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The relativistic recoil contributions to the Uehling corrections are revisited. A controversy in recent calculations
is considered, which is based on different approaches including Breit-type and Grotch-type calculations. It is
found that calculations in those works were in fact done in different gauges and in some of those gauges
contributions to retardation and two-photon-exchange effects were missed. Such effects are evaluated and a
consistent result is obtained. A correct expression for the Grotch-type approach is presented, which produces a
correct gauge-invariant result. A finite-nuclear-size correction for the Uehling term is also considered. The results
are presented for muonic hydrogen and deuterium atoms and for muonic 3He and 4He ions.
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I. INTRODUCTION

A recent experiment performed at the Paul Scherrer Institute
(PSI) on muonic hydrogen Lamb shift [1] has reported a
high-precision result on the proton charge radius. This result
is in a strong contradiction with a recent electron-proton
scattering result from the Mainz Microtron (MAMI) [2] and
the CODATA 2006 value [3], which basically originates from
the hydrogen and deuterium spectroscopy and involves a large
amount of experimental data and theoretical calculations.

The discrepancy is at the level of 0.3 meV in terms of
the muonic hydrogen Lamb shift. Meanwhile the theoretical
uncertainty is equal to 0.004 meV and that from experiment is
0.003 meV. It is highly unlikely that the problem lies in either
theory or experiment on muonic hydrogen. Nevertheless, it is
important to clarify the theory of the muonic hydrogen Lamb
shift.

We expect that the controversy will be resolved and the
muonic hydrogen Lamb shift will become the most accurate
way to determine a value of the proton charge radius. For this
reason it is important to have a reliable theoretical expression at
the level of 0.003 meV [1]. The theoretical expression consists
of quantum-electrodynamics contributions and finite-nuclear-
size corrections.

After a calculation of all the light-by-light contributions in
order α5mμ [4,5] the quantum electrodynamics theory at this
level of uncertainty is complete in a sense that all corrections
have been calculated by at least one author or one group.
However, verification is required and we consider certain
corrections as not well established. That in particular includes
a contribution of the recoil effects in order α(Zα)4mμ due to
electronic-vacuum-polarization effects.

The electronic-vacuum-polarization (eVP) effects form
one of the most important features of a muonic atom that

*savely.karshenboim@mpq.mpg.de

distinguishes it from an ordinary atom. The leading eVP
effect is due to a so-called Uehling potential and it produces
the leading contribution to the Lamb shift in light muonic
atoms. The correction is of order α(Zα)2mμ. Since that is the
largest contribution, it is important to calculate the eVP terms
including various higher-order effects.

Another important feature is that the ratio of the mass m

of the orbiting particle, a muon, is smaller than the nuclear
mass M , but not so small as in a conventional atom and,
in particular, m/M � 1/2000 in ordinary hydrogen, while
m/M � 1/9 in muonic hydrogen. That is why we need to
find recoil corrections for most contributions of interest.

The purpose of this work is to obtain an α(Zα)4mμ

contribution in all orders of m/M in light muonic atoms
(Z = 1,2). The most straightforward way is to derive a
nonrelativistic expansion for both particles within a Breit-type
equation [6,7]. However, for comparison we also use a Grotch-
type technique [8]. The latter produces a nonrecoil term and
the m/M leading recoil correction, while the (m/M)2 term is
to be calculated separately. Both methods are considered in
detail in this paper.

These two methods are quite different. The Breit-type
evaluation involves a nonrelativistic expansion and the related
perturbation theory includes terms of first and second order.
Most of the first-order terms appear naturally in momen-
tum space, which is more challenging for a high-accuracy
calculation.

The Grotch-type approach involves nontrivial analytic
transformations and as a result the expression for most of
the energy contributions is obtained analytically in terms of a
solution of the ordinary Dirac equation with a static potential.
The only additional correction is expressed as a first-order
perturbation, which for our purposes may be calculated
using nonrelativistic Coulomb wave functions. The results
originally published for the relativistic recoil contribution
within these different approaches [9–11] are not consistent.
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The size of discrepancy is comparable to the experimental
uncertainty [1].

Here, we find that, in fact, calculations in different ap-
proaches are inconsistent because different gauges were used
and in one of the calculations certain additional terms should
appear. Those terms originate from retardation effects and from
essential two-photon contributions. After proper corrections
we find that the two approaches are consistent and produce the
same result for the α(Zα)4m(m/M) terms.

Comparing different approaches and comparing our results
with the results of other works, we basically focus our attention
on muonic hydrogen. In addition, in summary sections we also
discuss other Z = 1,2 two-body muonic atoms. Units in which
h̄ = c = 1 are adopted throughout the paper.

The paper is organized as follows. We first consider
the nonrelativistic leading eVP contribution and the leading
relativistic term in order α(Zα)4m. Then we discuss different
gauges to take into account eVP effects. The two gauges we
choose are closely related to static potentials applied in [9–11].
Both gauges are defined as a certain modification of the
Coulomb gauge.

We apply the Breit-type and Grotch-type approaches to
calculate relativistic recoil contributions in the gauges and
obtain consistent results in order α(Zα)4m(m/M). We find
additional contributions due to a one-photon retardation
contribution and due to two-photon exchange effects in one
of those gauges. We demonstrate that the effective potentials
generated by those additional terms agree with the difference
in static potentials in the two gauges.

We consider the term of order α(Zα)4m(m/M)2 only in
the Breit-type approach. Since the value of this contribution
depends on the definition of the nuclear radius, which may
absorb part of the correction, we recalculate a nuclear-finite-
size term and obtain a semi-analytic result for it.

II. LEADING NONRELATIVISTIC AND RELATIVISTIC
eVP TERMS AND RELATIVISTIC RECOIL EFFECTS

The nonrelativistic (NR) Uehling term can be easily
calculated both analytically [12,13] and numerically (see,
e.g., Ref. [14]) for an arbitrary hydrogenic state (with the
reduced-mass corrections included). In particular, the results
for the low states in light muonic atoms are [12]

E
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where

A(z) = arccos(z)√
1 − z2

= ln(z + √
z2 − 1)√

z2 − 1
, (2)

κ = ZαmR/me, (3)

mR is the reduced mass

mR = mM

M + m
,

and m and M are masses of the muon and nucleus respec-
tively. We point out that in muonic hydrogen κ � 1.5 and a
characteristic value for the 2s and 2p states is κ/2 � 0.75. In
the muonic helium ion this value is κ/2 � 1.5.

It is convenient to present the relativistic eVP correction in
order α(Zα)4m as an expansion in powers of m/M

E
(rel)
VP = E

(0)
VP + E

(1)
VP + E

(2)
VP + · · ·

= α

π
(Zα)4mR

[
C0(κ)+C1(κ)

m

M
+C2(κ)

( m

M

)2
+ · · ·

]
.

(4)

In this notation E
(0)
VP and C0(κ) are related to the leading

relativistic correction, which, for example, may be obtained
from the Dirac equation including the Coulomb and Uehling
potentials for a muon with the reduced mass. Such rel-
ativistic nonrecoil contributions can be found through the
Dirac-Uehling equation both semi-analytically [15,16] and
numerically [10,14,17] for various states.

In particular, for the n = 1,2 states in muonic hydrogen
(κ = 1.356146 . . .) we find from [16]

C0(1s) = −0.24488 . . . ,

C0(2s) = −0.042224 . . . ,
(5)

C0(2p1/2) = −0.0089077 . . . ,

C0(2p3/2) = −0.00089011 . . . ,

which indeed agree with the results from [10,11,14,17].
The next coefficient, C1, can be obtained in quite different

approaches (cf. Refs. [9–11]) and one has to be careful
while classifying contributions by counting photon exchanges.
A rigorous consideration could start with a Bethe-Salpeter
equation and, through rearranging its kernel, arrive at an
effective one-particle or two-particle equation. When we refer
here to one-photon exchange, we mean that the kernel of such
an equation contains only a one-photon part. Any solution of an
unperturbed problem is a summation over an infinite number
of such one-photon exchanges. But all those many-photon
exchange diagrams are reducible.

The approach based on a Grotch-type equation (see, e.g.,
Ref. [10]) immediately produces an appropriate summation for
the pure Coulomb exchange for the (Zα)4m and (Zα)4m2/M

terms. Meanwhile to take into account the eVP contribution
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one must use a perturbation theory, but only in its leading
order. When the same physical contributions are treated
nonrelativistically [e.g., by applying the Breit-type approach
(see Refs. [9,11])] one has to use a certain effective (v/c)2

expansion. A perturbation theory must already be introduced
for a pure Coulomb problem to reach (Zα)4m (both for the
leading nonrecoil term and for recoil corrections). As a result,
a part of the relativistic one-photon contributions for α(Zα)4m

turns into reducible two-photon exchange contributions.
One should distinguish between such reducible two-photon

contributions and irreducible two-photon diagrams that appear
while calculating (Zα)4m2/M in, for example, covariant
gauges. It happens that neglecting such irreducible contribu-
tions in one of the former calculations, namely in Ref. [10],
produces a result that is incomplete and must be corrected as
considered below.

The leading relativistic-recoil correction beyond the Dirac-
Uehling term is of order α(Zα)4m2/M and may be calculated,
as we mentioned, via various effective two-body techniques.
The α(Zα)4m term including various recoil corrections was
calculated previously by a number of authors. Their results
for E

(rel)
VP (2p − 2s) are 0.0169 meV [9], 0.0169 meV [10],

and 0.018759 meV [11] and look consistent at first glance.
However, as we note, the Dirac term

E
(0)
VP(2p1/2 − 2s1/2) = 0.020843 . . . meV (6)

has never been a problem and had been known from calculation
of various authors for a while before the results mentioned
above were achieved (see, e.g., Refs. [14,17]). Once we sub-
tract the Dirac term the results become strongly contradictory
and the discrepancy is compatible with the uncertainty of
0.003 meV [1]. In particular, for a value of E

(rel)
VP − E

(0)
VP in

the 2p1/2 − 2s1/2 splitting, the original results of the papers
mentioned read −0.0041 meV in [9], −0.0041 meV in [10],
and −0.002084 meV in [11].

The results obviously strongly disagree. We note that in
principle the quoted calculations treated the (Zα)4m(m/M)2

term differently. However, the latter is smaller by a factor
of m/M ∼ 0.1 and cannot be responsible for such a large
difference by a factor of two for E

(rel)
VP − E

(0)
VP.

Once we consider two-body diagrams, we have to realize
that in principle there may be one-photon and two-photon
contributions and in principle the one-photon term (see Fig. 1)
includes a static part (found at k0 = 0) and a retardation part
(proportional to k0 or k2

0). The partial results, such as the
nonrecoil one-photon contribution, are not gauge invariant and

(a b)

FIG. 1. One-photon exchange diagram: for the pure photon
exchange (a) and for the eVP contributions (b).

only the sum of static one-photon, retardation one-photon, and
two-photon contributions is gauge invariant.

The dominant part in any reasonable gauge is due to static
one-photon exchange in order α(Zα)4m. (In principle, one can
choose a ridiculous gauge with, for example, a longitudinal
part with a parameter �1. That would allow to obtain a
large contribution beyond the above-mentioned terms, but that
does not make much physical sense.) The static one-photon
exchange easily allows an efficient evaluation both within the
Breit-type and Grotch-type approaches. However, those terms
have already been covered by a consideration of the Dirac
equation with the reduced mass. The purpose of this paper (as
well as of Refs. [9–11]) is to calculate recoil corrections in
order α(Zα)4m2/M and α(Zα)4m3/M2, therefore we need to
go beyond the leading terms.

There is no objective separation between static one-photon,
retardation one-photon, and two-photon contributions. For
example, considering the (Zα)4m contribution (in all orders in
m/M) in different gauges, we have a kind of interplay of such
terms. Using the Coulomb gauge we find that for (Zα)4m

there is neither a retardation correction nor a two-photon
correction in order of interest and thus the complete result in the
(Zα)4m contribution may be achieved through an application
of either the Breit equation (in all orders in m/M) or the Grotch
equation for the leading m/M correction by applying the static
one-photon kernel.

Now we return to the results from Refs. [9–11] cited
above. All of them are obtained by calculating the static
one-photon contributions. However, we demonstrate below
that different gauges were in fact applied and only in one
of them the retardation and two-photon contributions vanish
while in the other they do not. We also note that the physical
derivation of the Breit-type and Grotch-type equations should
actually start from a two-body Bethe-Salpeter equation, then
the latter should be reduced to an effective one-body Dirac or
two-body Schrödinger equation, and afterwards contributions
of retardation and two-photon effects should be estimated.
The crucial part is to reduce the contribution of interest to a
one-photon contribution to the kernel of the effective equation
(see, e.g., Ref. [18]). A further mathematical transformation of
the static one-photon contribution is rather a technical issue.

A naive two-photon contribution, free of eVP, [see Fig. 2(a)]
has infrared divergencies and/or singularities, which indicate
that it includes, in fact, a correction of lower order, namely
the Coulomb correction (Zα)2m. (A divergence appears once
we neglect the atomic energy and momentum and consider
the related diagrams as free scattering diagrams, otherwise we
should speak about singularities.)

The derivation through various effective approaches gener-
ates subtracted two-photon graphs (see, e.g., Ref. [18]). That is
not a trivial issue. For example, if we choose the external-field
approach for the first approximation, then we should somehow
upgrade (Zα)2m up to (Zα)2mR . The missing (Zα)2m2/M

term comes from a two-photon contribution. This example
shows that a rearrangement of the diagrams applying a proper
subtraction is crucially important.

The (Zα)2m2/M correction is a result of the calculation of
the nuclear-pole contribution of the two-photon box diagram.
The effective-Dirac-equation approach suggests a complete
subtraction of the pole of the heavy particle [18] (see Fig. 3
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(a)

(b)

FIG. 2. Two-photon exchange diagram: (a) for the pure photon
exchange and (b) for the eVP contributions.

for the pole structure of unsubtracted two-photon diagrams of
Fig. 2(a); the pole of interest is denoted as N−). Once such
a pole is subtracted, we see that the one-photon contribution
is the only contribution for (Zα)2m terms in all orders of
m/M as well as the nonrecoil part of the (Zα)4m contribution.
However, a recoil part of the (Zα)4m term arises in different
gauges in different ways. The situation for the eVP [see
Fig. 2(b)] is quite similar and the pole structure is also similar.
Because of this similarity we briefly recall the situation with
the (Zα)4m terms (in all orders in m/M) in different gauges.

The electromagnetic interaction of two particles in different
gauges is determined by the shape of the photon propagator
Dμν(k). The term (Zα)2m originates from the D00(k) compo-
nent, while (Zα)4m corrections come from all components of
Dμν(k).

One can immediately see that in any covariant gauge (in
contrast to the Coulomb gauge) the D00 component depends on
the energy transfer k0 and the retardation one-photon exchange
produces a correction of order (Zα)4m(m/M)2. In the case
of nonzero values for the Di0 components certain terms of
order (Zα)4(m2/M) can also appear from related one-photon
contributions.

The static one-photon contribution obviously differs in
different gauges and, after taking into account the retardation
terms, the one-photon contributions still differ. One should

FIG. 3. Poles for the unsubtracted two-photon exchange diagrams
(see Fig. 2). The upper plot is for the ladder diagrams (right-side
graphs in Fig. 2), while the lower one is for the cross diagrams
(left-side graphs). For muonic hydrogen with κ ∼ 1 the pole structure
for free diagrams and for eVP contributions [see Figs. 2(a) and 2(b),
respectively] is similar. Here, N stands for nuclear poles, γ is for
photonic poles, and μ is for muonic poles.

take into account the two-photon diagrams to obtain complete
(Zα)4(m2/M) and (Zα)4m(m/M)2 contributions, which are
indeed gauge invariant.

It is easy to estimate a nominal order of a two-photon
diagram suggesting that it converges if we neglect all the
atomic effects. The order is (Zα)5m2/M . To obtain a lower
order in Zα, such as (Zα)4m2/M , we have to find terms
divergent at low momentum. After the heavy-pole contribu-
tion is subtracted completely, the only potentially divergent
contributions are due to photon poles, if we close the contour
in the lower half-plane (see Fig. 3).

The two-photon contribution in the Coulomb gauge has
only a logarithmic divergence, which cannot change the fact
that two-photon effects contribute in order (Zα)5m2/M . If
we consider another gauge, such as the Feynman or Landau
gauge, the (Zα)4m2/M terms do appear from the photonic
pole contributions. We can see that such poles are important
only in diagrams with D00 components for both photons, or
with Di0(q) contributions.

In the Coulomb gauge Di0 = 0 and the D00 component of
the photon propagator does not produce a pole and technically
that is why the two-photon exchange in the Coulomb gauge
does not produce any (Zα)4(m2/M) and (Zα)4m(m/M)2

contributions. Once the heavy-particle pole is subtracted,
the one-photon contribution is the only contribution for the
(Zα)4m terms in all orders of m/M in the Coulomb gauge.

III. eVP-CORRECTED PHOTON PROPAGATOR IN
VARIOUS GAUGES

Taking into account the transverse structure of the photon
self-energy caused by the vacuum polarization tensor

Pμν(k) =
(

gμν − kμkν

k2

)
P(k2), (7)

one can derive in the Landau gauge

DLeVP
μν (k) = 1

k2

[
gμν − kμkν

k2

][
1 + P(k2)

k2

]
, (8)

or

DeVP
μν (k) = gμν

k2

[
1 + P(k2)

k2

]
, (9)

which differs only by longitudinal terms resulting from an
obvious gauge transformation.

Here, for the eVP we apply Schwinger’s parametrization

P(k2) = α

π

∫ 1

0
dvρe(v)

k4

k2 − λ2
, (10)

where

ρe(v) = v2(1 − v2/3)

1 − v2
(11)

λ2 = 4m2
e

1 − v2
. (12)

Indeed, neither the Landau nor Feynman gauge is well suited
for the bound-state calculations and it is helpful first to perform
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a gauge transformation on the photon propagator (9) to reach
a more suitable gauge.

The photon propagator with an eVP correction in an
arbitrary gauge can be presented in the form

Dμν(k) = DeVP
μν (k) + χμkν + kμχν, (13)

where χ = χ (k) is an arbitrary function of k. We expect that in
recent calculations [9–11] of the relativistic recoil corrections
to eVP different gauges were used. In this paper we consider
two choices of the gauge function χ (k) and two gauges.

The gauge function can be presented as an expansion in
powers of α

χ = χ (0) + α

π
χ (1). (14)

For the χ (0) we chose the transformation that is to produce the
Coulomb gauge (for the free propagator), while for χ (1) we
consider two options, which are presented below.

The first choice is

χ
(1)
0 = −

∫ 1

0
dvρe

k0

2(k2 − λ2)(k2 + λ2)
,

χ
(1)
i =

∫ 1

0
dvρe

ki

2(k2 − λ2)(k2 + λ2)
,

D00 = −α

π

∫ 1

0
dvρe

1

k2 + λ2
, (15)

Di0 = 0,

Dij = −α

π

∫ 1

0
dvρe

1

k2 − λ2

(
δij − kikj

(k2 + λ2)

)
.

Let us refer to it as the C1eVP gauge.
A second possibility we consider here is

χ
(1)
0 = −

∫ 1

0
dvρe

k0

2(k2 − λ2)k2
,

χ
(1)
i =

∫ 1

0
dvρe

ki

2(k2 − λ2)k2
,

D00 = −α

π

∫ 1

0
dvρe

1

k2 − λ2

k2

k2
, (16)

Di0 = 0,

Dij = −α

π

∫ 1

0
dvρe

1

k2 − λ2

(
δij − kikj

k2

)
.

We refer to it as the C2eVP gauge.
In the static regime (i.e., k0 = 0) the choice in Eq. (15)

reproduces the potential applied in Refs. [9,11], while the
choice in Eqs. (16) leads to a potential considered in Ref. [10].
We note that the gauge (15) is similar to the Coulomb gauge
in the sense that the D00 has no dependence on k0 and there
is no Di0 component. That means that the static one-photon
contribution should produce a complete result. There are two
contradictory results for the 2p-2s Lamb splitting in the

literature [9,11] and we confirm the latter result. Our result
for muonic hydrogen is1

�EeVP(2p1/2 − 2s1/2) = 0.0187589 meV. (17)

Considering the gauge (16) we note that, while Di0 = 0, the
D00 component of the propagator depends on k0 through the
eVP tensor in Eq. (10) and one not only has to check the static
one-photon term, but also calculate the one-photon retardation
part and examine the photonic pole contributions for the
two-photon diagrams [see Fig. 2(b)]. To check the consistency
of the result obtained and to compare with other existing
calculations, we perform below four separate calculations
applying either a C1eVP gauge or C2eVP gauge within either
the Breit-type or Grotch-type approach.

IV. CALCULATION IN THE C1eVP GAUGE (15)

Now, let us perform the calculations in the C1eVP gauge
(15), which because of lack of retardation and two-photon
contributions in order α(Zα)4m [in all orders in (Zα)] should
produce a correct result in an easier way.

A. Breit-type calculation

We start with a Breit-type calculations.
First, we note that as it is well known (see, e.g., [7]) the

energy of hydrogenic levels without eVP can be found by
considering a non-relativistic Schrödinger-type equation with
a Hamiltonian

H = H0 + H1,

H0 = p2

2mR

+ VC = p2

2mR

− Zα

r
,

H1 = −p4

8

(
1

m3
+ 1

M3

)
+ Zαπ

2

(
1

m2
+ 1

M2

)
δ3(r) (18)

− Zα

2mM r

(
p2 + (r · (r · p)p)

r2

)

+ Zα

r3

(
1

4m2
+ 1

2mM

)
(σ · [r × p]).

Here and in further considerations we ignore the nuclear spin
terms, assuming that the results are for the center of gravity of
the related hyperfine multiplet.

The result is obtained in the Coulomb gauge which is
consistent with both the C1eVP and C2eVP gauges we are
to consider. Here the first term is responsible for the (Zα)2m

terms and the second produces (Zα)4m contributions (in all
orders in m/M). To find the former one has to solve the
related Schrödinger equation (let us denote the energy and
wave functions as E0 and �0) and to find the latter one has
to find a matrix element of H1 over the Schrödinger-equation
wave functions �0.

1Unless otherwise stated, the uncertainty is equal to unity in the last
presented digit.
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Applying the C1eVP gauge we find the additional terms
in momentum space which are necessary to take into account
eVP effects

H eVP = H eVP
0 + H eVP

1 ,

H eVP
0 = VU (k) = −4α(Zα)

∫ 1

0
dv ρe

1

k2 + λ2
,

H eVP
1 = −4α(Zα)

∫ 1

0
dv ρe

1

k2 + λ2

(19)

×
{(

− k2

2
+ iσ · [pi × pf ]

)(
1

4m2
+ 1

4M2

)

+ 1

4Mm

(
(pi + pf ) · (i[σ × k] + pi + kf )

−
(
p2

i − p2
f

)2

(k2 + λ2)

)}
.

The related expressions in coordinate space are

H eVP
0 = VU (r) = −α

π
(Zα)

∫ 1

0
dv ρe

e−rse

r
,

H eVP
1 =

(
1

8m2
+ 1

8M2

)
∇2VU

+
(

1

4m2
+ 1

2mM

)
V ′

U

r
L · σ

(20)

+ 1

2mM
∇2

[
VU − 1

4
(rVU )′

]

+ 1

2mM

[
V ′

U

r
L2 + p2

2
(VU − rV ′

U )

+ (VU − rV ′
U )

p2

2

]
.

The Hamiltonian H eVP completely agrees with the one
appearing in [9].

Again, the first term is responsible for the α(Zα)2m terms
and the second one produces α(Zα)4m contributions (in all
orders in m/M). However, now the procedure is somewhat
different. We are interested only in the first order in α results
and thus we can consider both H eVP

0 and H eVP
1 as perturbations.

To find the leading non-relativistic terms (see (1)), we have
to calculate 〈�0|H eVP

0 |�0〉, however, a similar contribution of
higher order, 〈�0|H eVP

1 |�0〉, gives only a part of the α(Zα)4m

result. The other part results from second-order perturbation
theory on the Schrödinger equation and it is of the form (see,
e.g., [9])

2〈�0|H eVP
0

1

(E − H0)′
H1|�0〉, (21)

where the reduced Green function 1
(E−H0)′ is applied. In our

calculations for the non-relativistic reduced Coulomb Green
function we used its presentation in terms of smaller and larger
radii (cf. [17]).

The wave function �0 is expressed in terms of the reduced
mass mR while the dependence on m and M is due to apparent
factors in Eqs. (18) and (20) which allows to express results
of our calculation of various matrix elements in terms of C0,

C1 and C2 as defined in Eq. (4). That is helpful for further
comparison with other calculations.

Indeed, the C0 results reproduce the values (5), as they
should, while for other coefficients we find

C1(1s) = 0.18153 . . . ,

C1(2s) = 0.038089 . . . ,
(22)

C1(2p1/2) = 0.00090127 . . . ,

C1(2p3/2) = 0.00090127 . . .

and

C2(1s) = −0.3631 . . . ,

C2(2s) = −0.07618 . . . ,
(23)

C2(2p1/2) = 0.003542 . . . ,

C2(2p3/2) = −0.004475 . . . .

As we mentioned, the result for �EeVP(2p1/2 − 2s1/2) is
consistent with the result of [11].

B. Grotch-type calculation

The Grotch type of approach includes a few operations
(see [8] for more detail). First, we have to present the two-body
wave function as a product of a free-spinor for the nucleus
and a four-component muon wave function. The potential is
averaged over the nuclear spinor.

The approach allows to reproduce the Dirac equation (with
the reduced mass) and obtain the leading recoil correction in
order m/M . After we neglect terms of higher order in m/M ,
we arrive at an equation

Kψ0 = Eψ0 , (24)

where

K = α · p + βm + p2

2M
+ V

+ 1

2M
{α · p,V } + 1

4M
[α · p,[p2,W ]] , (25)

and

W (q) = −2V (q)

q2
.

To find a solution it is helpful, following [8], to introduce
an auxiliary Hamiltonian

K1 = α · p + βm + V
1 − βm/M

1 − (m/M)2
. (26)

we note that

K = K0 + �K + O

(
m3

M2
(Zα)4

)
, (27)

where

K0 = K1 + K2
1 − m2

2M
+ 1

4M
[K1,[p2,W ]] , (28)

and

�K = − V 2

2M
− 1

4M
[V,[p2,W ]]. (29)
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As it is known [8] for the case of pure Coulomb potential,
�K = 0. Let us for the moment neglect �K for an arbitrary
potential and look for a wave function of the form

ψ0 = N

(
1 − 1

4M
[p2,W ]

)
(1 + βμ)ψ̃. (30)

Since the Grotch-type approach does not control the (m/M)2

terms, below we expand in m/M and neglect higher-order
terms everywhere where it is possible. The results of such an
expansion are denoted with ‘�’.

In particular, we find for the normalization constant N

N = 1√
1 + 2μ Ẽ/m̃ + μ2

� 1 − Ẽ

2M
,

where the involved parameters are defined below.
The final Grotch-type equation takes the form of an effective

Dirac equation

(α · p + βm̃ + Ṽ )ψ̃ � Ẽψ̃ , (31)

Ṽ = V√
1 − m2

M2

� V. (32)

Solutions of the Dirac equation (31), ψ̃ and Ẽ, can be found,
since the final equation takes form of a Dirac equation with
potential V and various effective parameters. The identities
for ψ̃ and Ẽ are of the same functional form as for a solution
of a Dirac equation, but they express the wave functions and
energy in terms of effective parameters defined as

μ = M

m

(
1 −

√
1 − m2

M2

)
� m

2M
,

E0 = E1 + E2
1 − m2

2M
,

(33)

Ẽ = E1 − m2/M√
1 − m2/M2

� E1 − m2/M ,

m̃ = m(1 − E1
M

)√
1 − m2

M2

� m

(
1 − E1

M

)
,

One can solve the equation (31) as far as the solution of the
conventional Dirac equation is known for a potential V with
an appropriate accuracy.

The final energy has a correction due to �K , which was
neglected in order to obtain a solvable equation. The final
result for the energy is

E � E0 + 〈ψ0|�K|ψ0〉. (34)

We point out that �K ∝ m/M and here we neglect all (m/M)2

corrections.
Now, one can introduce the potential. In the C2eVP gauge,

because the photon propagator is proportional to the free
propagator in the Coulomb gauge, the equation would take
the same form as for the Coulomb potential, but now with
potential

V = VC + VU . (35)

However, in the case of the C1eVP gauge, we have to introduce
a certain correction, namely by redefining W ,

V = VC + VU ,

W = WC + WU ,
(36)

WC = −2VC(q)

q2
,

WU = 8α(Zα)
∫ 1

0
dv

ρe(v)

(q2 + λ2)2
.

In both cases, we have to solve an effective Dirac
equation (25) with a potential (35). The energy levels for such
a Dirac equation (with a reduced mass for the particle) with
V = VC are well known,

ECoul(nlj ) = m + E
(NR)
Coul + E

(0)
Coul

≈ m − (Zα)2mR

2n2
+ (Zα)4mR

2n3

(
3

4n
− 1

j + 1/2

)
(37)

and the linear in α correction due to eVP was calculated for
the Dirac wave functions as explained in Sec. II [see for details
Eqs. (1), (4) and (5)]

EVP = E
(NR)
VP + E

(0)
VP. (38)

Solving the above equations, one can arrive at (see Ref. [19]
for details)

E0 � ECoul(nlj ) + EVP

− E
(NR)
Coul

M

[
E

(NR)
VP + κ

∂

∂κ
E

(NR)
VP

]
. (39)

We can now return to the �K term. The related correction
in the first order in eVP is a matrix element of

�K � − 1

2M

(
2VUVC + 1

2
[VC,[p2,WU ]]

+ 1

2
[VU,[p2,WC]]

)
. (40)

After a simple estimation of the operator, we find that it is
sufficient to calculate the matrix element using Schrödinger-
Coulomb wave functions, which are indeed well known.

More detail on the application of the Grotch-type approach
to the eVP contribution is the subject of future work [19].

Finally, we obtain the results

C1(1s) = 0.18153 . . . ,

C1(2s) = 0.038087 . . . ,
(41)

C1(2p1/2) = 0.00090127 . . . ,

C1(2p3/2) = 0.00090127 . . . ,

which completely agree with the results (22) of the Breit-type
calculation.

V. CALCULATION IN THE C2eVP GAUGE (16)

For the C2eVP gauge (16) we note that we have to calculate
a static one-photon exchange, retardation one-photon contri-
bution and two-photon contribution. Here, we first calculate
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the static one-photon contribution applying the Breit-type
and Grotch-type techniques and then we find the retardation
one-photon contribution and two-photon contribution as a
perturbation.

A. Static one-photon exchange

1. Breit-type calculation

The Breit-type Hamiltonian is somewhat different from
Eq. (19) and the addition is

α(Zα)

Mm

∫ 1

0
dv ρe

λ2
(
p2

i − p2
f

)2

k2(k2 + λ2)2
, (42)

which shifts the results for the static contribution. We find for
the static one-photon contribution

C1(1s) = 0.3981 . . . ,

C1(2s) = 0.06357 . . . ,
(43)

C1(2p1/2) = 0.002845 . . . ,

C1(2p3/2) = 0.002845 . . . ,

and

C2(1s) = −0.7961 . . . ,

C2(2s) = −0.1271 . . . ,
(44)

C2(2p1/2) = −0.0003444 . . . ,

C2(2p3/2) = −0.008362 . . . ,

which indeed does not coincide with Eqs. (22) and (23),
because such a contribution is not gauge invariant.

2. Grotch-type calculation

A similar correction should be introduced into the Grotch-
type approach. As we already mentioned, since the C2eVP
gauge is proportional to the Coulomb gauge, we can use
the same kind of equation as for the Coulomb gauge with
a potential

V = VC + VU

and the W function defined within the same functional relation
as for the Coulomb potential, namely as

W (q) = −2V (q)

q2
.

The effective Dirac equation, which does not involve W ,
is indeed the same as in the C1eVP gauge, while the �K

correction proportional to W is different.
Proceeding similarly to that described in Sec. IV B we arrive

at

C1(1s) = 0.39818 . . . ,

C1(2s) = 0.063585 . . . ,
(45)

C1(2p1/2) = 0.0028496 . . . ,

C1(2p3/2) = 0.0028496 . . . ,

which is consistent with Eq. (43) and somewhat disagrees
with Ref. [10]. In particular, our result for E

(rel)
VP − E

(0)
VP for the

2p-2s splitting for the static contribution is −0.0042785 meV,

which is to be compared with −0.0041 meV in Ref. [10]. The
relativistic recoil eVP correction in light muonic atoms was
calculated by Borie in Ref. [10] in a way somewhat different
from, but consistent with our treatment here of the Grotch-type
approach in the gauge C2eVP.

In the recent paper [10] some minor corrections to the
earlier papers [20] and [21] were introduced. Still, we failed to
reproduce exactly the numerical results [10] for the correction
neither by expressions given in Ref. [10] nor by those presented
in Ref. [20], where further details of the calculation were
given. It appears that some expressions in Ref. [10] still contain
misprints.

What is more important, the results we obtained in this
section also disagree with the result [10]. The departure
grows systematically between muonic hydrogen, deuterium,
and helium. (The results for the latter are presented in Sec. VII
of our paper.)

Meanwhile, we have discovered that our expression for
the energy correction agrees with one presented in Ref. [20]
(see Eq. (116); it is also reproduced in Appendix A of
Ref. [10]). Our numerical results can be reproduced if we
modify the erroneous expression for the term

〈
Zα
3r4 Q4

〉
presented

in Appendix A of Ref. [10].
Thus, we conclude that the result [10] for the relativistic

recoil correction in light muonic atoms is unfortunately both
incomplete because of lack of two-photon contributions and
incorrect (because even the partial calculation contains a
numerical error).

B. Retardation one-photon exchange

The retardation one-photon contribution and an essen-
tial two-photon contribution can be calculated directly as
a perturbation since they are already related to effective
potentials, which are smaller by a factor (Zα)2 than the
nonrelativistic contributions. It is also important that the
second-order perturbation term [see Eq. (21)] is the same as
in the C1eVP gauge. That is because the free term of eVP
propagator is the same for both gauges (which determines H1)
and the static limit of the eVP term of the propagator also
does not change (which determines H eVP

0 ). That says that only
first-order perturbation theory terms are essential, otherwise
the second-order terms similar to (21) would appear.

One can immediately find a related effective addition to the
Hamiltonian due to retardation

α(Zα)

M2

∫ 1

0
dv ρe

λ2
(

p2
i − p2

f

)2

k2(k2 + λ2)2
(46)

or in coordinate space

Hretard = α(Zα)

4π M2

∫ 1

0
dvρ(v)

× [{p4,Q(r)} − 2p2Q(r) p2] , (47)

where

Q(r) = 1

λ2r
− (2 + rse)

e−rse

2λ2r
. (48)

The results of direct calculations of C1 and C2 in muonic
hydrogen are compiled in Tables I and II, respectively.
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TABLE I. C1 coefficients in the C2eVP gauge.

Contribution C1(1s) C1(2s) C1(2p1/2) C1(2p3/2)

Static 0.39818 0.063585 0.0028496 0.0028496
Retardation 0 0 0 0
Two-photon −0.21654 −0.025483 −0.0019484 −0.0019484
Total 0.18164 0.038102 0.0009012 0.0009012

The retardation effects under consideration are of order
α(Zα)4m(m/M)2 and contribute only to C2.

C. Two-photon exchange

For the two-photon exchange we have performed a calcula-
tion of the photon-pole contributions. One has to carefully
consider splitting of the contributions. We are interested
in those that are singular at low momentum. Actually the
photon-pole contribution is divergent in a formal sense at high
momentum, but such a divergence is in order α(Zα)5m2/M

and thus is of a higher order. One has to separate properly the
low-momentum and high-momentum contributions, and after
that only the low-momentum one is of interest. The results are
summarized in Tables I and II, respectively.

We note that the sum of the results in the C2eVP gauge
produces a result consistent with those in the C1eVP gauge.
We may also find an effective potential induced by a low-
momentum contribution of the two-photon kernel. It is of the
form

−α(Zα)2

2πM

∫
d3q

(2π )3

∫ 1

0
dv ρe

λ2

(q2 + λ2)2

× 4π

q2

4π

(k − q)2
(q2 − k · q). (49)

For the diagonal matrix elements we can replace the expression
(49) by an effective potential of the form

−α(Zα)

MmR

∫ 1

0
dv ρeλ

2

(
p2

i − p2
f

)2

k2(k2 + λ2)2
. (50)

We see that at the end of the day the final effective
Hamiltonians in both gauges are the same. The addition in the
C2eVP gauge (42) for the static term is eventually canceled
out by the retardation (46) and two-photon (50) terms

0 = α(Zα)
∫ 1

0
dv ρe

λ2
(
p2

i − p2
f

)2

k2(k2 + λ2)2

×
(

1

Mm
+ 1

M2
− 1

MmR

)
. (51)

TABLE II. C2 coefficients in the C2eVP gauge.

Contribution C2(1s) C2(2s) C2(2p1/2) C2(2p3/2)

Static −0.7961 −0.1271 −0.0003444 −0.008362
Retardation 0.2165 0.02548 0.001948 0.001948
Two-photon 0.2165 0.02548 0.001948 0.001948
Total −0.3631 −0.07618 0.003552 −0.004465

VI. FINITE-NUCLEAR-SIZE CORRECTIONS

As we mentioned in the introduction, the definition of the
nuclear radius for different spin values can produce additional
corrections in order (Zα)4m(m/M)2 and α(Zα)4m(m/M)2.
For this reason we consider in this paper the finite-nuclear-size
(FNS) corrections. While the relation between the eVP recoil
contributions and such corrections is considered in the next
section, here we revisit the FNS contributions with inclusion
of eVP. Such contributions have been known for a while
[17,22,23], basically numerically [21]. Here we present semi-
analytic results.

We treat the FNS effects nonrelativistically. In this case the
FNS correction is of the form

�EFNS = R2
N

6
〈�|∇2(VC + VU )|�〉

= �E
(0)
FNS + �E

(1)
FNS + �E

(1)
FNS, (52)

where the wave function is the result of the Schrödinger
equation with the reduced mass and potential VC + VU and RN

is the rms nuclear charge radius. The result is not vanishing
only for the s states. The leading term for the splitting

�E
(0)
FNS(2s) = (Zα)4

12

(
R2

Nm2
R

)
mR (53)

is applied for a determination of the nuclear size radius from the
experimental Lamb shift value and it is important to calculate
corrections to it.

The two corrections can be obtained in a way similar to a
nonrelativistic calculation of the leading eVP correction to the
hyperfine structure (cf. Refs. [17,24,25]). The first term is

�E
(1)
FNS = 2πZα

3
R2

N (|�(0)|2 − |�C(0)|2). (54)

It is convenient to present the eVP correction in the form

�E
(1)
FNS = �E

(0)
FNS

|�(0)|2 − |�C(0)|2
|�C(0)|2 , (55)

where we express the correction in terms of the leading term
and the eVP correction to the wave function at the origin. The
latter was studied in Refs. [25–28].

The other term is

�E
(2)
FNS = R2

N

6
〈�C |∇2VU |�C〉. (56)

It was also found in Ref. [26],

�E
(2)
FNS(2s) = α

π
G2s(κ/2) �E

(0)
FNS(2s), (57)

TABLE III. The nonrelativistic finite-nuclear-size corrections for
the 2s state in light muonic atoms [in (RN/fm)2 meV]. Here, μHe
stands for muonic helium ions.

Atom �E
(0)
FNS �E

(1)
FNS �E

(2)
FNS �EFNS

μH 5.1975 0.0170 0.0110 5.2254
μD 6.0732 0.0205 0.0132 6.1069
μ3He 102.52 0.520 0.323 103.37
μ4He 105.32 0.536 0.333 106.19
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TABLE IV. Relativistic recoil corrections to the Lamb shift and
fine structure in light muonic atoms (in meV).

Atom �EeVP(2p1/2 − 2s1/2) �EeVP(2p3/2 − 2p1/2)

μH 0.018759 0.0049638
μD 0.021781 0.0057361
μ3He 0.50934 0.26920
μ4He 0.52110 0.27502

where

G2s(z) = − π

3z3
+ 24 − 44z2 − 29z4 + 22z6

36z2(1 − z2)2

+ 8 − 20z2 + 33z4 − 20z6 + 8z8

12z3(1 − z2)2
A(z) ,

where A(z) is defined by Eq. (2).
The numerical results on the finite-nuclear-size corrections

for the 2s state in light muonic atoms are summarized in
Table III. Note that for the Lamb shift the signs of the
corrections are opposite. The results are slightly different but
rather consistent with ones presented in Ref. [10].

VII. RESULTS FOR THE LAMB SHIFT IN LIGHT
MUONIC ATOMS

To conclude a calculation of the relativistic recoil cor-
rections, we have to fix the definition of the nuclear charge
radius, which varies in the literature. That is important
for the relativistic recoil corrections because with different
definitions of the nuclear charge radius a certain part of
the (Zα)4(m/M)2m and α(Zα)4(m/M)2m terms may be
incorporated in the nuclear-finite-size term.

The nuclear spin takes different values for light muonic
atoms, namely, I = 1/2 for a muonic hydrogen and muonic
3He ion, I = 0 for a muonic 4He ion, and I = 1 for muonic
deuterium. The different nuclear spin values are related to dif-
ferent effective two-body Breit-type equations for structureless
particles (see, e.g., Refs. [29,30]).

To be consistent with the experimental determination, we
use the same definitions of the nuclear charge radius as applied
in Refs. [1,3,29–32]. In this convention the Zitterbewegung
term is present for half-integer spin nuclei, and not present for
the integer case. The related calculation produces the results
summarized in Table IV.

Our results for the Lamb shift in light muonic atoms agree
with the results of Ref. [11] and disagree with the results of
Refs. [10] and [33]. For the fine structure, the results are also
presented in Table IV. The result has been obtained in the
C1eVP gauge within Breit-type calculations and to control

them we also performed a Grotch-type calculation in the same
gauge. They are in perfect agreement with each other.

VIII. CONCLUSION

Concluding, relativistic recoil contributions in orders
α(Zα)4m(m/M) and α(Zα)4m(m/M)2 to the Lamb shift
in muonic hydrogen were revisited. The results published
previously by various authors and obtained by different
methods are inconsistent. In particular, the result of the
Breit-type calculation in Ref. [11] is twice smaller than the
related result from the Grotch-type evaluation in Ref. [10].
The value of discrepancy, 0.002 meV, is comparable with the
experimental uncertainty of 0.003 meV [1].

We perform here an evaluation in both approaches and find
that the discrepancy between Refs. [11] and [10] is caused
by the fact that both calculated the same value, namely the
static one-photon exchange, which is not gauge invariant.
Different gauges were applied. The gauge invariant value is
a sum of the static term and two other contributions, which are
the retardation correction and two-photon contribution. While
they are absent for the calculation of the α(Zα)4m(m/M) term
in one gauge, they are not vanishing in the other.

Once such contributions are taken into account and a
relatively small numerical error in calculation [10] is fixed,
we find perfect agreement between the two approaches. Our
results agree with those of Ref. [11].

We also consider other light atoms and perform calculations
for the Lamb shift muonic deuterium and two isotopes of
muonic helium. For a muonic 4He ion we agree with Ref. [11]
and disagree with Ref. [33].

For control purposes we have also performed calcula-
tions of the fine structure in order α(Zα)4m(m/M) and
α(Zα)4m(m/M)2. The result for the latter can be completely
restored from the result from Dirac equation (see, e.g.,
Ref. [16]). Our result for muonic hydrogen is in agreement
with Ref. [34].

ACKNOWLEDGMENTS

This work was supported in part by the Deutsche
Forschungsgemeinschaft (DFG), Grant No. GZ: HA 1457/7-1,
the Russian Foundation for Basic Research (RFBR) under
Grant No. 11-02-91343, and the Dynasty foundation. The
authors are thankful to E. Borie for constructive remarks to
the manuscript and for drawing our attention to inaccuracies in
results for muonic helium. V.G.I. and E.Y.K. are grateful to the
Max-Planck-Institut für Quantenoptik for its warm hospitality.
S.G.K. is also grateful to the University of New South Wales
for their hospitality and to the Gordon Godfrey Foundation for
their support.

[1] R. Pohl, A. Antognini, F. Nez, Fernando D. Amaro, F. Biraben,
J. M. R. Cardoso, D. S. Covita, A. Dax, S. Dhawan, L. M. P.
Fernandes, A. Giesen, T. Graf, T. W. Hänsch, P. Indelicato,
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