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Directed percolation effects emerging from superadditivity of quantum networks
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Entanglement-induced nonadditivity of classical communication capacity in networks consisting of quantum
channels is considered. Communication lattices consisting of butterfly-type entanglement-breaking channels
augmented, with some probability, by identity channels are analyzed. The capacity superadditivity in the network
is manifested in directed correlated bond percolation which we consider in two flavors: simply directed and
randomly oriented. The obtained percolation properties show that high-capacity information transfer sets in
much faster in the regime of superadditive communication capacity than otherwise possible. As a by-product,
this sheds light on a type of entanglement-based quantum capacity percolation phenomenon.
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Introduction. Percolation (see, e.g., [1,2]) is a natural
concept that emerges in the description of spreading processes
in the presence of medium imperfections. Percolation effects in
quantum networks have recently been the subject of increasing
interest [3–7]. The focus has been on generation of large-scale
networks with maximally entangled states between elementary
nodes to allow for quantum communication applications, start-
ing from initially imperfect, i.e., non–maximally entangled
state, networks. The interesting central new insight introduced
in [3,4] is that local quantum operations may be used not
only to purify entanglement but, simultaneously, to lower
percolation probability threshold by effectively changing
lattice topology. This idea has been developed for different
states [5,6] and lattice dimensions [7,8]. In a different context,
percolation concepts also appeared in quantum information
theory (QIT) in the study of cluster state generation [9].

The capacity of a network determines its utility in the
domain of communication. The development of QIT has led
to the uncovering of interesting quantum effects on channel
capacities, e.g., superadditivity of quantum (Q-type) channel
capacity [10]. This result followed the intuition developed
in the bound entanglement activation effect [11] (where two
weak resources activate each other becoming collectively
useful for some task) continued further in Refs. [12] and
[13]. Independently, the first superadditivity effect of classical
(C-type) capacity in quantum multiaccess channels (MACs)
has been described [14]. Remarkably, both Q-type and C-
type superadditivities have recently been proved possible
even for entanglement-breaking (EB) channels [15] in the
MAC context. In contrast, EB bipartite channels do not
exhibit superadditive phenomena [16], showing that multipar-
tite channels represent fundamentally different resources for
communication than bipartite ones.

In this paper, we consider percolation effects in quantum
networks from (i) a channel (not the common state [3])
perspective, (ii) using MACs as communication resources.
We present schemes of classical information transfer (C-type)
through quantum MAC networks, which can be mapped to
certain types of directed bond percolation problems [17].
We first consider a simple layered communication scheme
(A) to demonstrate the basic idea of percolation assisted by
superadditive capacities and then describe a more complicated

scheme of multidirectional communication (B). Interestingly,
the percolation problem in case B seems relatively unstudied
in the literature.

a. The basic tools. We shall consider a network consisting
of two superimposed networks, a passive one and an active
one (see Fig. 1). The passive network is the fixed, under-
lying network and is built up of elementary entanglement-
breaking MACs, where no bond allows a priori high-capacity
communication (HCC). The active network is an auxiliary,
incomplete network consisting of randomly generated (open)
bonds representing high-capacity channels. Importantly, we
choose the active channels so that they can serve to activate
HCC through the passive channels, as summarized below.

The elementary channel of the passive network is chosen
in this paper as a 2-sender (Ni,t ,Ni+1,t ) 1-receiver (Ni,t+1)
noisy quantum MAC depicted as the wedge-shaped channel
in Fig. 1(b): The slanted line is a two-qudit (d2-dimensional)
input pertaining to one user Ni+1,t ; the vertical line is a single-
qudit input of the second user Ni,t . The action of the channel
is such that the single-qudit system undergoes a controlled
operation from a chosen set of orthogonal d2 unitary operations
fired by the logical value of the two-qudit input state of Ni+1,t

(see Ref. [15] for details). This single-qudit line is further
modified by a depolarizing channel and is the sole output
system at the Ni,t+1 receiver output. For moderate to large
depolarization—the working regime considered here—this
channel has poor classical capacity C ′ for any user [15]:

C ′ � C0 � Cmax ≡ log2 d, (1)

where Cmax is the maximal attainable capacity for a single-
qudit output, corresponding to an identity channel. Note finally
that the passive channel allows for one-way communication
only, and so induces a sense of direction of communication.

Communication properties can be improved by adding a
high-capacity active channel, e.g., an ideal channel, along the
vertical transmission line, i.e., between Ni,t and Ni,t+1. On the
one hand, this trivially increases the capacity of Ni,t → Ni,t+1.
Alternatively, and more importantly, even though Ni+1,t does
not directly have access to the active channel, user Ni,t can
assist Ni+1,t by inputting a two-party maximally entangled
state to his inputs [entanglement-assisted scheme (EA)], i.e.,
the ideal channel and vertical line of the wedge channel in
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FIG. 1. Model A: layered communication network. (a) Passive
network; users are located at nodes of a square lattice, the lattice is
filled with butterfly shaped primitives, information flow is directed
from layer t → t + 1. (b) Butterfly primitive consists of two MACs
(solid and dashed wedges) from Ref. [15]; node (user) Ni,t can
communicate with Ni−1,t+1,Ni,t+1,Ni+1,t+1 with maximal capacity
C ′ � C0. (c) Active network filled randomly by triples of ideal
channels allowing HCC (shown is a configuration not allowing HCC
from A to B). (d) Entanglement activates the slanted lines of the
corresponding passive channels (a) for HCC using dense coding, and
thus changes the geometry of the initial HCC network (c) leading
to directed communication paths (black arrows) with capacities �C0

from A to B.

Fig. 1(b). By construction of the passive channel described
above, this enables user Ni+1,t to perform dense coding of
inputs transmitted to Ni,t+1 and thus increase the capacity on
the Ni+1,t → Ni,t+1 line to some much higher value C0 > C ′
[22]. This is a manifestation of superadditivity of channel
capacities (for high depolarization when the channel becomes
entanglement breaking, C0 ≈ (d + 1)C ′ [15]). We define HCC
as transmission at a rate � C0.

b. Model A: Layered network communication. In the
network context, we first consider the scenario where only
forward communication is allowed (see Fig. 1). The passive
channel inputs are shared by nearest-neighbor pairs of sites
in horizontal layers giving rise to a butterfly-shaped fixed
network. The active channels are only placed on vertical bonds.
We shall suppose that these are available with probability
p—one can assume that identity channels are initially available
at all vertical bonds, yet due to fragility with respect to noise
either remain useful (ideal) with probability p (open bonds)
or become unuseful random operations with probability 1 − p

(closed bonds) effectively erasing information. In our scheme,
we consider a setup where a triple of identity channels is the
basic active channel [23]—if present, this allows the possibility
of simultaneous HCC between a given sender and his vertically
placed receiver, through one identity channel, as well as
between the sender’s two horizontal nearest neighbors and
that receiver [Figs. 1(c) and 1(d)] activated by the remaining
two identity channels.

The question of establishing long-range HCC in such a
network is a directed percolation problem. One asks, under
what conditions is it possible for any user to be able to perform
directed HCC, through intermediate nodes, with a user or users

located at a distance scaling with the length of the network?
One may compare two scenarios: (a) entanglement free or
classical, where no entanglement is allowed in the protocol
used at any node, and (b) entanglement assisted (EA), which
takes full advantage of the superadditive effect based on dense
coding as described earlier.

The former case corresponds to HCC only along the 1-
dimensional paths of just the active lattice [see [22]; Fig. 1(c)]
and the percolation threshold probability is 1, rendering the
network useless for HCC for finite loss probability of active
channels. The EA scheme involves changing the geometry
of the HCC network due to activation of the slanted lines
of the passive channels [Figs. 1(b) and 1(d)], from the active
network of 1-dimensional chains to the 2-dimensional network
of Fig. 1(d). This scheme thus maps to a correlated directed
bond percolation problem where with probability p three
directed bonds (forming an arrow shape) are placed on the
lattice [Fig. 1(d)]. The threshold probability is significantly
suppressed due to entanglement-activated increased connec-
tivity. We performed a standard Monte Carlo simulation
(see Appendix) and found the percolation threshold to be
pc = 0.5388 with accuracy � = 0.0005. We have checked
that the studied percolation transition lies, as expected, in the
directed percolation (DP) universality class, by computing a
complete set of critical exponents and found them to be in
agreement with those obtained for the uncorrelated directed
bond percolation problem. The important basic characteristic
of directed percolation is that the connected clusters of nodes
are geometrically highly asymmetrical and are restricted to
acute cones (with cone angle π/2 when p = 1) with axes along
the vertical lines passing through the starting nodes. Near the
critical point the clusters are very narrow and essentially quasi-
1-dimensional, as the probability of obtaining a connection
with a site a large distance away from the source and at an angle
θ from the axis �(p,θ ) > 0 for |θ | < δθ (p) ∼ (p − pc)b (see,
e.g., Dhar and Barma [18]). The EA scheme beats the classical
scheme in that there is a wide window in p for HCC, and that
the horizontal extent of connections |θ | at a distance t → ∞
away changes from 0 to π/4 as p increases from pc to 1.

c. Model B: Randomly oriented communication. We now
move to a general scenario within the described framework
of basic channels (Fig. 2). The basic active channels can be
placed with probability p on any bond, connecting nearest
neighbors, of the square lattice and are tagged for use in a
particular direction. The passive channels are distributed on
the lattice as shown in Fig. 2(b). Again, each (slanted line of a)
passive channel can be activated by an active channel tagged
for use in the same direction, by entanglement exactly as in
model A giving rise to a complicated multidirectional random
HCC network [Fig. 2(d)].

HCC between distant nodes is now a multidirectional bond
percolation problem. We consider the case where upward
and left-to-right oriented active channels are present with
probability p+ while downward and right-to-left oriented
active channels are placed with probability p−. Note that
bidirectional bonds appear as the independent choice of two
oppositely directed channels on a given bond.

This setup is interesting already for the case when, say,
p− = 0. Using an entanglement-free protocol (see comment
[22]), capacity C � C0 can already be attained only through
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FIG. 2. Model B: multidirectional communication networks.
(a) Passive network, allowing communication in each direction;
(b) this is due to the structure of the butterfly primitive depicted here—
each quartet of nodes forming an elementary square is connected by 4
passive channels, of the type shown in Fig. 1(b). (c) Active channels
can be placed on any bond and tagged for use in any direction.
(d) Emergent network geometry from superimposing (a) and (c), due
to dense coding allowing HCC along slanted lines, facilitated by
entanglement between active and passive channels.

the square lattice using the active network in the up or right
directions (without activating the passive network), in contrast
to model A. This is the well-known square lattice directed
bond percolation problem for which the percolation threshold
pc ≈ 0.64 (see, e.g., [18]). Using on the other hand the EA
scheme to activate the passive network, due to increased and
correlated connectivity [Fig. 2(d)], the percolation threshold
is almost halved with respect to the classical scheme and has
been calculated here to be pc ≈ 0.34 using our Monte Carlo
simulation (see Appendix). Both phase transitions lie in the DP
universality class. Thus, e.g., at moderate noise levels p ≈ 0.6,
the probability of a starting node belonging to an infinite or
system-spanning anisotropic cluster (in the thermodynamic
limit) F∞ > 1/2 using superadditivity effects while F∞ = 0
otherwise.

The general multidirectional communication problem with
arbitrary p± is the most interesting setup. In the classical,
entanglement-free scenario, this reduces to square lattice
randomly oriented percolation in the active network [22].
Problems of this category were studied in the context of
random resistor diode networks (see, e.g., [19,20]) mainly
using renormalization group calculations. However not many
results seem to be available in the literature on the p±
percolation problem (see however [21] for some analytical
properties).

Here, we map out the phase diagram in the (p+,p−) plane
in Fig. 3 using Monte Carlo simulations (see Appendix). Note
that the diagram is symmetrical with respect to the line p+ =
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FIG. 3. Comparison of the percolation critical lines [pc
+,pc
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+)]

for percolation process on randomly oriented square lattice (classical
scheme) and butterfly network (EA scheme). Dots are numerically
obtained points.

p− due to system symmetry under the interchange p+ ↔ p−.
The upper line is for the active network percolation problem
(classical scheme). This result is to be compared with the
multidirectional correlated bond percolation phase diagram
for the EA scheme [network of Fig. 2(d)]. As can be seen in
Fig. 3, the EA scheme is drastically better than the classical
scheme in the whole parameter plane.

An interesting feature of both the classical and EA schemes
is that they allow switching of universality classes of phase
transitions from the DP class to the isotropic percolation (IP)
class to which standard bond and site percolation belongs.
This is facilitated by the choice of parameters p±, and as
a result one may accordingly change the properties of the
long-range clusters. To provide evidence for this, we calculate
two universal critical exponents (Fig. 4) β and the Fisher
exponent τ (see Appendix) as one moves along the critical
lines (Fig. 3) of the two models. Recall that β determines
how the percolation probability F∞ ∼ (p − pc)β increases
above the percolation threshold, while the Fisher exponent
determines how the probability of obtaining a cluster larger
than size n decreases with n at the critical point p = pc:
Fn ∼ 1/nτ−2. Note that the values of these exponents in the
DP class are β ≈ 0.276,τ ≈ 2.112 [18], and in IP β = 5/36 ≈
0.139,τ = 187/91 ≈ 2.0549 [1]. First consider square lattice
multidirectional percolation in Fig. 4 (the classical scheme).
Both exponents show that as one moves along the critical
line, the phase transitions lie in the DP universality class
until pc

− ≈ 0.4, since this region inherits the exponents of
the DP point pc

− = 0. At pc
− = 1/2 (=pc

+), which is an
isotropic symmetry point, one obtains values of the exponents
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FIG. 4. Comparison of critical exponents τ , β for classical and
EA schemes of multidirectionally oriented percolation.

corresponding to the IP universality class. In between, there
is a characteristic crossover region between the two types
of behavior. In particular, this means that for a choice of
parameters approaching the isotropic point, one obtains differ-
ent characteristic growth of clusters (determined by different
critical exponents) than when in the DP region. Second,
the cluster geometrical characteristics change from highly
anisotropic to isotropic. The butterfly network percolation
problem (EA scheme) basically follows the same pattern (see
Fig. 4) and can be considered a rescaled version of the classical
problem, wherein again lies the quantum advantage of the EA
scheme. For this network, the isotropy point is found to be
located at pc

+ = pc
− ≈ 0.225. The slightly lower values of β

in the DP regime as compared to the square lattice problem do
not seem to be significant, and are a result of the extreme
sensitivity of the calculated exponents on the accuracy of
critical probabilities.

Concluding remarks. We have described percolation effects
in a channel context showing how directed percolation effects
emerge in the consideration of quantum networks. In the
context of percolation theory, the multidirectional correlated
bond percolation problem associated with the entanglement -
assisted (EA) scheme has, to our knowledge, not been studied
before.

Finally, quite remarkably, our results provide an entan-
glement percolation effect in the spirit of Ref. [3]. Keeping
everything else unchanged, consider the Bell measurement
(BM) MAC of Fig. 1 of Ref. [15] instead of the MAC used
here, with AC (BC) playing the role of diagonal (resp. vertical)
bond of the square lattice. Then any randomly generated
singlet between B and C can be switched, via entanglement
swapping, to a singlet on the diagonal AC. This leads to
the same geometry as discussed here but now one asks
about the possibility of building a long-range network of

singlets. Note that singlets are directionless. Without using
the BM channel, we obtain a “classical” scheme related to
square lattice percolation which has threshold pc = 0.5. Since
directionless percolation must certainly be at least as good
as directed percolation, an EA scheme making use of the
switching mechanism of the BM channel will have threshold
at most equal to the calculated threshold at the isotropic point
of model B pEA

c � pc
+ = pc

− ≈ 0.225.
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APPENDIX

The critical percolation properties of the two models were
studied using direct Monte Carlo simulations in the spirit of
Dhar and Barma [18]. We studied the change in behavior
of the probability Fn, of appearance of clusters of size
greater than n, with bond probabilities p and looked for
characteristic scaling behavior expected in the critical region to
identify percolation thresholds plotted. Below the probability
threshold, Fn ∝ exp(−n) for large n while Fn → constant in
the supercritical phase [1]. The critical region is characterized
by scaling laws with Fn ∝ n2−τ described by a power-law
dependence at the critical value pc, which we localized by
sweeping through super- and subcritical probabilities using
an interval bisection method. For model A, cluster size
distribution data were obtained by performing 105 realizations
(per value of probability p) of cluster growth starting from a
single node. Model B simulations were performed on a fixed
2 × 103 by 2 × 103 square lattice also with 105 realizations
for each p, where cluster connectivity was identified using a
breadth-first search algorithm.

The qualitative values of the critical exponents τ,β pre-
sented in the paper for model B are defined as follows:

Fn(p) ∼ n−(τ−2) at p = pc

and

F∞(p) ∼ (p − pc)β.

A simple method used to obtain these was to directly calculate
the slope of the plots of these two functions in log-log scale.
Since the problem contains two parameters p+,p−, we chose
one of them p+ do be the independent parameter with p−(p+)
determined so as to be on the critical line of the model. For the
determination of β, we considered clusters of size n greater
than 105 to be “infinite” or system-spanning clusters on the
finite lattice.

Alternatively, we also determined β from τ and an auxiliary
exponent γ , which describes the critical behavior of mean
cluster size 〈n〉 also readily available from the simulation:

〈n〉 ∼ (pc − p)−γ for p − pc → 0+.

The following universal equation, derived from scaling re-
lations, is known to hold for directed (uncorrelated) bond
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percolation [18] and isotropic percolation [1]:

β =
(τ − 2

3 − τ

)
γ.

We assumed the equation to be true for the entire critical plane
and obtained results for β in agreement with those obtained
using the first method. Results obtained in the latter manner
are those presented in the paper.
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