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Core effect on the diamagnetic spectrum of barium Rydberg states
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We study the core effect of nonhydrogenic alkaline-earth-metal barium in its diamagnetic spectrum by one
photon transition from the ground state 6s2 1S0 experimentally and theoretically. The non-Coulombic potential of
the ion core introduces an extra energy shift compared with hydrogen and a level anticrossing between different
n manifolds, characterized by the quantum defect of the concerned angular momentum states. With a complex
rotation coordinate technique and a B-spline expansion method, we develop a matrix-form Hamiltonian based
on an effective potential incorporating the angular-dependent quantum defect into the angular rotation term.
The nonhydrogen core effects are investigated by sweeping the quantum defects of different channels in the
calculation. Results show that quantum defects of p and f states have a undeniable effect on the intensities
and positions of the spectral lines, although barium is closely hydrogenlike in the energy range examined. The
anticrossing spectral lines are also identified with the aid of theoretical calculations. The calculations are in good
agreement with the experimental observations.
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I. INTRODUCTION

The Rydberg atom in a magnetic field, one of the simplest
realizations of a classically chaotic system, has been studied
for many years. In a pure magnetic field, the system has a
rotational symmetry about the direction of the magnetic field.
We can separate this orbital angular motion perpendicular
to the magnetic field easily and reduce the problem to
a two-dimensional one. For a low-lying atom in a weak
magnetic field, the quadratic Zeeman term (usually called the
diamagnetic term) is negligible. With the increase of magnetic
intensity, however, the diamagnetic potential will compare
with or dominate the Coulomb potential and the system will
gradually change from order to chaos [1].

Early in the 1930s, the experiment on atomic diamagnetism
by Jenkins and Segrè was among the first in which the
Rydberg atoms in magnetic field were exploited [2]. In an
accompanying paper, Schiff and Snyder attempted to obtain
a theoretical understanding of the data [3]. Thirty years
later, Garton and Tomkins revisited the topic in 1969 and
observed the unexpected quasi-Landau resonances [4]. After
that, experimental investigations of the quadratic Zeeman
effect [5–10] concentrating on hydrogen and hydrogenlike
atoms have been done in an attempt to uncover the dynamics
underlying the simplest possible magnetic field spectrum, and
the relevant theoretical efforts [11–13] in that direction have
produced good agreement with the experiments.

Specifically, the alkaline earth atoms such as barium and
strontium played an important role in the understanding of the
behavior of atoms in high magnetic fields for their complexity
far beyond hydrogen and hydrogenlike atoms. In the alkaline-
earth metals, the doubly excited states appear as prominent
perturbation of the principal series in magnetic field [4,14–16],
or even in the absence of external fields [17,18], resulting in the
quantum defect being energy dependent [19,20]. Therefore,
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there is a new possibility of competition between the electronic
correlations and the external field which renders these spectra
very interesting [21]. Typically, Fonck et al. [14] observed
the diamagnetic effect in 6s6p 1P1−6sns 1S0 Rydberg series
of barium in magnetic fields of 2–4 T and found that the
perturbation of this series by the 5d7d 1S0 level reduces the
shift below the hydrogenic value. Lu et al. [15] presented
a densitometer mapping of diamagnetic effects on barium
and strontium and discussed the effects of perturbation states
(4d5p 1P1 for strontium and 5d8p 1P1 for barium) on the
intensity and spacing of principle series spectra. The group
of Connerade in Imperial College contributed much to the
investigations of the diamagnetic effect of alkaline earths
[21–25], giving a lot of inspiration to our work on the core
scattering of the quadratic Zeeman spectrum of barium [26].

The more interesting factor is the level of anticrossings
of Rydberg atoms in the external field introduced by the
nonhydrogenic Coulomb potential. Hydrogen atoms have a
higher dynamics symmetry SO(4), and the states within the
same n manifold are degenerate. If an external electric field
is applied, the energy levels from different n manifolds will
meet and cross but they do not interact, and the spectral lines
go in their own ways with the field applied. For hydrogen
atoms in a magnetic field, the inseparability of the system
due to the diamagnetic term will result in anticrossings for
levels, but it is negligible for high Rydberg states [27]. In
the case of the nonhydrogenic atoms, however, the ion core
cannot be treated as a geometric point and the core potential
deviates from Coulombic form. Its charge distribution in finite
geometric space, although the size is small, will break the
dynamics symmetry and make the system inseparable. In this
case, the levels with the same parity from different n manifolds
will suffer from anticrossings rather than a direct crossing
without interaction, even in an electric field. The nonhydrogen
core is related to the phase shift of the hydrogen wave
function for the specified angular momentum state, a partial
wave phase shift which is characterized by the terminology
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“quantum defect.” The anticrossings play a significant role
for the atomic spectrum in an external field [28–30]. The
theoretical calculation of anticrossings can reveal important
dynamics information such as inelastic core scattering between
different quantum channels. However, the positions and widths
of anticrossing have a sensitive dependence on the wave
functions chosen [28], and the theoretical calculation for such
systems serves as a stringent approach to test the accuracy of
approximate wave functions and the validity of the method
used [29]. A high precision and reliability is also in demand
for the related experiments.

In this paper we investigate the nonhydrogenic core effect
of barium by directly recording the diamagnetic spectrum
and comparing it with the quantum-mechanical calculation
considering the quantum defects from different orbital angular
momentum under an “l-truncation” approximation [31]. In the
quantum-mechanical calculations, we can switch the specified
channel(s) on or off, enabling us to see the direct contribu-
tion(s) for the spectrum. At the same time, careful attention
is paid to the energy dependence of the quantum defects.
It can extract more information than previous theoretical
calculations [19,20,32]. In our case, barium is irradiated
to 6snp Rydberg states directly from the ground state by
single-photon excitation. The core effect is incarnated on
the transitions from the ground state to the p component of
the mixing excited states under external magnetic field. The
one-photon transition selection confines the channels p,f, . . .

to participate in the interaction, but only the former two
states have observable effects for their considerable nonzero
quantum defects.

II. EXPERIMENTAL

The experimental apparatus is described in our previous
work [26], and some improvements have been made in the
present measurement. An atom beam produced from an atom
oven travels to the interacting point, intersecting with the laser
beam at a small angle of 15◦ in the center of the superconductor
magnet (Oxford Instruments). The oven is a stainless chamber
heated to about 700 ◦C by a multicycle solenoid resistance at
current of 2 A, instead of the previous nickel-chrome alloy tube
heated directly by its resistance under large current of about
130 A. The present atom beam is much more stable than before.
Two pinholes are inserted between the atomic oven and the
interacting point to collimate the atomic beam. The interacting
point is situated between a pair of electric Stark plates parallel
to the magnetic field, where an additional electric field can
be applied. Rather than taking the superconductor cavity as
our atomic chamber, we improve it to a much smaller one
for efficient pumping. One photon corresponding to 238 nm
is used to excite the barium atom from the ground state to a
high Rydberg state 6snp and a pair of electric grids is used
to ionize the excited Rydberg atom. The ionized residual is
detected by a pair of microchannel plates mounted at the end
of the chamber. The signal is recorded by an oscilloscope
(Tektronix TDS1012), and the digital data stream is transferred
to a personal computer for real-time signal processing.

The laser beam is produced by a dye laser system (Lambda
Physik, Scanmate 2E) pumped by a Nd:YAG laser (Spectra
Physics) where an etalon is inserted in the oscillator cavity to

narrow the linewidth down to 0.9 GHz. The laser beam from
the dye laser is frequency-doubled by a system-controlled beta
barium borate crystal and the dichromatic beams are separated
by two pairs of prisms. A Soleil-Babinet compensator is used
to rotate the laser from horizontal polarization to vertical
or circular polarization. The wavelength is monitored by a
Burleigh wavemeter and its scanning is controlled by the same
personal computer. The superconducting solenoid we used can
produce a magnetic field up to 5 T and sweep with stability of
better than one in ten thousand.

III. THEORETICAL CALCULATION

In the presence of a pure magnetic field, the Hamiltonian
H for Rydberg barium atom, in atomic units, can be written
as follows:

H = p2

2
+ Vr + B

2
Lz + B2

8
r2 sin2 θ, (1)

where B is the magnetic field strength in atomic units and
θ the angle coordinate of a Rydberg electron in spherical
coordinates, the terms B

2 Lz and B2

8 r2 sin2 θ are the param-
agnetic term and diamagnetic term, respectively, and Vr is the
Coulomb potential considering the effects of valence electron
polarization of the core system. The term Vr deviates from the
form of − 1

r
at small values of r . The complexity of the core-

induced electron screening makes the Schrödinger equation for
the nonhydrogen centrifugal problem lose analyticity. In this
case, the term Vr is usually expressed by model potential, pa-
rameterized by some angular momentum-dependent variables
which are closely correlated with quantum defects. Rather
than using the model potential Vr [33] or the R-matrix method
including the quantum defects implicitly [34], we employ an
equivalent form for the central field potential:

Vr = λ(λ + 1) − l(l + 1)

2r2
− 1

r
, (2)

where λ = l − δ + int(δ) and the quantum defects are explic-
itly enclosed. Here int(δ) is the rounded nearest-integer value
of the quantum defect. Another benefit for this formula in
Eq. (2) for the potential is that the Schrödinger equation has
an analytic solution for its eigenfunctions [35]. We employ a
reduced quantum defect

δ′ = δ − int(δ) (3)

to quantificationally describe the real contribution of the
quantum defect for a given angular momentum channel. In
the following text, we will use δ′ rather than δ and ignore the
prime.

In this way, the Hamiltonian of atom in external magnetic
field can be expressed by a full matrix on the basis of the
second Whittaker functions [35], which are called quantum
defect orbitals, making it possible to perform a multichannel
quantum defect theory (MQDT) based calculation. In the
present work, we will take the B-spline function as the basis
instead of the quantum defect orbitals. The main excuse is that
the Hamiltonian in B-spline basis has a symmetric banded
matrix form. This special matrix structure will save much time
in numerical diagonalization to obtain the final eigenvalues
and eigenfunctions. In addition, the complex coordinate is

032508-2



CORE EFFECT ON THE DIAMAGNETIC SPECTRUM OF . . . PHYSICAL REVIEW A 85, 032508 (2012)

employed in our calculation. This method will supply complex
eigenvalues with their imaginary parts corresponding to the
natural linewidths of the absorption. In the case of pure
magnetic fields, the radial wave function of the system can
be expanded in terms of a B-spline basis as

Rn(r) =
∑

i

Cn
i Bk

i (r), (4)

where Bk
i (r) is the ith B spline of order k defined in

Refs. [36–38], while the angular wave function is expanded
in spherical harmonic functions. It should be noted that the
parity symmetry πz is not considered in our calculation. This
indifferent processing enables us to incorporate the Stark term
in the electric field into the same program code.

Since the σ+ and σ− polarized diamagnetic spectrums
are completely identical after a proper shift [23], only the
σ+ spectrum is presented in this paper. Quantum defects of
δs = 0.2572, δd = −0.25, and δf = 0.04 are used during the
calculation if not specified, while δp is varied in a small range.

IV. RESULTS AND DISCUSSION

The σ+-polarized diamagnetic spectrum of barium in
various magnetic fields B = 1, 1.7, 3, and 4 T are shown
in Figs. 1(a)–1(e). The upper and lower panels show the calcu-
lated spectrum and the experimental observation, respectively.
Spectra in Figs. 1(a)–1(c) are shown in the same energy scale,
−100 ∼ −70 cm−1, ranging from l mixing (B = 1 T) to n

mixing (B = 3 T). The spectra at higher magnetic field B =
4 T within an extended energy range in Figs. 1(d)–1(e) show
the n mixing of the diamagnetic structure as well as the
quantum defect dependence roundly.

The spectral lines in the same n manifold shift to higher
energy when the magnetic field gets stronger and stronger,
due to the diamagnetic interaction. According to the Pauli
quantization scheme [25], the energy shift of p states can be
estimated by

δE ∼
(

1

2
+ 3n4B

8

)
δB, (5)

where we can see that the energy shift is proportional to
the magnetic field strength. For n = 38, as indicated in the
spectrum, the energy shift from B = 1–1.7 T is estimated to
be around 3 cm−1 and that for B = 1.7–3 T is around 9 cm−1,
approaching the experimental observations.

Another interesting point is the spectral line splittings
within the same n manifold, which are degenerate at zero
field. These splittings are due to the l mixing between different
angular momentum states of the same parity induced by the
diamagnetic term. For the spectrum at a specified magnetic
field, the splitting gets larger at higher energies. At relatively
low field (B = 1 T), for example, the spectral lines at small
principal quantum number n = 38 gather closely but they
begin to be distinguishable at higher energies. The dependence
of line splitting on the magnetic fields can be clarified by
comparing the spectrum at different magnetic fields, as shown
in Figs. 1(a)–1(c). When the magnetic field increases to 1.7 T,
different l states with the same parity interact more seriously
due to the contribution of the magnetic field, and the line
splitting gets so large that the satellites can be distinguished

FIG. 1. (Color online) The calculated (upper panel) and exper-
imental (lower panel) σ+-polarized diamagnetic spectra of barium
at various magnetic field strengths: B = 1, 1.7, 3, and 4 T. The
calculation has considered the quantum defects of channels 6sns,
6snd , and 6snf with fixed reduced quantum defects δs = 0.2572,
δd = −0.25, and δf = 0.04. The reduced quantum defect δp of
channel 6snp is energy dependent and takes different values for
different energy ranges.

clearly, even at lower energies. When it comes to 3 T, the
manifolds of adjacent n overlap with each other, indicating
the spectrum goes into the n-mixing region. There is no
analytical expression to calculate the level separation within
one manifold at a certain magnetic field, but we can see that
the separation is approximately equal and gets slightly smaller
at lower energy in the same manifold, which coincides with
the conclusion of van der Veldt et al. [39].

The effect of quantum defects on the spectra of barium
is also worth our attention. Since the value of the reduced
quantum defect for p states is almost zero in the examined
energy range, the zero-field states with odd parity are nearly
degenerate, resulting the line positions and intensities of the
mixed states having a nearly regular structure. It is similar
to the case of hydrogen [40], but different from the case of
strontium in a magnetic field of 2.465 T, where the quantum
defect of the p channel is large enough to separate the
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p component from the satellites of higher l partial waves
(l � 3) in the same manifold [24]. We will return to the
discussion about the effect of the quantum defect δp on the
diamagnetic spectrum later.

A quantum calculation for barium in the magnetic field
corresponding to the observations is also presented in Fig. 1.
The quantum defects of channels 6sns, 6snd, and 6snf

are fixed at values δs = 0.2572, δd = −0.25, and δf = 0.04,
which are obtained by fitting the experimental observations
in Ref. [41]. They are nearly independent of the principal
quantum number n and are kept constant in the energy range
of interest. On the contrary, the quantum defect for channel
6snp varies along with energy or n, making it difficult to treat
in the calculation.

As the spectrum in external fields is very sensitive to the
quantum defect, we perform MQDT calculations at sweeping
δp with an appropriate step. For example, Fig. 2(a) displays
how we obtain the calculated spectrum shown in Figs. 1(d)–
1(e) at magnetic field of 4 T. The upper panels in each row in
Fig. 2(a) are the spectra calculated at a series of quantum defect
values δp. We can find that in a certain energy range (separated
by dash lines) with a certain quantum defect, the calculated
positions of the lines, especially for the dominant peaks, match
the experimental ones. The best agreements for the dominant
peaks are circled in Fig. 2. At B = 4 T, for example, for the
n = 35 dominant line, at the quantum defect δp = 0.03 only,
can we reach the best agreement with each other.

In order to study how δp takes effect in the diamagnetic
spectrum, a part of Fig. 2(a) is magnified into Fig. 2(b).
For the case of barium, although its quantum defect of the
p state is nearly an integer for the energy region involved
here, it has a undeniable influence upon the position and
intensity of the spectrum. The peaks are labeled k, which
is used by Gay and Delande to distinguish the diamagnetic
states [42]. The expression k = 0 indicates the predominant
peak corresponding to the 33p state, and k = 2,4,6, . . . for
the satellites. The calculated peaks with the same k labels
at various values of δp are linked by dashed lines to guide
the eye. As the δp increases from −0.03 to 0.09, the peaks
predominated by p move toward lower energy much faster
than the satellites with higher k. This indicates that the quantum
defect of p states has a predominant effect on peak k = 0 and
makes little contribution to the peaks with higher k values.
In contrast, it can also help us to determine the best quantum
defect value of p states at a specified energy range.

With the method presented in Fig. 2, the calculations for
the diamagnetic spectra at various magnetic fields can be
performed as shown in Fig. 1. In the calculation, the quantum
defect of channel 6snp varies from δp = −0.03 at E =
−125 cm−1 to δp = 0.27 at E = −45 cm−1. It can be seen
that the calculated spectra in the upper panels are in excellent
agreement with the experimental observation in the lower
panel.

In order to investigate the effect of the f -state quantum
defect on the spectrum, the calculations at sweeping δf are
also performed, which are shown in Fig. 3. We can see from
Fig. 3(a) that with increasing δf , the peak with (n,k) = (35,10)
shifts to lower energy. The (35,12) peak should have the
same shifting magnitude as (35,10). However, as shown in
Fig. 3(a), the shifting of peak (35,12) is seriously depressed

FIG. 2. The effect of quantum defect δp on the diamagnetic
spectrum. (a) The spectra calculated at quantum defects varying from
δp = −0.03 to δp = 0.09 while other quantum defects are kept as
the “standard” values used in Fig. 1. The comparison is made taking
the experimental observation as reference. The coincidence between
theory and experiment “requires” the quantum defect of 6snp to vary
with the energy as indicated by the circled lines. (b) The magnification
in a narrow energy range of (a). The peaks in the same n manifold
are labeled by k. See text for the detail.

by the intruding repelling interaction from p state (34,0). On
the contrary, the p state is recoiled to lower energy with
acceleration. Generally speaking, the quantum defect of f

states has a much stronger effect on the high-k states than
the p-predominant ones [24]. In our case, the diamagnetic
effect makes some higher-k states of higher n manifold intrude
toward lower energy and “collide” with the p-predominant
peak (k = 0) in the neighborhood of a lower principal quantum
state n − 1. If there are nonzero reduced quantum defects for
these two angular momentum states, the two colliding states
will suffer an anticrossing. The core-induced interaction will
repel the concerned spectral lines, for example, here the peaks
(34,0) and (35,12).
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FIG. 3. (Color online) The effect of quantum defect δf on
the diamagnetic spectrum. (a) The calculated (upper panel) and
experimental spectrum (lower panel) at a sweeping quantum defect
of f state. An interaction between a pair of closely neighboring
spectral lines can be confirmed by line position shifts as δf . The
interaction states are the p-predominant k = 0 state and the intruding
higher-k state from the higher neighboring n manifold. One can also
reach this conclusion by tracing the spectral line intensities with
the higher-resolution spectrum by giving up the experimental Gauss
broadening as shown in (b). The spectral lines are labeled by (n,k).

This quantum-defect-induced interaction can also be re-
vealed by analyzing the spectral line intensities at different
quantum defect values of δf as shown in Fig. 3(b). In
Fig. 3(a), an appropriate Gauss broadening (�υ = 0.03 cm−1)
is adopted to convolute with the calculated spectrum due to the
laser linewidth and Doppler broadening, which conceal the
fine variation in the spectral line intensity and position.
The calculation for Fig. 3(b) is the same as that in Fig. 3(a), but
a narrow broadening is considered to recover the interaction
details. It can be seen that the (35,10) peak shifts to lower en-
ergy at about 0.042 cm−1 while the shifting of the peak (35,12)
is depressed, only about 0.023 cm−1. The p-predominant peak
(34,0) is obviously repealed by its neighbor colliding partner.
The interaction information can also be deduced from the

intensity variation of the calculated spectral lines. For the
peak (35,10), the intensity variation is very small, indicating a
weak interaction from other states, while for the peak (35,12),
the intensity variation is much more acute. This can be well
understood by its strong interaction with the closest neighbor
state (34,0). We label the wave functions of states (35,10),
(35,12), and (34,0) as ϕi(i = 0,1,2) (

∑
i |ϕi |2 = 1), which

constitutes a small interaction space. With the increase of the
quantum defect of δf , the intensity enhancement of spectral
line (35,12) and the intensity lessening for (34,0) shows that
states ϕ2 and ϕ3 mix violently with each other, resulting in the
final state containing more components of state ϕ2.

In our calculation, the choice of quantum defect values of
s and d channels does not affect the diamagnetic spectrum
at all. This is well understood by the matrix element of
the Hamiltonian. The diamagnetic term couples the states
with �L = ±2 only. For our excitation scheme of one-
photon irradiation from the ground state 6s2 1S0, the circularly
polarized laser permits the transition to 6snp, keeping the
contribution of quantum defects of s and d states in vain. These
transition selection tricks enable us to pick up or prohibit the
participation of concerned states.

V. CONCLUSION

In this paper, the σ+-polarized diamagnetic spectrum is
studied in l-mixing and n-mixing regions experimentally and
theoretically. The odd-parity Rydberg states are populated by
one-photon transition from the ground state 6s2 1S0. General
properties of the diamagnetic spectrum have been reinvesti-
gated. In addition, based on the complex rotation coordinate
technique and B-spline expansion method, we performed
quantum mechanical calculations for the diamagnetic spec-
trum with the quantum defects of multichannels considered.
By sweeping the quantum defect of the specified channel in
the calculation, we find that the quantum defects of p and f

states have a undeniable effect on the intensities and positions
of the diamagnetic spectral lines, although barium is closely
hydrogenlike. The slightly increasing quantum defects of the
p channel from −0.03 to 0.09 result in a significant shift
of the predominant peak (k = 0) in one n manifold. When
scanning the quantum defect of channel f from 0 to 0.08 in the
calculation, we find a pair of spectral lines closely interrelated.
By investigating the spectral line positions and intensities with
the quantum defect of channel f , the pair of lines is identified
to originate from two interacting states with their energy levels
anticrossing. The spectral line position is very sensitive to the
quantum defect of channel f . In contrast, we can also use the
sweeping method to accurately determine the quantum defect
values in the specified energy range.
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