z. Up to Z = 9, %	Gaunt values
dominate over %	corr, but after that the case is reversed.
Figure 3 shows that the %	corr vary from +1.5 to −4.5
and the %	Gaunt vary from −4.5 to −1.5% in FSS. These
show that both 	corr and 	Gaunt are very important in accurate
determinations of FSS compared to IPs.

In Table VII, the hyperfine constants A are tabulated with
the correlation and Gaunt effects. In these calculations, the

FIG. 2. Percentage Gaunt contributions (GntCont) to IPs of the
2p 2P1/2 (2p1) and 2p 2P3/2 (2p3) states.

TABLE VI. Calculated FSS between 2p 2P1/2 and 2p 2P3/2 states
with the correlation and Gaunt effects along with comparisons with
the NIST results (in cm−1).

Z DF 	corr 	Gaunt Totala NISTb

8 434.20 5.34 −18.69 421 386
9 829.36 −16.77 −29.65 783 744
10 1441.86 −47.87 −44.24 1350 1307
11 2339.02 −91.76 −63.10 2184 2135
12 3596.76 −150.59 −86.31 3360 3302
13 5300.30 −228.76 −114.50 4957 4890
14 7544.24 −330.16 −148.33 7066 6991
15 10431.98 −457.69 −188.42 9786 9699
16 14078.12 −621.25 −235.21 13222 13135
17 18604.12 −815.53 −289.46 17499 17410
18 24142.82 −1047.66 −351.75 22743 22656
19 30836.54 −1320.96 −422.71 29093 29017
20 38837.35 −1638.26 −502.90 36696 36520
21 48307.43 −2001.89 −593.13 45712 45637

aTotal = DF + 	corr + 	Gaunt (rounded off to the integer).
bNIST results [30].

most stable isotopes of each elements are chosen and the gI

values of these isotopes are calculated from Ref. [47]. Here we
consider the gI values, neglecting their signs. The multicon-
figuration Dirac-Hartree-Fock results within the Breit-Pauli
approximation of Jönsson et al. for O IV (Z = 8) of 2p 2P1/2

and 2p 2P3/2 states are 1647 and 324 MHz, respectively, which
are in good agreement with our final results [28]. Table VII
clearly shows that the correlation contributions arise as a
dominating mechanism compared to the Gaunt contributions
in determinations of hyperfine constants. Contrary to the IP,
the DF result differs significantly from the final result for the
2p 2P3/2 state for Z = 16 due to the difference between the
wave functions of the two levels of calculations.

The variation in %	corr, i.e., the percentage of total
correlation contributions w.r.t. Z to the hyperfine constants,
are shown in Figs. 4 and 5 for 2p 2P1/2 and 2p 2P3/2 states,
respectively. Correlations for terms like the core correlation
(O-O), pair correlation (OS1v + c.c.), and lowest order
core polarization (OS2v + c.c.) [42] are also plotted in the
same figures. The percentage contributions from these terms
are calculated w.r.t. the DF results. Like the IPs, here also

FIG. 3. Percentage correlation (CorrCont) and Gaunt (GntCont)
contributions to FSS between 2p 2P1/2 and 2p 2P3/2 states.
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TABLE VII. Calculated hyperfine constants A with the correlation
and Gaunt effects (in MHz).

Z gI State DF 	corr 	Gaunt Totala

8 0.7575 2p 2P1/2 1595.69 64.98 0.03 1661
2p 2P3/2 317.67 25.37 −0.02 343

9 5.2577 2p 2P1/2 18100.83 600.68 −0.10 18701
2p 2P3/2 3598.48 239.80 −0.29 3838

10 0.4412 2p 2P1/2 2310.26 64.83 −0.05 2375
2p 2P3/2 458.56 26.97 −0.04 485

11 1.4784 2p 2P1/2 11170.12 270.02 −0.49 11440
2p 2P3/2 2213.27 117.65 −0.26 2331

12 0.3422 2p 2P1/2 3582.42 77.29 −0.20 3660
2p 2P3/2 708.45 35.37 −0.10 744

13 1.4566 2p 2P1/2 20459.89 402.39 −1.42 20861
2p 2P3/2 4037.56 191.52 −0.65 4228

14 1.1106 2p 2P1/2 20390.77 368.23 −1.68 20757
2p 2P3/2 4014.68 183.07 −0.75 4197

15 2.2632 2p 2P1/2 53148.34 887.65 −5.15 54031
2p 2P3/2 10438.26 461.21 −2.23 10897

16 0.4292 2p 2P1/2 12658.08 196.88 −1.41 12854
2p 2P3/2 2479.40 106.89 −0.60 2586

17 0.5479 2p 2P1/2 19978.04 290.71 −2.54 20266
2p 2P3/2 3902.05 164.37 −1.05 4065

18 0.3714 2p 2P1/2 16518.00 225.90 −2.37 16742
2p 2P3/2 3216.44 132.62 −0.96 3348

19 0.1433 2p 2P1/2 7682.31 99.13 −1.23 7780
2p 2P3/2 1491.10 60.23 −0.49 1551

20 0.3765 2p 2P1/2 24077.93 294.13 −4.29 24368
2p 2P3/2 4657.46 184.30 −1.68 4840

21 1.3590 2p 2P1/2 102723.90 1191.39 −20.18 103895
2p 2P3/2 19798.50 767.11 −7.75 20558

aTotal = DF + 	corr + 	Gaunt (rounded off to the integer).

the %	corr first decrease rapidly and then decrease slowly
with increasing Z. But unlike the IPs, the %	corr are positive
everywhere. The %	corr of 2p 2P1/2 and 2p 2P3/2 states vary
from +4.25 to +1.25% and from +8 to +4%, respectively. The
pair correlation effects are positive, but the core correlation
and core polarization effects are opposite in sign between the
fine structure states. As Z increases, absolute values of the
percentage correlation contributions from the different correla-

FIG. 4. Percentage of total correlation contributions (TotCor-
rCont) with core correlation (CoreCorr), pair correlation (PairCorr),
and core polarization (CorePolr) effects in the hyperfine constants A
of 2p 2P1/2 states.

FIG. 5. Percentage of total correlation contributions (TotCor-
rCont) with core correlation (CoreCorr), pair correlation (PairCorr),
and core polarization (CorePolr) effects in the hyperfine constants A
of 2p2P3/2 states.

tion terms decrease. Among these, the core correlation effects
are the most stable with respect to the other two correlation
effects. At higher Z values, major correlations come from the
core correlations and the next-highest contributions come from
the core polarizations. The correlation contributions from the
term S

†
2vOS2v + c.c., which are not shown in Figs. 4 and 5

TABLE VIII. Correlation effects in the Gaunt contributions to
IPs (	EI

g ; in cm−1), FSS (	EF
g ; in cm−1), and hyperfine constants A

(	Ag; in MHz).

Z State 	EI
g 	EF

g 	Ag

8 2p 2P1/2 5.98 1.04
2p 2P3/2 2.13 3.85 0.16

9 2p 2P1/2 9.29 12.88
2p 2P3/2 3.07 6.22 2.01

10 2p 2P1/2 13.12 1.81
2p 2P3/2 3.99 9.13 0.29

11 2p 2P1/2 17.59 9.43
2p 2P3/2 4.82 12.77 1.52

12 2p 2P1/2 22.83 3.28
2p 2P3/2 5.54 17.29 0.53

13 2p 2P1/2 28.91 20.22
2p 2P3/2 6.19 22.72 3.25

14 2p 2P1/2 35.61 21.60
2p 2P3/2 6.51 29.12 3.45

15 2p 2P1/2 42.60 60.00
2p 2P3/2 6.52 36.08 9.52

16 2p 2P1/2 51.34 15.16
2p 2P3/2 6.18 45.16 2.39

17 2p 2P1/2 60.22 25.28
2p 2P3/2 5.39 54.83 3.97

18 2p 2P1/2 69.81 22.01
2p 2P3/2 4.15 65.66 3.43

19 2p 2P1/2 80.19 10.74
2p 2P3/2 2.42 77.77 1.66

20 2p 2P1/2 91.31 35.23
2p 2P3/2 0.12 91.19 5.42

21 2p 2P1/2 103.10 156.90
2p 2P3/2 −2.68 105.78 24.03

032512-6
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are also significant in the 2p 2P3/2 states of the lower Z
members. For these states, this term contributes from +4.82%
to +0.43% with increasing Z. However, for 2p 2P1/2 states its
contribution varies from +0.85 to +0.11% as Z increases. The
remaining correlation contributions come from other terms
like S

†
1vOS1v + c.c., S†

1vOS2v + c.c., other effective two-body
terms, and normalization corrections [42].

In Table VIII, correlation effects in the Gaunt contributions,
i.e., the differences in the Gaunt contributions from the CC to
the DF levels, to the IPs, FSS, and hyperfine A constants,
are presented. In the IPs, it is seen that for 2p 2P1/2 states
the correlation effects in the Gaunt contributions increase
systematically, and for 2p 2P3/2 states, they increase up to
Z = 15 and then start decreasing with increasing Z. Also,
for these properties, these effects are relatively stronger
for 2p 2P1/2 states compared to 2p 2P3/2 states. In the IPs,
the correlation effects change the Gaunt contributions from
the DF to the CC levels by +7.50% to +2.94% and by
+3.73 to −0.09% for 2p 2P1/2 and 2p 2P3/2 states, respec-
tively. However, in the FSS, the changes are stronger, at
are about +17.34 to +15.13%. As expected, due to the
relatively large correlation effects, dramatic changes occur
in the hyperfine constants, which almost exhaust the Gaunt
contributions at the DF levels and provide very little at the
CC levels. These changes are about +102.97 to +88.60% and
about +88.89 to +75.61% for 2p 2P1/2 and 2p 2P3/2 states,
respectively.

IV. CONCLUSION

Detailed analysis of the electron correlation and Gaunt
contributions to IPs and hyperfine constants A have been

performed for the first two low-lying states of boron-like
systems using the RCC approach. We have reported the
important role of these two effects in determinations of the
FSS. Gaunt contributions from the DF to the CC levels of
calculations have been discussed extensively. The strengths of
the correlation and Gaunt effects among all these properties
with increasing Z have been established. In the framework of
the RCC theory, contributions from the different important
correlation terms to the hyperfine constants A have been
studied descriptively. We hope that, in future, our study will
be extended to incorporate the retardation as well as the QED
effects at both the DF and the CC levels of calculations for
more accurate descriptions of all these properties. This will
also be useful to judge the relative strengths of all these effects
with increasing Z, not only for this sequence but also for all
the other isoelectronic sequences having a higher degree of
correlation.
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