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Measuring geometric quantum discord using one bit of quantum information
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We describe an efficient DQC1 (deterministic quantum computation with one quantum qubit) algorithm to
quantify the amount of geometric quantum discord present in the output state of a DQC1 computation. DQC1 is a
model of computation that utilizes separable states to solve a problem with no known efficient classical algorithm
and is known to contain quantum correlations as measured by the discord. For the general case of a (1 + n)-qubit
DQC1 state we provide an analytical expression for the geometric quantum discord and find that its typical (and
maximum) value decreases exponentially with n. This is in contrast to the standard quantum discord whose value
for typical DQC1 states is known to be independent of n. We experimentally demonstrate the proposed algorithm
on a four-qubit liquid-state nuclear magnetic resonance quantum information processor. In the special case of a
two-qubit DQC1 model, we also provide an expression for the quantum discord that only requires the outcome
of the DQC1 algorithm.
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I. INTRODUCTION

Since its inception in 2001, quantum discord (QD) [1,2]
and related measures have been used to quantify the amount
of nonclassical correlations in a physical system. In addition
to quantifying the most well-known quantum correlations of
entanglement, they also capture the quantum correlations that
exist in separable states. Discord measures are based on the
premise that if a measurement on one part of a bipartite state
disturbs the total state, there must be correlations stronger than
what is found in the classical world.

Quantum discord has been studied extensively over the past
few years, from operational definitions [3] to witnesses [4–6]
and analytical expressions for specific sets of states [7–12].
However, it is generally difficult to calculate as it requires both
full state knowledge and an optimization over all projective
measurements of a subsystem. Even in the simple case of two
qubits, a general closed-form expression does not exist. The
measure of geometric quantum discord (GQD) was introduced
[5] as a simple geometric measure of the distance from a given
state to the closest classical (zero-discord) state.

DQC1 is a model of mixed-state quantum computation [13]
that contains limited entanglement [14] yet is thought to
outperform classical methods. It does generate nonclassical
correlations as measured by the quantum discord [6,15,16],
which, in hind sight, is not surprising since almost all quantum
states have nonzero discord [17]. Quantum discord has indeed
been witnessed in the final states of DQC1 computations [16],
even at very small values in highly mixed quantum states [6].
To further explore the role of quantum correlations in the
DQC1 model and beyond, their quantification becomes a
necessary pursuit.

In this work, we derive an analytical expression for the
geometric discord in the final state of a DQC1 computation of
arbitrary dimension in terms of quantities that can be efficiently
estimated on a DQC1 computer. We then demonstrate its
experimental evaluation in a four-qubit implementation of a
DQC1 algorithm. Additionally, we derive a simple expression
for the quantum discord in the special case of a two-qubit
DQC1 state.

Quantum discord is the most well-known measure of non-
classical correlations and is thought to differentiate quantum
and classical systems [1,2]. It is defined as the minimum dif-
ference between two classically equivalent formulations of the
mutual information between subsystems A and B, I (A : B) :=
H (A) + H (B) − H (A,B) and J (A : B) := H (B) − H (B|A),
where H (x) is the Shannon entropy when x is described by
a classical probability distribution and is the von Neumann
entropy when x describes a quantum system. In the quantum
case the conditional entropy depends on the measurement
basis, H{�k}(B|A) = ∑

k pkH (ρB|k), where {�k} is a complete
set of orthonormal projectors on HA such that

∑
k �k = I, pk

is the probability of observing outcome k on system A and
ρB|k := TrA[(�k ⊗ IB)ρ(�k ⊗ IB)]/pk is the state of system
B conditional on the measurement of system A returning
measurement outcome k. The quantum discord D(A : B) thus
reduces to

D(A : B) = H (ρA) − H (ρ) + min{�k}
∑

k

pkH (ρB|k), (1)

where ρA = TrB(ρ) is the reduced density matrix of system
A. In order to calculate this quantity, full state knowledge
is required in addition to a minimization over all possible
projective measurements on subsystem A.

While there is no analytical expression for the quantum
discord of a general state, the discord for various sets of
two-qubit states has been found [8,9,11,12]. In addition, the
quantum discord for all two-qubit states has been reduced to
the problem of solving a set of transcendental equations [10].
One of the results we report here is an expression for the QD
in the final state of a two-qubit DQC1 algorithm that can be
calculated with only the outcome of the DQC1 algorithm (trace
of the unitary) and the initial polarization of the top register.

Motivated by the difficultly in computing the QD, Dakic,
Vedral, and Brukner [5] proposed the GQD, which is defined
as

DA
G(ρ) = min

χ∈�A
0

‖ρ − χ‖2 , (2)
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FIG. 1. The circuit diagram for the DQC1 model of computation
where the first qubit is in a mixed state with polarization α along σz.
At the conclusion of the circuit, measurements of 〈σx〉 and 〈σy〉 result
in the value of the real and imaginary components of the trace of the
unitary, scaled by the value of the polarization of the first qubit.

where �A
0 is the set of all zero-discord states [D(A : B) = 0].

These can be written as χ = ∑
j pj |j 〉〈j | ⊗ ρB

j . The quantity
‖ρ − χ‖2 = Tr(ρ − χ )2 is the square of the Hilbert-Schmidt
norm of Hermitian operators. Note that the GQD, like the
original quantum discord, is not symmetric in the subsystems,
and DB

G(ρ) is defined as minχ∈�B
0
‖ρ − χ‖2, where �B

0 =∑
j pjρ

A
j ⊗ |j 〉〈j |.

Shortly after the proposal of this measure of quantum
correlations, Luo and Fu [18] showed that Eq. (2) is equivalent
to the minimization

DA
G(ρ) = min

�A
‖ρ − �A(ρ)‖2, (3)

where �A = {�A
k } is a projective measurement on system

A and �A(ρ) = ∑
k(�A

k ⊗ IB)ρ(�A
k ⊗ IB). The minimiza-

tion can be performed analytically for arbitrary (2 × 2)-
dimensional [5] and (2 × d)-dimensional [19] states. The
resulting expressions are in terms of quantities that are
not efficiently experimentally accessible. However, a method
for measuring a tight lower bound on the GQD has been
recently proposed [20], requiring only a constant number
of measurements on up to four copies of the state. In this
paper we provide an analytical expression for the GQD
of (2 × d)-dimensional DQC1 states and describe a DQC1
algorithm to efficiently estimate it.

The DQC1 model of computation is an example of a
mixed-state quantum information processor [13]. As shown
in Fig. 1, this model has access to only one qubit with nonzero
polarization, accompanied by a register of n maximally mixed
qubits. The computation consists of two gates: a Hadamard on
the top single-qubit register followed by an n-qubit unitary on

the bottom register that is controlled by the state of the top
qubit. The final state of this simple algorithm is what we call
the DQC1 state and can be written as

ρDQC1 = 1

2n+1

(
I⊗n αU

†
n

αUn I⊗n

)
.

Expectation value measurements of the Pauli matrices σx and
σy yield the real and imaginary values of the trace of the
unitary: α

2n Re[Tr(Un)] and α
2n Im[Tr(Un)]. Since calculating the

trace of a unitary does not have a known efficient classical
algorithm, a DQC1 computer is believed to be more powerful
than its classical counterpart.

Despite its apparent improvement over classical methods,
DQC1 is known to have zero bipartite entanglement between
the top and bottom registers and can only have a small amount
of entanglement across any other bipartite splitting [14]. It
can, however, have quantum correlations characterized by
the quantum discord [15]. This has been confirmed in two
experiments to date: measurement of the discord in a two-qubit
optics setup using full state tomography [16] and a four-qubit
NMR implementation that witnesses discord with a small
number of experiments [6].

II. ANALYTICAL EXPRESSION FOR GQD

In order to find an expression for the geometric discord in
a DQC1 state, let us write Eq. (3) as

DG(ρ) = min
�A

{Tr(ρ2) − 2Tr[ρ�A(ρ)] + Tr[�A(ρ)2]}. (4)

The first term, the purity of the state of the total system, is
invariant under unitary transformations. Therefore it can be
calculated for the initial state and only depends on the initial
polarization of the top register:

Tr
(
ρ2

DQC1

) = 1 + α2

2n+1
. (5)

In order to calculate the other two terms, consider parameter-
izing the measurement on the top qubit as �A

± = |ψ±〉〈ψ±|,
where |ψ+〉 = a|0〉 + beiφ |1〉 and |ψ−〉 = b|0〉 − aeiφ |1〉, a

and b = √
1 − a2 are real and ∈ [0,1], and φ ∈ [−π

2 , π
2 ]. Thus,

the state after measurement is

�A(ρDQC1) = (|ψ+〉〈ψ+| ⊗ In) ρDQC1 (|ψ+〉〈ψ+| ⊗ In) + (|ψ−〉〈ψ−| ⊗ In) ρDQC1 (|ψ−〉〈ψ−| ⊗ In)

= 1

2n+1

(
In + αab(a2 − b2)(e−iφU + eiφU †) 2αa2b2(e−2iφU + U †)

2αa2b2(U + e2iφU †) In − αab(a2 − b2)(e−iφU + eiφU †)

)
. (6)

For the DQC1 state, the terms Tr[ρ�A(ρDQC1)] and
Tr[�A(ρDQC1)2] are equivalent and evaluate to

1

2n+1
+ α2a2b2

2n
+ a2b2α2

22n

∑
j

cos[2(φ − θj )],

where {θj }j=1...2n are the eigenphases of U (i.e., U =∑2n

j=1 eiθj |θj 〉〈θj |), and we have used 1
2 Tr(e2iφU †2 +

e−2iφU 2) = ∑
j cos[2(φ − θj )]. Thus, we are left with the task

of minimizing

g(a,φ; {θj }) = ‖ρDQC1 − �A(ρDQC1)‖2

= 1 + α2

22n+1
− 1 + 2α2a2(1 − a2)

2n+1

− α2a2(1 − a2)

22n

∑
j

cos[2(φ − θj )]

032325-2



MEASURING GEOMETRIC QUANTUM DISCORD USING ONE . . . PHYSICAL REVIEW A 85, 032325 (2012)

over the measurement parameters a ∈ [0,1] and φ ∈ [−π
2 , π

2 ].
Examining first- and second-order derivatives of g(a,φ)
with respect to a and φ, we find the optimal measurement
parameters to be

a0 = 1√
2
, (7)

φ0 = 1

2
arctan

( ∑
j sin(2θj )∑
j cos(2θj )

)
(8)

= 1

2
arg[Tr(U 2)], (9)

which reduces the GQD to

DA
G(ρDQC1) =

(α

2

)2 1

2n
[1 − τ2] , (10)

where τ2 = |Tr(U 2)|/2n and can be evaluated with a DQC1
algorithm using back-to-back applications of the control U .
The depth of the circuit that evaluates τ2 is at most double
the one that evaluates Tr(U ) and therefore has the same
efficiency of evaluation as the standard DQC1 algorithm. It
is worth noting here that a0 = 1/

√
2 indicates that the optimal

measurement is always in the transverse (X-Y ) plane of the
Bloch sphere, independent of the implemented unitary. Also
note that Eq. (9) allows for the ability to experimentally
evaluate the optimal measurement parameter φ0 using the same
data collected for the evaluation of τ2.

The GQD does not depend on the eigenvectors of the
unitary, but rather the distribution of eigenphases. This gives
rise to classes of unitaries that generate the same GQD in a
DQC1 circuit. For instance, reproducing a result from Ref. [5],
the set of unitaries that generate zero GQD (and hence zero
QD) will have τ2 = 1, implying Tr(U 2) = eiξ 2n for some
ξ . This is possible if and only if the eigenphases of U are
{θj ; 2θj = ξ ± 2π ∀ j}. That is to say, U = eiξ/2A, where A

is a binary observable (A2 = I ).
For a unitary drawn randomly according to the Haar

measure, its eigenphases are randomly distributed over the
unit circle [21]. Thus, for large n, τ2 approaches zero and
DA

G(ρDQC1) approaches its maximum value of (α
2 )2 2−n, i.e.,

the GQD of a DQC1 state decreases exponentially with the
number of qubits. This is in contrast to the average QD of a
DQC1 state, which was shown in Ref. [15] to be independent
of the number of qubits for large n.

III. EXPERIMENTAL MEASUREMENT OF THE
GEOMETRIC DISCORD

We measure the quantum correlations, as quantified by
the GQD, in a liquid-state nuclear magnetic resonance im-
plementation of the DQC1 algorithm. The qubits in NMR
are ensembles of spin-1/2 nuclei. In this experiment, we use
the four carbon-13 nuclei in the molecule trans-crotonic acid
(molecular information and Hamiltonian parameters can be
found in Ref. [22]). The experiment is implemented in a
16.7-T magnetic field Bruker Avance spectrometer, where, for
carbon-13 nuclei (γ = 6.728284 × 107rad T−1 s−1) at room
temperature, the initial polarization of the thermal state is α =
1.4 × 10−5. The spins are manipulated with radio-frequency
pulses numerically generated using the gradient ascent pulse

a
g
(1

/
√

2,
φ

)/
α

2

φ

(a)

(b)

FIG. 2. (Color online) Shown are (a) the contour plot of the
geometric distance, g(a,φ) = ‖ρDQC1 − �A(ρDQC1)‖2, normalized
by α2 as a function of the measurement parameters a and φ for
ρDQC1, the output of the four-qubit DQC1 algorithm described in
the text, and (b) the geometric distance at the optimal measurement
axis a = a0 = 1/

√
2. The dashed lines indicate the parameters that

correspond to the optimal measurement. The experimental data point
for the geometric discord of ρDQC1 is shown in (b) with error bars
propagating from experimental uncertainties and the spectral fit.

engineering algorithm [23,24]. The pulses are designed to
have a fidelity of no less than 0.998 and are adjusted for
nonlinearities in the pulse generation and transmission by
placing a pickup coil at the location of the sample and running
a feedback loop to iteratively adjust the pulse shape for optimal
transmission.

For the particular instance of the DQC1 circuit in this
experiment, we choose to implement one of the unitary
matrices used for approximating the Jones polynomial for
braids with four strands [22]. This is a problem that completely
encapsulates the power of the DQC1 model and is of interest
in many fields of physics and math. The unitary has the
form U = diag(c,c,d,1,c,d,1,1), where c = −(e−i3π/5)4 and
d = (e−i3π/5)8. The DQC1 state, after the application of the
control U , is known to have nonzero discord, as witnessed
in a recent experiment [6]. Using Eq. (10), we calculate the
expected value of the GQD to be 0.0266 α2. As shown in
Fig. 2, this is achieved for an optimal measurement with
a0 = 1/

√
2 and φ0 = 0.116 rad. Also shown in Fig. 2(b) is

the experimental value of GQD in the DQC1 state, which is
found to be (0.0260 ± 0.0004) α2 by measuring the outcome
of a DQC1 circuit with back-to-back applications of control
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U . For our experimental polarization (α = 1.4 × 10−5), the
GQD in the final state is (5.10 ± 0.08) × 10−12.

IV. THE QUANTUM DISCORD OF TWO-QUBIT
DQC1 STATES

In the case where the bottom register is a single qubit, we
report an analytical expression for the QD of the DQC1 state,
thereby contributing to the sets of two-qubit states for which
the QD has been analytically solved. Commencing from Eq.
(1), a minimization must be performed over the conditional
entropy term

∑
k pkH (ρB|k), which, in the case of a two-qubit

DQC1 state, reduces to

f (x) =
2∑

j=1

−1

4
log2

(
(1/4 + xj )(1/4 − xj )

p+p−

)

+
2∑

j=1

−xj log2

(
(1/4 + xj )p−
(1/4 − xj )p+

)
,

where xj = 1
2αa

√
1 − a2 cos(φ − θj ), p± = 1/2 ± ∑

j xj ,
and a,b, and φ parametrize the measurement on the top qubit
(see the GQD case above). The minimization with respect to
the measurement parameters a and φ results in an optimal
measurement characterized by

a0 = 1√
2
, φ0 = π

2
+ θ1 + θ2

2
.

This allows us to write the analytical expression for the QD of
a two-qubit DQC1 state as

D(A : B) = H2

(
1 − α τ1

2

)
− H2

(
1 − α

2

)

− 1

2
log2

[
1 − α2(1 − τ 2

1

)]

− α

2

√
1 − τ 2

1 log2

⎛
⎝1 + α

√
1 − τ 2

1

1 − α

√
1 − τ 2

1

⎞
⎠ , (11)

where H2(·) is the binary entropy and τ1 = |Tr(U )|/4, which
can be measured directly with a DQC1 algorithm.

Hence, the quantum discord of a two-qubit DQC1 state is
zero for |Tr(U )|2 = 0 or 4 and maximum for |Tr(U )|2 = 2.

Recall from Eq. (10) that the GQD is zero for |Tr(U 2)| = 1/2n

and maximum for |Tr(U 2)| = 0. Consider a general single-
qubit unitary, expressed as U = eiξRr̂ (ϑ), where Rr̂ (ϑ) :=
exp[−iϑ r̂ · 	σ/2] is a rotation by ϑ about the unit vector in
three dimensions r̂ = (rx,ry,rz), 	σ = (σx,σy,σz) are the Pauli
matrices, and ξ is a global phase. It follows from (r̂ · 	σ )2 = I

that Tr(U ) = 2eiξ cos(ϑ/2) and Tr(U 2) = 2ei2ξ cos(ϑ). Thus,
the QD and GQD are simultaneously maximum for ϑ = (2k +
1)π/2 and simultaneously zero for ϑ = kπ , independent of the
rotation axis r̂ . Examples of unitaries that can be written as π

rotations include bit flip (or NOT) and Hadamard.

V. CONCLUSION

In this paper we provided analytical expressions for the
quantum correlations present in a DQC1 state in terms of
experimentally accessible quantities. The geometric quantum
discord can be computed for (2 × d)-dimensional DQC1 states
by implementing a DQC1 algorithm with a second application
of the controlled unitary. The algorithm was experimentally
demonstrated for a four-qubit liquid-state NMR implemen-
tation of the DQC1 model. We also showed that, for the
special case of a two-qubit system, the quantum discord can
be calculated using outcome of the DQC1 circuit (the trace of
the unitary).

For a typical DQC1 state, where the unitary is chosen
uniformly at random according to the Haar measure, we
found that the geometric measure of discord scales with
2−n, in contrast to the quantum discord, which is known to
be independent of n (for large n). This suggests that the
geometric quantum discord fails to completely quantify the
correlations defined in the original entropic measure of quan-
tum discord. Finally, the work we have presented here further
supports the suspicion that the apparent speedup exhibited
by (the dynamics of) DQC1 is not necessarily captured by
the geometric measure of quantum discord at the conclusion
of the algorithm.
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