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We propose a scalable scheme for a unitary multimode operator using an optical cavity with an atomic
ensemble. We exemplify three-mode and four-mode cases and engineer the squeeze operators that are decoupled
from the atomic degrees of freedom. The squeeze parameters can be large since they are proportional to the
number of atoms. Using the input-output theory we show that ideal squeezed states and perfect squeezing could
be approached at the output. At the same time, we show that it is possible to obtain tripartite and quadripartite
Greenberger-Horne-Zeilinger entangled states for continuous variables. The responsible mechanism for both the
multimode squeezing and the genuine multipartite entanglement is based on the atomic coherence controlled
parametric interactions. The scalability of the scheme is simply obtained by including more transitions in the
atomic system.
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I. INTRODUCTION

The reduction of quantum noise is one of the important
issues in quantum optics, laser physics, and nonlinear op-
tics since Caves et al. [1] first noted the possibilities of
manipulating quantum fluctuations with the aim of precision
measurement. Squeezing is defined, for an optical field, when
the fluctuations in a certain quadrature are reduced below
the vacuum level at the expense of increasing them in its
canonically conjugate variable [2,3]. Since then great effort
has been paid to it. Either the theoretical proposals have
been presented or the experimental implementations have been
performed. Squeezing can happen either for a single-mode
quadrature or for a two-mode quadrature [2,3]. Of extreme
importance is the close correlation of the two-mode squeezing
to the continuous variable (CV) entanglement [4,5], which is
the important resource for quantum information and quantum
computation [6–8]. For example, by using the entangled
squeezed states of the electromagnetic field one realized
the CV teleportation [9–11]. The two-mode (polarization)
squeezing was realized by employing Kerr nonlinearity in
optical fibers and with cold atomic ensemble in optical cavities
[12,13]. Recently, an effective and tunable field squeeze
operator for a single-mode field or for a two-mode field has
been proposed by using an atomic ensemble in an optical
cavity [14]. The squeeze operator acts on a cavity with an
atomic ensemble but decouples from the atomic degrees of
freedom. The squeeze parameter is scaled up with the number
of atoms present in the interaction region.

However, to our knowledge, beyond the two-mode case,
the multimode squeeze operator [15,16] has not yet been
proposed or realized for atomic systems. Here we propose
a mechanism for it. The multimode squeezing is of particular
importance since it is closely correlated to the fully inseparable
multipartite states. Such multipartite inseparability is called the
genuine multipartite entanglement. This term refers to states
in which none of the parties can be separated from any other
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party in a mixture of product states. One of the important
types of genuine multipartite entanglement is Greenberger-
Horne-Zeilinger (GHZ) entanglement [17]. In particular, the
tripartite CV GHZ state is a three-mode momentum (position)
eigenstate with total momentum p1 + p2 + p3 = 0 (total posi-
tion x1 + x2 + x3 = 0) and relative positions xk − xl = 0 (rel-
ative momenta pk − pl = 0), k,l = 1,2,3, k �= l, and exhibits
maximum entanglement. Genuine multipartite entanglement
enables one to construct a quantum teleportation network
[18–20] or to perform controlled dense coding [21,22]. Loock
and Furusawa [23] presented experimental criteria to detect
genuine multipartite CV entanglement by using variances
of particular combinations of all the quadratures involved.
These combinations are measurable with only a few simple
homodyne detections. Experimental preparation has been
performed by using independent squeezed fields and beam
splitters [19–21]. So far experimental research comes to the
four-mode case [20].

On the other hand, the atom-field interactions are funda-
mental mechanisms for creating the multipartite entanglement
without use of initially prepared squeezing. For the two-mode
case, by using an ensemble of coherently driven two-level
atoms one can generate CV entanglement [24–26]. The atom
absorbs two photons from the strong driving field and emits
two new photons at a pair of Rabi sidebands into the cavity
modes [27,28]. Such a two-photon process is responsible for
the nonclassical correlation. To obtain multipartite entangle-
ment one turns to multilevel atomic systems [29–32], in which
atomic coherent effects are particularly important. Among
others is coherent population trapping (CPT) [3,33], which
has been intensively studied for it sets up a basis for various
coherence phenomena such as electromagnetically induced
transparency and quantum control of photons [34–37], ampli-
fication and lasing without inversion [38–43], enhancement
of nonlinear optical processes [44–47], and modifications of
spontaneous emission [48–52].

The purpose of the present paper is to use the atomic
coherent effects to engineer a multimode squeeze operator. We
exemplify three- and four-mode cases and derive the squeeze
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operators, which are decoupled from the atomic degrees of
freedom. The squeeze parameters can be large since they are
proportional to the number of atoms. According to the relation
between the input and output fields, ideal multimode squeezed
states and perfect squeezing are achievable. At the same
time one can obtain multipartite CV GHZ entangled states.
Physically, the atomic coherent effects [3,33] and parametric
interactions [27,28] combine to be responsible for squeezing
and entanglement. In principle, the present scheme is scalable
by including more transition channels. The remaining part
of the present paper is organized as follows. In Sec. II, we
present the model and derive the squeeze operator for the four
cavity fields. In Sec. III, we analyze the quantum correlations
and show the squeezing and entanglement for three and four
fields. The conclusion is given in Sec. IV.

II. SQUEEZE OPERATORS FOR THREE OR FOUR MODES

We consider an ensemble of N -independent atoms that are
placed in a four-mode optical cavity, as shown in Fig. 1. The
interactions of the atoms with the driving fields and the cavity
fields are described in Fig. 2. The atom has three levels, of
which one is the ground state |0〉 and the other two are excited
states |1〉 and |2〉. As usual, the driving fields are treated
classically and the cavity fields are treated quantum mechani-
cally. Two external driving fields of circular frequencies ω1,2

are applied to the dipole-allowed transitions |0〉 − |1,2〉 with
Rabi frequencies �je

iψj (j = 1,2), respectively, where �j

are the real amplitudes and ψj are the phases. Four sidebands
of circular frequencies νl are amplified as four cavity fields,
which are described by the annihilation and creation operators
al and a

†
l (l = 1 − 4). In the rotating wave approximation and

in an appropriate rotating frame, we derive the master equation
for the density operator ρ of the atom-field composite system
as [3]

ρ̇ = − i

h̄
[H,ρ] + Lρ, (1)

Drive
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FIG. 1. (Color online) The possible setup for the creation of
GHZ entanglement of four cavity fields (denoted by the annihilation
operators a1−4).
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FIG. 2. (Color online) Level scheme for the interactions of two
driving fields (denoted by Rabi frequencies �1,2) and four cavity
fields with an atom in V configuration. �’s and δ’s are the detunings,
which are defined in the text.

with the Hamiltonian H = H0 + H1, where

H0 =
2∑

j=1

N∑
μ=1

h̄

[
�jσ

μ

jj + �j

2

(
e−iψj σ

μ

0j + eiψj σ
μ

j0

)]
(2)

describes the interaction of the driving fields with the atoms,
and

H1 =
2∑

j=1

N∑
μ=1

h̄σ
μ

j0

(
g2j−1a2j−1e

−iδ2j−1t + g2j a2j e
−iδ2j t

)

+ H.c., (3)

represents the interaction of the cavity fields with atoms. In
the above equations, h̄ is the Planck constant and H.c. is
the Hermitian conjugate. For the μth atom, σ

μ

jk = |jμ〉〈kμ|
(j,k = 0,1,2) are the projection operators for j = k and
the spin-flip operator for j �= k. gl are the strengths for
the atom-cavity field couplings. �j = ωj0 − ωj (j = 1,2)
are the frequency detunings between the atoms ωj0 and the
driving fields. δ1 = ν1 − ω1, δ2 = ν2 − ω1, δ3 = ν3 − ω2, and
δ4 = ν4 − ω2 are the frequency detunings between the cavity
fields and the driving fields. The decay term in Eq. (1) takes
the form Lρ = Laρ + Lcρ, where

Laρ =
2∑

j=1

N∑
μ=1

γj

2
D

[
σ

μ

0j

]
ρ (4)

denotes the atomic relaxation, and

Lcρ =
4∑

l=1

κl

2
D[al]ρ (5)

stands for the cavity loss. We have defined the superoperator
D[Q]ρ ≡ [Qρ,Q†] + [Q,ρQ†] for the atomic operators σ

μ

0j

and the fields operators al . γ1,2 denote the atomic spontaneous
decay rates and κ1,2,3,4 represent the cavity decay rates.

Here we are interested in the dispersive interaction case,
where both the driving fields and the cavity fields are far off
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resonance with atomic bare-state transitions, and the cavity
fields are far off resonance with the dressed transitions by
the driving fields. To show the establishment of a multimode
squeeze operator we derive the time evolution of the four cavity
fields through the following four steps.

(i) We introduce two orthogonal coherent superposition
states of the two excited states [3]. For the Raman two-photon
resonance case �1 = �2 = �, these superposition states are
defined as

|1̃〉 = cos φe−iψ1 |1〉 + sin φe−iψ2 |2〉,
(6)

|2̃〉 = − sin φeiψ2 |1〉 + cos φeiψ1 |2〉,
where we have defined cos φ = �1

�
, sin φ = �2

�
, and the

effective Rabi frequency � =
√

�2
1 + �2

2. The Hamiltonian
H0 is rewritten in terms of the superposition states as

H0 =
N∑

μ=1

h̄

[
�

(
σ

μ

1̃1̃
+ σ

μ

2̃2̃

) + �

2

(
σ

μ

01̃
+ σ

μ

1̃0

)]
. (7)

It is seen Hamiltonian (7) that only the superposition state
|1̃〉 is coupled to the equivalent field with the effective Rabi
frequency �, while the coherent superposition state |2̃〉 is
decoupled from the driving fields. This indicates that the
superposition state |2̃〉 is not populated due to the destructive
interference although there are two bare atomic transitions
|0〉 → |1〉 and |0〉 → |2〉 to populate the excited states |1〉 and
|2〉. This is the very counterpart of CPT [3,33–37]. Here we
call the coherent effect the “coherent depopulation,” and the
coherent superposition state |2̃〉 the “dark state.” The physics
common to CPT and depopulation is destructive interference
between excitation transitions. The essential difference lies
between them. All population is in the dark state for CPT
case, while no population is in the dark state for the coherent
depopulation case. Since the superposition state |2̃〉 is empty,
we can drop it in the following treatment.

(ii) We employ the dressed-atom approach [53]. By di-
agonalizing the Hamiltonian H0, we write the dressed states
in terms of the bare atomic state |0〉 and superposition state
|1̃〉 as

|+〉 = sin θ |0〉 + cos θ |1̃〉,
(8)

|−〉 = cos θ |0〉 − sin θ |1̃〉,
where tan(2θ ) = �

�
, 0 < θ < π

2 . The dressed states |±〉 have
their eigenvalues λ± = h̄

2 (� ± �̄), where we have used the
generalized Rabi frequency �̄ = √

�2 + �2. In terms of the
dressed atomic states, the Hamiltonian (7) is rewritten as H0 =∑N

μ=1(λ+σ
μ
++ + λ−σ

μ
−−), where σ

μ
±± = |±μ〉〈±μ|. Then the

damping term is written in the form

Laρ =
N∑

μ=1

γ

2
{cos4 θD[σμ

−+]ρ + sin4 θD[σμ
+−]ρ

+ γ cos2 θ sin2 θD[σμ
++ − σ

μ
−−]ρ}, (9)

where we have assumed γ1 = γ2 = γ for simplicity. In what
follows we are interested in the dispersive interaction, for
which the cavity fields are far off resonance with the dressed
atomic transitions. In this case, the cavity fields do not change

the atomic populations [27,28]. The equation for the expec-
tation values of the projection operators σ̄ll = 1

N

∑N
μ=1〈σμ

ll 〉
(l = +,−) is derived as

dσ̄++
dt

= −γ cos4 θσ̄++ + γ sin4 θσ̄−−, (10)

together with the closure relation σ̄++ + σ̄−− = 1. At the
steady state we obtain the dressed populations

σ̄++ = sin4 θ

cos4 θ + sin4 θ
, σ̄−− = cos4 θ

cos4 θ + sin4 θ
. (11)

The expectation value for the flip operator of the dressed atoms
σ̄+− follows the following equation in the absence of the cavity
fields

dσ̄+−
dt

= (i�̄ − γ − 2γ cos2 θ sin2 θ )σ̄+−. (12)

From this equation we obtain the expectation value for the
flip operator, which takes the oscillating decay from its initial
value σ̄ 0

+− as

σ̄+− = σ̄ 0
+−ei�̄t−γ (1+2 cos2 θ sin2 θ)t . (13)

For the far-off resonance case we will consider, the atomic
decay is negligibly small compared with the generalized Rabi
frequency (i.e., �̄

.= |�| ≫ γ ).
(iii) We focus on the case where the driving and cavity

fields are far off resonance with the atoms. To investigate the
interaction of the cavity fields with the dressed atoms, we make
a unitary transformation exp(−iH0t/h̄) and transform into the
second interaction picture. The Hamiltonian is written in the
form

H1 =
N∑

μ=1

h̄[cos2 θ (g1a1 + g3a3)

− sin2 θ (g∗
2a

†
2 + g∗

4a
†
4)]σμ

+− + H.c.. (14)

We tune the cavity fields such that δ1 = δ3 < 0; δ2 = δ4 >

0; |δl| 	 |δ1 + δ2|; (|�|,|δj |) 	 ||�| − |δk|| 	 (|gl〈al〉|,γ ).
This not only guarantees that the superposition state |2̃〉 is
decoupled from the cavity fields, but also that the cavity
fields are far off resonance with the dressed atomic transitions.
For � 	 �, we have cos θ = 1 + O(χ2), sin θ = χ + O(χ3),
σ̄−− = 1 + O(χ4), where χ = �

�
. Similarly, for −� 	 �,

we have sin θ = 1 + O(χ2), cos θ = −χ + O(χ3), σ̄++ =
1 + O(χ4). This indicates that for the μth atom we can
take the populations σ

μ
−−

.= 1 and σ
μ
++

.= 0 for � 	 �, and
σ

μ
++

.= 1 and σ
μ
−−

.= 0 for −� 	 �. At the same time, the
expectation value for the flip operator of the dressed atom
shows its time dependence σ

μ
+− = σ

0μ
+−ei�̄t−γ t . For the far

off resonance case, we can derive the effective Hamiltonian
as Heff = − i

h̄
H1(t)

∫
H1(t ′)dt ′, where the indefinite integral is

evaluated at time t without a constant of integration [54]. When
|δl(|�| − |δl|)| 	 |gl|2N is satisfied the Stark shift of the
dressed atoms due to the cavity fields is negligibly small. After
discarding the fast oscillating terms, we obtain the effective
Hamiltonian

Heff = h̄(ξ ∗
12a1a2 + ξ ∗

32a3a2 + ξ ∗
14a1a4 + ξ ∗

34a3a4) + H.c.,

(15)
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where the cross coupling coefficients between the cavity fields
read

ξ12 = g∗
1g

∗
2N�2

1e
2iψ1

�2(|�| − δ2 + iγ )
,

ξ32 = g∗
3g

∗
2N�1�2e

i(ψ1+ψ2)

�2(|�| − δ2 + iγ )
,

(16)

ξ14 = g∗
1g

∗
4N�1�2e

i(ψ1+ψ2)

�2(|�| − δ2 + iγ )
,

ξ34 = g∗
3g

∗
4N�2

2e
2iψ2

�2(|�| − δ2 + iγ )
.

Hamiltonian (15) indicates the four simultaneous paramet-

ric processes: (i) |0〉 �1−→ |1〉 a1−→ |0〉 �1−→ |1〉 a2−→ |0〉,
(ii) |0〉 �1−→ |1〉 a2−→ |0〉 �2−→ |2〉 a3−→ |0〉, (iii) |0〉 �1−→
|1〉 a1−→ |0〉 �2−→ |2〉 a4−→ |0〉, (iv) |0〉 �2−→ |2〉 a3−→ |0〉 �2−→
|2〉 a4−→ |0〉. The simultaneous occurrence of these processes
is due to the atomic coherent effect stated as in step (i). In
Eq. (16), we keep the atomic decay γ although it is negligibly
small compared with the detuning difference |�| − δ2. In the
following section, we will show that the atomic decay has a
negligible effect on the quantum correlations for the far off
resonance case, on which we focus.

(iv) After performing the above three steps and deriving
the effective Hamiltonian, we obtain a time evolution, which
yields a four-mode squeeze operator [15,16]

S4 = eε∗
12a1a2+ε∗

32a3a2+ε∗
14a1a4+ε∗

34a3a4+H.c., (17)

where we have defined the squeezing parameters εkl = iξ ∗
klτ

(k = 1,3; l = 2,4), and τ is the time. For given evolution time
τ , the squeeze parameters εkl can take large values since they
are proportional to the number of atoms N . In the absence
of any one of four modes (for example, when there is no
cavity resonance for a4), we can obtain a squeeze operator for
three-mode field

S3 = eε∗
12a1a2+ε∗

32a3a2+H.c.. (18)

Since such a multimode squeeze operator can be established,
a multimode field initially in its vacuum state will evolve into
a squeezed state.

It is straight to generalize to more modes by including
more transitions in the present scheme. We can examine the
dependence of the cross coupling strengths on the number n of
the transitions involved. When the l transition is driven by an
external coherent field with Rabi frequency �l , the effective

Rabi frequency becomes � =
√∑n

l=1 �2
l . To guarantee the

dispersive interactions, we must always take large detuning
|�| 	 �, whatever positive integer n we are given. Instead,
the detuning difference |�| − δ2 remains unchanged when the
cavity fields are properly tuned. In this case, the coupling
parameters ξ2j−1,2k between the cavity modes a2j−1 and a2k

depend on the Rabi frequencies through the relation

ξ2j−1,2k ∝ �j�k∑n
l=1 �2

l

, (19)

where j � k; j,k = 1,2, . . . ,n. For equal Rabi frequencies we
have a simple relation ξ2j−1,2k ∝ 1

n
, which indicates that the

coupling strengths decrease inversely proportionally with the
number n of the involved transitions.

III. GHZ ENTANGLEMENT FOR THREE OR
FOUR PARTIES

In the following section, we exemplify three and four modes
and show that ideal squeezed states and perfect squeezing
could be approached at the output port. At the same time, we
show that tripartite and quadripartite GHZ entangled states can
be obtainable. To investigate the multimode correlations, we
first define the quadrature operators for each mode as

xl = al + a
†
l , pl = −i(al − a

†
l ), (20)

such that [xl ,pl] = 2i, l = 1–4. Then the quadrature operators
for n � 3 modes can be defined as

Xn = 1√
n

n∑
l=1

xl, Yn = 1√
n

n∑
l=1

pl. (21)

If the variances for certain quadratures have fluctuations below
the standard quantum limit one has n-mode squeezing. We
define the variances VXn

= 〈(δXn)2〉 and VYn
= 〈(δYn)2〉 for

operators Xn and Yn, respectively. Squeezing occurs when
VXn

< 1 or VYn
< 1.

We learn that for three cavity fields a1,2,3, two conditions
are sufficient to verify the CV GHZ entangled state [23]. These
two conditions are

U12 = V (x1 + x2) + V (p1 − p2 + h3p3) < 4,
(22)

U23 = V (x2 + x3) + V (p2 − p3 + h1p1) < 4,

where hl (l = 1,3) are arbitrary real parameters that are used
to optimize the correlations. The optimization parameters are
obtained by minimizing the variances as

h1 = V31 − V21

V11
, h3 = V23 − V13

V33
, (23)

where Vkl = 1
2 (〈δpkδpl〉 + 〈δplδpk〉). For four cavity fields,

there are three inequalities that are sufficient for the GHZ
entanglement [23]

U34 = V (x3 + x4) + V (p3 − p4 + h1p1 + h2p2) < 4,

U14 = V (x1 + x4) + V (p1 − p4 + h2p2 + h3p3) < 4, (24)

U23 = V (x2 + x3) + V (p2 − p3 + h1p1 + h4p4) < 4,

where the optimization parameters hl (l = 1–4) are derived as

h1 = V44(V12 − V13) − V14(V24 − V34)

V 2
14 − V11V44

,

h2 = V33(V12 − V24) − V23(V13 − V34)

V 2
23 − V22V33

,

(25)

h3 = V22(V13 − V34) − V23(V12 − V24)

V 2
23 − V22V33

,

h4 = V11(V24 − V34) − V14(V12 − V13)

V 2
14 − V11V44

.

For the present system, since the cavity fields are decoupled
from the atomic degrees of freedom, we have the master
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equation for the reduced density operator ρc of the cavity
fields

ρ̇c = − i

h̄
[Heff,ρc] + Lcρc, (26)

where the effective Hamiltonian and the cavity damping are
given in Eqs. (15) and (5), respectively. By means of the
generalized P representation of Drummond and Gardiner [55],
and from the master equation (26) we can derive the set of
Langevin equations. To do this, we choose a definite operator
order: a

†
1,a

†
2,a

†
3,a

†
4,a4,a3,a2,a1, and use the correspondences

between the c-numbers and the operators αl ↔ al,α
∗
l ↔ a

†
l

(l = 1–4). For the sake of simplicity we assume −iξkl

(k = 1,3; l = 2,4) to be positive, which is guaranteed by
manipulating the phase factors. Then we substitute ξkl for −iξkl

and match the standard notation for the two-mode case [56].
The set of Langevin equations are derived as follows

α̇1 = αin
1 − κ ′

1α1 + ξ12α
∗
2 + ξ14α

∗
4 + Fα1 (t),

α̇2 = αin
2 − κ ′

2α2 + ξ12α
∗
1 + ξ32α

∗
3 + Fα2 (t),

(27)
α̇3 = αin

3 − κ ′
3α3 + ξ32α

∗
2 + ξ34α

∗
4 + Fα3 (t),

α̇4 = αin
4 − κ ′

4α4 + ξ14α
∗
1 + ξ34α

∗
3 + Fα4 (t),

together with those for α∗
l (l = 1–4). In the above equations,

αin
l are the average amplitudes for the input fields, and κ ′

l = κl

2 .
Fαl

(t) are the Langevin fluctuation forces and are assumed
to be δ correlated, satisfying 〈Fαk

(t)Fαl
(t ′)〉 = Dαkαl

δ(t − t ′).
The nonzero diffusion coefficients are Dα1α2 = −ξ12, Dα2α3 =
−ξ32, Dα1α4 = −ξ14, and Dα3α4 = −ξ34, Dαlαk

= Dαkαl
, and

Dα∗
k α∗

l
= Dαkαl

. By writing αl = 〈αl〉 + δαl and describing to
first order the fluctuations in the field variables, we obtain the
linearized Langevin equations, which are given in a compact
form

d

dt
δX(t) = −BδX(t) + F (t), (28)

where δX(t) = (δα1,δα2,δα3,δα4,δα
∗
1 ,δα

∗
2 ,δα

∗
3 ,δα

∗
4 )T , F (t)=

(Fα1 ,Fα2 ,Fα3 ,Fα4 ,Fα∗
1
,Fα∗

2
,Fα∗

3
,Fα∗

4
)T , where the drift matrix

G can easily be obtained from Eq. (27). The correlation matrix
for the noise term 〈F (t)FT (t ′)〉 = Dδ(t − t ′) is easily obtained
from the above diffusion coefficients. The system reaches its
steady state and is stable when all of the eigenvalues of G

have positive real parts. The linearized Langevin equations
(28) can be rewritten in the spectral form. Defining the Fourier
transformation δR(ω) = 1√

2π

∫
dte−iωt δR(t), we write the

correlation spectrum as 〈δR(ω)δRT (ω′)〉 = S(ω)δ(ω + ω′),
where S(ω) is derived as

S(ω) = (B − iωI )−1D(BT + iωI )−1, (29)

where I is a unit matrix.
We present the measurable spectral quantities for the optical

fields outside the cavity. By VXn
(ω), VYn

(ω), and Ukl(ω)
we denote the output spectra for the correlations V (Xn),
V (Yn), and Ukl , respectively. We use the input-output relations
[2,56] ain

l + aout
l = √

κlal and assume the coherent inputs.
Defining the correlation spectra 〈δO1δO2〉(ω)δ(ω + ω′) =
〈δO1(ω)δO2(ω′)〉 for arbitrary two operators O1 and O2, we
relate the output spectra to the intracavity spectra through the
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FIG. 3. (Color online) The three-mode correlation spectrum
VX3 (ω) for various parameters as in the text.

relations
〈
δxo

k δx
o
l

〉
(ω) = (−1)k−l

〈
δpo

kδp
o
l

〉
(ω)

= δkl + √
κkκl〈δxkδxl〉(ω), (30)

where we have used the Kronecker delta function δkl = 1 for
k = l, and otherwise δkl = 0.

In what follows we present the numerical results. The

cooperativity parameters are defined as Cl = g2
l N

κ2
l

, which are

associated with the different modes al (l = 1–4). As the first
step we assume that γ is negligibly small compared with
the detuning |�| − δ2. We rescale the decay rates, detunings,
Rabi frequencies, and Fourier frequency in units of a rate
parameter κ MHz. The parameters are chosen as �1 = �2 and
�2

�2 (|�| − δ2)−1 = 2 × 10−3κ−1. We first give the numerical
results for the three-mode case, which are obtained simply
by removing any one of four modes. For definiteness we
remove the a4 mode. Plotted in Fig. 3 is the three-mode
correlation spectrum VX3 (ω) for various values of cavity loss
rates and cooperativity parameters: (a) κ1,2,3 = 0.5κ, C1,2,3 =
250; (b) κ1,2,3 = 0.5κ, C1 = 120, C2 = 400, C3 = 1200;
(c) κ1 = 0.5κ, κ2 = 0.4κ, κ3 = κ, C1,2,3 = 330; and
(d) κ1 = 0.5κ, κ2 = 0.8κ, κ3 = 0.4κ, C1 = 40, C2 =
800, C3 = 400. It is seen that for various choices of pa-
rameters, the fluctuation spectrum drops below the standard
quantum limit 1. This means that the three-mode quadrature
X3 has the reduced fluctuations. For a certain case [e.g., (b)],
the fluctuations are reduced to the zero level, which shows
the ideal squeezed states and perfect squeezing. In Fig. 4
we plot the two correlation spectra U12(ω) and U23(ω) for
(a) κ1,2,3 = 0.5κ , C1,2,3 = 240; (b) κ1,2,3 = 0.5κ , C1 = 50,

C2 = 150, C3 = 550; (c) κ1 = 0.5κ, κ2 = 0.25κ, κ3 =
κ, C1,2,3 = 400; and (d) κ1 = 0.5κ, κ2 = 0.75κ, κ3 = κ, C1 =
60, C2 = 500, C3 = 30. For the identical cavity loss rates and
the identical cooperativity parameters [Fig. 4(a)], the curves
for the correlation spectra U12(ω) and U23(ω) display the
same dip. In terms of correlation spectra, the criteria (22)
in the spectral form are well satisfied, which shows that GHZ
entanglement occurs for three cavity fields a1,2,3. The criteria
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FIG. 4. (Color online) The correlation spectra U12(ω) (solid line)
and U23(ω) (dashed line) for various cases of different parameters.

are also well satisfied for various cases of different parameters
[Figs. 4(b)–(d)].

Similarly, we show in Figs. 5 and 6 the exis-
tence of squeezing and GHZ entanglement for four
cavity fields. Plotted in Fig. 5 is the correlation
spectrum VX4 (ω) for (a) κ1,2,3,4 = 0.5κ, C1,2,3,4 = 450;
(b) κ1,2,3,4 = 0.5κ , C1 = 120, C2 = 60, C3 = 480, C4 = 600;
(c) κ1 = 0.5κ, κ2 = 0.6κ, κ3 = κ, κ4 = 0.75κ , C1,2,3,4 = 300;
and (d) κ1 = 0.5κ, κ2 = 0.9κ, κ3 = 0.6κ, κ4 = 0.45κ , C1 =
420, C2 = 90, C3 = 180, C4 = 720. We see that VX4 (ω)
is reduced below the standard quantum limit 1, which
indicates the appearance of four-mode squeezing. For the
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FIG. 5. (Color online) The four-mode correlation spectrum
VX4 (ω) for various parameters as in the text.
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FIG. 6. (Color online) The correlation spectra U34(ω) (solid line),
U14(ω) (dashed line), and U23(ω) (dotted line) for various cases of
different parameters.

symmetrical case of parameters as in Fig. 5(a), the dip
drops to zero, which corresponds to the perfect squeezing
and ideal squeezed states. Shown in Fig. 6 are the correla-
tion spectra U34(ω) (solid line), U14(ω) (dashed line), and
U23(ω) (dotted line) for (a) κ1,2,3,4 = 0.5κ, C1,2,3,4 = 200;
(b) κ1,2,3,4 = 0.5κ , C1 = 60, C2 = 200, C3 = 40, C4 = 720;
(c) κ1 = 0.5κ, κ2 = 0.85κ, κ3 = 0.45κ, κ4 = 0.6κ, C1,2,3,4 =
180; and (d) κ1 = 0.5κ, κ2 = 0.8κ, κ3 = 0.45κ, κ4 =
0.6κ, C1 = 40, C2 = 240, C3 = 120, C4 = 560. It is clear
that for a wide range of parameters the criteria (24) in the
spectral form are met, which indicates the existence of GHZ
entangled state for four cavity fields.

After performing the numerical results we are in a position
to analyze the physical mechanism. We recall that coherently
driven two-level atoms can be used as a reservoir to gen-
erate two-mode CV entanglement [25,26]. The responsible
mechanism is based on the quantum correlations of a pair
of sideband photons [27,28]. The upper and lower sideband
photons are generated simultaneously when the atoms absorb
two photons from the strong driving field. In the large detuning
limit, the initial atomic population is not significantly changed,
and a parametric process based on the two-photon transition
is created. When only the modes a1,2 are present, Eq. (17)
reduces to a two-mode squeeze operator. Such a mechanism
holds for the case where there are only the modes a3,4. When
both channels are involved for a1−4 modes, we have quantum
interference between these two pathways [3,33–37]. Due to the
atomic coherent effects, the odd modes a1,3 and the even modes
a2,4 are in the simultaneous parametric interactions, which
determines the four-mode squeeze operator. By including more
transitions, we can achieve the squeeze operators for more
modes.

So far we have neglected the atomic spontaneous decay.
Now we turn to discussing the effects of the atomic decay on

032329-6



CREATING MULTIMODE SQUEEZED STATES AND . . . PHYSICAL REVIEW A 85, 032329 (2012)

-2 0                   2
0.0

0.2

0.4

0.6

0.8

1.0

=0

=0.25

=0.5

/

V
X4

( )

FIG. 7. (Color online) The four-mode correlation spectrum
VX4 (ω) for η = 0 (solid line), η = 0.25 (dashed line), and
η = 0.5 (dotted line). The other parameters are taken from
Fig. 5(a).

the quantum correlations by exemplifying the four-mode case.
For the sake of convenience we define the ratio η = γ

|�|−δ2
,

where |�| − δ2 is the frequency detuning between the dressed
atomic resonance and the cavity mode. Fig. 7 gives the
four-mode correlation spectrum VX4 for η = 0 (solid line),
η = 0.25 (dashed line), and η = 0.5 (dotted line). The other
parameters are the same as for the curve (a) in Fig. 5. We
see that the correlation spectrum is almost kept unchanged
although the decay rate changes so much. Plotted in Fig.
8 are the correlation spectra (i) U34(ω), (ii) U14(ω), and
(iii) U23(ω) for η = 0 (solid line), η = 0.25 (dashed line),
and η = 0.5 (dotted line). The other parameters are the
same as in Fig. 6(b). It is clear that the correlation spectra
are not significantly influenced. Physically, all fields are far
off resonance with atomic transitions, including the dressed
transitions. It means that the spectra of the cavity fields locate
beyond the spontaneous emission spectrum of the atoms.
This is the very advantage of using dispersive interactions
as physical mechanisms that generate nonclassical light. The
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FIG. 8. (Color online) The correlation spectra (i) U34(ω),
(ii) U14(ω), and (iii) U23(ω) for η = 0 (solid line), η = 0.25 (dashed
line), and η = 0.5 (dotted line). The other parameters are taken from
Fig. 6(b).

essential difference of the present scheme from the existing
ones is the simultaneous dispersive interactions through two
or more channels, between which quantum interference is
created. It is the quantum interference that plays a crucial
role in creating the nonclassical correlations between multiple
modes.

A great number of atomic structures can be used as candi-
dates for the present system. For example, for four modes, the
atom 87Rb is a candidate, in which we use |0〉 = |5S1/2,F =
2〉, |1〉 = |5P1/2,F = 3〉, and |2〉 = |5P3/2,F = 3〉. The two
transitions in the V configuration are well separated from
each other by the D1 line (794.8 nm) and the D2 line
(780.0 nm). To avoid the Doppler effect one can use an
ensemble of cold atoms, which are prepared a magneto-optical
trap [12,13,57–59]. A rough estimate of the coupling strengths
can be made by considering a particular case, gl = g, κl = κ̃

(l = 1–4), and �j = �̃ (j = 1,2). In this case we have equal
cross coupling coefficients, |ξ2j−1,2k| = ξ (j,k = 1,2). For the
dispersive interaction we can take parameters |�| − δ2 ∼ 4γ ,
|�| ∼ 25γ , �̃ ∼ 5γ , we have ξ

κ̃
= 10−2C κ̃

γ
, where C = g2N

κ̃2

is the cooperativity parameter. When the parameter C κ̃
γ

is in

the order of ∼102, the cross coupling strength is in the order
of the cavity loss rate, ξ ∼ κ̃ . A comparison can be made
with the realistic cases with atomic ensembles [12–14,60–65].
We use the atomic 87Rb D2 transition with decay rate γ ∼
2π × 5.4 MHz. For the cavity parameters we choose the
waist w ∼ 35 μm and homogeneous laser beams of width
d ∼ 50 μm, both of which correspond to an interaction
volume of ∼ 10−7 cm3. The cavity loss rate takes a value of
κ̃ ∼ 2π × 2.5 MHz. For a low density of ∼1012/cm3, which is
small enough to prevent coherence losses due to collisions, we
have N ∼ 104. For the above parameters, the coupling constant
is required such that g ∼ 2π × 37 kHz, which is quite loose
condition for the coupling strength. In comparison, a realistic
coupling constant takes a value of g ∼ 2π × 100 kHz. This
shows that the present scheme is experimentally accessible
within the current technology.

IV. CONCLUSION

In conclusion, by exemplifying four cavity fields we have
shown that multimode squeeze operators are obtainable by
using atomic coherent effects in a three-level V system. Due
to the atomic coherent effects, multiple parametric processes
occur simultaneously. The squeeze parameters are large since
they are proportional to the number of the involved atoms.
This squeeze operator creates multimode squeezed states and
multipartite CV GHZ entangled states. The numerical results
for the correlation spectra at the output are given for the cases
of three and four fields.
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