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Using quantum state protection via dissipation in a quantum-dot molecule
to solve the Deutsch problem
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The wide set of control parameters and reduced size scale make semiconductor quantum dots attractive
candidates to implement solid-state quantum computation. Considering an asymmetric double quantum dot
coupled by tunneling, we combine the action of a laser field and the spontaneous emission of the excitonic state
to protect an arbitrary superposition state of the indirect exciton and ground state. As a by-product we show how
to use the protected state to solve the Deutsch problem.
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I. INTRODUCTION

One important feature of quantum mechanics is the super-
position principle. This fundamental characteristic for pure
states can be summarized by the quantum entanglement phe-
nomenon [1,2]. It is believed that such a property can give to the
quantum world the advantage of processing information in a
more efficient way than its classical counterpart [3]. However,
in a realistic scenario, decoherence destroys the superposition
of states leading the system state to a statistical mixture [4].
A number of methods has been proposed to circumvent
this difficulty; among them we highlight the quantum error-
correcting codes [5], decoherence-free subspaces in collective
systems [6], and dynamical decoupling methods [7]. Differ-
ently from the methods cited above, the engineering reservoir
technique [8] makes use of incoherent control of Markovian
reservoirs to drive the system state to a desired superposition
of pure states in the asymptotic limit [9]. Therefore, the
effective interaction between the system and reservoir must be
carefully engineered to drive the system to equilibrium with the
reservoir. Recently this theme received a great deal of attention
in order to obtain pure entangled protected states [9]. Besides
the recent generalization of the engineering reservoir technique
to protect nonstationary superposition states [10–12], two
important applications of this technique have emerged: (i)
the construction of robust quantum memories [13] and (ii)
the implementation of quantum computation via dissipation
(QCD) [14]. In the former case the quantum information can
be stored for long times at the nodes of a quantum network,
while in the later case the quantum processor is insensitive to
external perturbations or decoherence. Particularly, in Ref. [14]
it was shown that QCD is universal and can efficiently simulate
a given quantum circuit.

One of the clearest demonstration of the power of quantum
processing is the quantum solution for the Deutsch problem
[15]. Later improved by Deutsch and Jozsa [16] and by
Collins, Kim, and Holton [17], the optimized version of the
Deutsch algorithm is able to decide whether a binary function
is constant or balanced with a single measurement, while
in the classical case two measurements are required. The
Deutsch problem was proved using different experimental
setups, such as nuclear magnetic resonance [18,19], optical
systems [20], circuit quantum electrodynamics architectures
[21], trapped ions [22], the nitrogen-vacancy defect center
[23], and quantum dots [24].

In this work we investigate the protection of superposition
states in a physical system composed by two asymmetric
quantum dots coupled by tunneling under the application of
laser fields, where the interplay of the optical field and the
tunneling creates a structure of two excitonic levels: direct and
indirect, as described in Ref. [25]. The results obtained here
generalize the result obtained in Ref. [26], where a robust state
of the indirect exciton was found. Through the protection of
an arbitrary coherent superposition of the ground and excited
(indirect exciton) states, we propose the implementation of
the optimized version of the Deutsch algorithm [17] using
QCD. In general, the proposals for implementing quantum
computing protocols make use of coherent control of quantum
systems. In contrast, our proposal to solve the Deutsch
problem has the advantage of being controlled incoher-
ently by the reservoir, becoming immune to decoherence
processes.

The manuscript is divided as follows. In Sec. II we obtain
analytically the protected asymptotic state of the system which
is parametrized on the Bloch sphere. Such a state is used
to solve the Deutsch problem in Sec. III. Conclusions and
perspectives for this work are presented in Sec. IV. In the
Appendix we deduce the effective master equation leading to
the protected state.

II. PROTECTED PURE STATE

We consider two asymmetric quantum dots coupled by
tunneling, which under the application of a static electric field
along the growth direction can be simplified to a three-level
system [25]: the ground state |0〉 (no excitation on the system),
the exciton state |1〉 (one electron-hole pair in the same dot),
and the indirect exciton state |2〉 (the electron in one dot and
the hole in another). The exciton state can be created from the
ground state by the application of a laser field with the right
frequency and the indirect exciton from the exciton state by
tunneling of one electron, as experimentally demonstrated in
Ref. [27]. In this way, the Hamiltonian in the rotating wave
approximation for this system is (h̄ = 1)

H (t) =
2∑

j=0

ωj |j 〉〈j | + Te(|1〉〈2| + |2〉〈1|) + �[ei(ϕ+ωLt)|0〉〈1|

+ e−i(ϕ+ωLt)|1〉〈0|], (1)

032323-11050-2947/2012/85(3)/032323(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.032323


M. M. SANTOS et al. PHYSICAL REVIEW A 85, 032323 (2012)

where ωj is the energy of the j th level and Te is the
tunneling coupling between the levels |1〉 and |2〉. We tune
the gate voltage to have ω1 = ω2 = ωL and ω0 = 0. ωL and
ϕ are the frequency and phase of the laser field, respectively.
� = 〈0| �μ · �E|1〉 is the dipole coupling between the excitonic
transition, with �μ being the electric dipole moment and �E
the incident electric field of the laser [28]. According to
Ref. [26], the dominant decoherence processes can effectively
be described by spontaneous emission from states |1〉 to
|0〉 and |2〉 to |0〉 with decay rates �1 and �2, respectively.
This approximation remains valid if we consider that (i) the
system is at very low temperatures so that the pure dephasing
induced by acoustic phonons does not modify significantly
the system dynamics [29]; (ii) the creation of the lower
energy exciton state is made by the application of a resonant
laser field, which inhibits transitions mediated by phonons
[30,31]; (iii) the optical phonon effects are negligible because
they have quite different frequencies (∼30 meV) compared
with that of our system (see the main text) [29].Then, the
dynamics of the system can be described by the master
equation

∂ρ(t)

∂t
= −i[H (t),ρ] + L(ρ), (2)

with H (t) being the Hamiltonian defined in Eq. (1) and L(ρ)
the dissipative Liouvillian, given by

L(ρ) = L1(ρ) + L2(ρ) =
2∑

i=1

�i

2
(2|0〉〈i|ρ|i〉〈0| − ρ|i〉〈i|

− |i〉〈i|ρ). (3)

The steady states of the system can be found through the
condition

lim
t→∞

∂ρ(t)

∂t
= 0, (4)

where t → ∞ means t � 1/ min �i . The right-hand side of
Eq. (2) fulfills the condition (4) for a pure state |�〉 (also
called dark state) if L(|�〉〈�|) = 0 and H |�〉 = E|�〉 [9].
For a master equation in the Lindblad form [32],

L(ρ) = γ

2
(2OρO† − O†Oρ − ρO†O),

where γ is the decay rate and O the jump operator, the state |�〉
is the only protected state if O|�〉 = 0 [L(|�〉〈�|) = 0] and
there is no further eigenstate |φ〉 of O such that [O,O†]|φ〉 = 0
[33]. The method used here to obtain the dark state of the
system is not unique. For instance, in Refs. [34,35] the dark
state conditions are met when the absorption spectrum is null.
Already in Ref. [36] a signature of the dark state is found in
the second-order correlation function. In order to remove the
time dependence of the right-hand side of Eq. (2), we move to
a rotating frame defined by the unitary transformation

U (t) = exp

[
iωLt

2
(|1〉〈1| + |2〉〈2| − |0〉〈0|)

]
. (5)

In this frame the Hamiltonian becomes

Hint = �(eiϕ|0〉〈1| + e−iϕ |1〉〈0|) + Te(|1〉〈2| + |2〉〈1|), (6)

the form of L(ρ) remains unchanged, and ρ is replaced
by ρint = U †ρU . Considering the requirements to obtain a
protected pure state, we initially find the eigenvectors of
Hint

|E+(θ,ϕ)〉 = sin(θ/2)|0〉 + e−iϕ|1〉 + e−iϕ cos(θ/2)|2〉√
2

,

(7a)

|E0(θ,ϕ)〉 = cos(θ/2)|0〉 − e−iϕ sin(θ/2)|2〉, (7b)

|E−(θ,ϕ)〉 = sin(θ/2)|0〉 − e−iϕ|1〉 + e−iϕ cos(θ/2)|2〉√
2

,

(7c)

with eigenvalues E± = ±√
�2 + T 2

e and E0 = 0. ϕ is the laser
phase defined above and cos(θ/2) = Te/

√
�2 + T 2

e . Through
the condition L(|�〉〈�|) = 0 we observe that the dissipative
LiouvilliansL1 andL2 have {|0〉,|2〉} and {|0〉,|1〉} as their dark
states, respectively. As the relation between the decay rates
is about �2 = 10−4�1 with �1 of the order of 0.33–6.6 μeV
[37–39], we conclude that the dissipative dynamics is basically
governed by L1(ρ). Note that the eigenvector |E0(θ,ϕ)〉 is
composed only by {|0〉,|2〉} states. Therefore, |E0(θ,ϕ)〉 is a
dark state of the system, which is in good agreement with our
numerical calculations performed in the regime of parameters
defined above. In the Appendix we analytically show how
to obtain the effective master equation whose protected state
is |E0(θ,ϕ)〉. Naturally the protected state is not pure; the
deviation from |E0(θ,ϕ)〉 introduced by the indirect exciton
decay channel (�2) can be obtained through the fidelity F(∞)
in the stationary regime, defined by

F(∞) ≡ lim
t→∞[〈E0(θ,ϕ)|ρ(t)|E0(θ,ϕ)〉] =

1 + �2
�1

T 2
e

T 2
e +�2

1 + �2
�1

T 4
e +2�4

T 2
e (T 2

e +�2)

.

(8)

A simple analysis of the particular case Te ∼ � shows that the
fidelity F(∞) � 1 − �2/�1 attains values next to 1, even for
�2 one order of magnitude lower than �1.

The state |E0(θ,ϕ)〉 can be represented on the Bloch
sphere, where θ and ϕ are polar and azimuthal angles.
The experimentally accessible values of � � 0.05–1.0 meV
[38,40] and Te � 0.01–10 meV [41,42] enable θ to vary
approximately from 0.5◦ to 179◦, while the laser phase ϕ

is easily controlled in the range [0,2π ). The dependence of
|E0(θ,ϕ)〉 with respect to � and Te is analyzed considering
three particular cases:

(i) � � Te: In this case the protected state becomes
|E0(π,ϕ)〉 = |2〉 provided that θ → π . This is achieved in-
creasing the laser amplitude, since for �1 � �2 the lifetime
of the indirect exciton state goes to infinity. This result is in
accordance with Ref. [26].

(ii) �  Te: In the opposite scenario where θ → 0 the
protected asymptotic state is the ground state of the system
|E0(0,ϕ)〉 = |0〉. Since the laser amplitude is weak, the direct
and indirect exciton states are not populated.

(iii) � = Te: For θ = π/2 the protected state
|E0(π/2,ϕ)〉 = (|0〉 − e−iϕ |2〉)/√2 is a coherent
superposition of states |0〉 and |2〉. In this last case, the

032323-2



USING QUANTUM STATE PROTECTION VIA . . . PHYSICAL REVIEW A 85, 032323 (2012)

(a)

(b)

FIG. 1. (Color online) Time evolution of the population of the
states |0〉 (black solid line), |1〉 (red dashed line), and |2〉 (blue dotted
line) considering the application of a laser field with amplitude � =
�(

√
2 + 1), relative phase ϕ = 0, and frequency ω = ωL. The initial

state of the system is |E0(π/2,ϕ)〉 for (a) ϕ = 0 and (b) π . The
physical parameters are � = Te = 200 μeV, �1 = 3 μeV, and �2 =
10−4�1.

control of the laser relative phase ϕ will enable us to
implement the Deustch algorithm, as shown below.

III. DEUTSCH ALGORITHM VIA DISSIPATIVE
QUANTUM COMPUTATION

The Deutsch algorithm was one of the first quantum
algorithms to make explicit use of the quantum parallelism
[15,17]. Such an algorithm was built to decide whether a given
binary function f : {0,1} → {0,1} is constant [f (0) = f (1)]
or balanced [f (0) �= f (1)]. Differently from the original
solution to the Deutsch problem [15], which is probabilistic,
we present here a deterministic algorithm due to Collins, Kim,
and Holton [17]. Besides being deterministic, the approach to
the Deutsch problem used in Ref. [17] is interesting because
only one query to the oracle is made and auxiliary qubits are
unnecessary.

To implement the Deutsch algorithm we use the protected
state |E0(π/2,ϕ)〉 with the laser phase ϕ being 0 or π . In
order to clarify the execution of the algorithm, we make the
correspondence between the function domain {0,1} and the
states of the system {|0〉,|2〉} so that 0 → |0〉 and 1 → |2〉. We
define next the parameter ε ≡ f (|2〉) − f (|0〉), which can take
the values {−1,0,1}. Therefore, the state |E0(π/2,ϕ)〉 can be

TABLE I. The dependence of �P00(tn) on the ratio ε = �2/�1

for ϕ = 0.

ε = 0.0001 ε = 0.001 ε = 0.01

�P00(t1) −4.9913 × 10−5 −4.9847 × 10−4 −4.9178 × 10−3

�P00(t2) −4.9757 × 10−5 −4.9689 × 10−4 −4.9010 × 10−3

�P00(t3) −4.9597 × 10−5 −4.9527 × 10−4 −4.8838 × 10−3

�P00(t4) −4.9434 × 10−5 −4.9363 × 10−4 −4.8665 × 10−3

TABLE II. The dependence of �P00(tn) on the ratio ε = �2/�1

for ϕ = π .

ε = 0.0001 ε = 0.001 ε = 0.01

�P00(t1) 9.9108 × 10−5 9.8974 × 10−4 9.7653 × 10−3

�P00(t2) 9.7382 × 10−5 9.7249 × 10−4 9.5942 × 10−3

�P00(t3) 9.5694 × 10−5 9.5563 × 10−4 9.4268 × 10−3

�P00(t4) 9.4043 × 10−5 9.3913 × 10−4 9.2361 × 10−3

rewritten as

|E0(π/2,ϕ)〉 = |0〉 − e−iπε|2〉√
2

= |0〉 − (−1)ε|2〉√
2

= |0〉 − (−1)f (|2〉)−f (|0〉)|2〉√
2

. (9)

Therefore, if the function is constant [f (|2〉) = f (|0〉)] then
ϕ = 0. Otherwise, if the function is balanced [f (|2〉) �= f (|0〉)]
then ϕ = π . It is assumed that only the oracle has information
about the function f (i). In this case the oracle is the laser phase
ϕ programmer. The last part of an algorithm is the readout of
the solution. This is made here, first, by replacing the current
laser field by another one with amplitude � = �(

√
2 + 1),

relative phase ϕ = 0, and frequency ω = ωL resonant to the
transition |0〉 → |1〉. In this new configuration, |E0(π/2,ϕ)〉
becomes the initial state of system and the evolved state now is
ρ(t). In Fig. 1 we observe the time evolution of the populations
Pii(t) = 〈i|ρ(t)|i〉 of the states |0〉 (black solid line), |1〉 (red
dashed line), and |2〉 (blue dotted line) considering the phases
ϕ = 0 and ϕ = π of the first laser. At specific times tn =
nπ/(�

2 + T 2
e )1/2 with n = 1,3,5, . . ., the state of the system

will be ρ(t) � |0〉〈0| if the phase of the state |E0(π/2,ϕ)〉
is ϕ = π and ρ(t) � |2〉〈2| if the phase is ϕ = 0. Therefore,
applying another laser pulse resonant with the transition |0〉 ↔
|1〉 and observing the time-resolved absorption spectrum [24]
it is possible to distinguish between the states |0〉 and |2〉,
provided that if the electron is in state |2〉 there will be no
absorption, while if the electron is in state |0〉, the light will
be absorbed. In summary, discovering whether the phase ϕ is
0 or π is equivalent to solving the Deutsch problem.

To finish our analysis of the Deutsch algorithm, we will
show that the error introduced by the fact that |E0(π/2,ϕ)〉
is not the perfect steady state of the system is negli-
gible. We define the quantity �P00(tn) ≡ |〈0|ρ(tn,ρ(t →
∞)) − ρ(tn,|E0(π/2,ϕ)〉〈E0(π/2,ϕ)|)|0〉| as the difference of
population in the state |0〉 for the density operator ρ(tn)
considering two different initial conditions, the approximate
state |E0(π/2,ϕ)〉 and the exact state ρ(t → ∞), where the
later is obtained by numerical calculation. Tables I and II show
the dependence of �P00(tn) on the ratio ε ≡ �2/�1 for ϕ = 0
and π , respectively.

IV. CONCLUSIONS AND PERSPECTIVES

In summary, we showed the existence of a pure protected
state in a system composed by two asymmetric quantum
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dots coupled by tunneling and driven by a laser field. The
direct exciton state is under strong spontaneous decay. The
asymptotic protected state is a superposition of the ground and
the indirect exciton state. By controlling the ratio between the
laser amplitude and tunneling rate it is possible to control
the polar angle, while controlling the laser phase enables
the control of the azimuthal angle of the Bloch sphere. The
scheme for state protection remains true at low temperatures
(T ∼ 0 K). For high temperatures the phonon contribution
becomes important so that the phonon-induced dephasing will
destroy the superposition of the protected state. As an ap-
plication of dissipative quantum computation we proposed the
implementation of the Deutsch algorithm in this system, which
basically consists of distinguishing the relative phase 0 or π be-
tween the states |0〉 and |2〉. Differently from the usual propos-
als for implementing quantum algorithms, which are based on
unitary evolutions, here we make use of incoherent evolution of
the Markovian reservoir. This approach is interesting because it
is naturally immune to external perturbations and decoherence
processes. A similar scheme might protect the state of two
or more qubits which can be used to implement more
sophisticated algorithms, such as Deutsch-Jozsa and Grover
algorithms.
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APPENDIX: EFFECTIVE MASTER EQUATION

For the regime of parameters considered here, the master
equation (2) has an analytical solution. However, the method
developed in this appendix can be useful to obtain the effective
master equation for a more elaborate problem. First we rewrite
Eq. (2) in the interaction picture according to the unitary
transformation (5):

∂ρint (t)

∂t
= −i[Hint ,ρint ] + Lint (ρint ), (A1)

where Hint is given by Eq. (6) and the dissipative Liouvillian
by Eq. (3) with ρ replaced by ρint . Performing a change of
basis to the Hamiltonian eigenstates, Hint in Eq. (A1) can be
expressed as

Hint = E+(|E+〉〈E+| − |E−〉〈E−|), (A2)

and the dissipative Liouvillians Lint (ρint ) = L1(ρint ) +
L2(ρint ) as

L1(ρint ) = �1

4
[sin2(θ/2)[

√
2 cot(θ/2)(|E0〉〈E+| − |E0〉〈E−|) + |E+〉〈E+| − |E−〉〈E−| + |E−〉〈E+| − |E+〉〈E−|]ρint

× [
√

2 cot(θ/2)(|E+〉〈E0| − |E−〉〈E0|) + |E+〉〈E+| − |E−〉〈E−| − |E−〉〈E+| + |E+〉〈E−|]
−{ρint ,|E+〉〈E+| + |E−〉〈E−| − |E−〉〈E+| − |E+〉〈E−|}] (A3)

and

L2(ρint ) = �2

4
[sin2(θ/2) cos2(θ/2)[

√
2 cot(θ/2)(|E0〉〈E−| − |E−〉〈E0| − |E+〉〈E0| + |E0〉〈E+|)

+|E+〉〈E+| + |E−〉〈E−| − 2|E0〉〈E0| + |E−〉〈E+| + |E+〉〈E−|]ρint

×[−
√

2 cot(θ/2)(|E0〉〈E−| − |E−〉〈E0| − |E+〉〈E0| + |E0〉〈E+|)
+|E+〉〈E+| + |E−〉〈E−| − 2|E0〉〈E0| + |E−〉〈E+| + |E+〉〈E−|]
− cos2(θ/2){ρint ,|E+〉〈E+| + |E−〉〈E−| + |E−〉〈E+| + |E+〉〈E−|
−

√
2 tan(θ/2)(|E0〉〈E−| + |E−〉〈E0| + |E+〉〈E0| + |E0〉〈E+|) + 2 tan2(θ/2)|E0〉〈E0|}], (A4)

where {a,b} = ab + ba states for the anticommutator. The
action of a unitary transformation Ũ (t) = exp(−iHint t) on
Eq. (A1) is able to remove the unitary part of its dynamics.
Such procedure is interesting because the operators of the
form |Ei〉〈Ej | with i,j = {+, − ,0} for i �= j in Eq. (A1) will
oscillate quickly as shown here:

Ũ †(t)|E+〉〈E0|Ũ (t) = |E+〉〈E0|eiE+t , (A5a)

Ũ †(t)|E−〉〈E0|Ũ (t) = |E−〉〈E0|e−iE+t , (A5b)

Ũ †(t)|E+〉〈E−|Ũ (t) = |E+〉〈E−|e2iE+t . (A5c)

Since �2  �1  �,Te it is possible to perform the ro-
tating wave approximation, leading to an effective master

equation

∂ρeff(t)

∂t
= Leff(ρeff). (A6)

The dissipative Liouvillian Leff(ρeff) can be written in the
Lindblad form as

Leff(ρeff) =
2∑

α=1

5∑
i=1

�α,i

2
(2Oα,iρeffO

†
α,i − O

†
α,iOα,iρeff

− ρeffO
†
α,iOα,i), (A7)
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where

�1,1 = �1
8 sin2(θ/2) O1,1 = |E+〉〈E+| − |E−〉〈E−|

�1,2 = �1,1 O1,2 = |E−〉〈E+|
�1,3 = �1,1 O1,3 = |E+〉〈E−|
�1,4 = �1

4 cos2(θ/2) O1,4 = |E0〉〈E−|
�1,5 = �1,4 O1,5 = |E0〉〈E+|
�2,1 = �2

8 sin2(θ/2) cos2(θ/2) O2,1 = |E+〉〈E+| − 2|E0〉〈E0| + |E−〉〈E−|
�2,2 = �2,1 O2,2 = |E−〉〈E+|
�2,3 = �2,1 O2,3 = |E+〉〈E−|
�2,4 = 2�2,1 O2,4 = cot(θ/2)|E0〉〈E+| − tan(θ/2)|E−〉〈E0|
�2,5 = 2�2,1 O2,5 = cot(θ/2)|E0〉〈E−| − tan(θ/2)|E+〉〈E0|.

In Eq. (A7), the index α refers to the direct (�1) and indirect
(�2) exciton decay rates and index i enumerates the operators.
From this effective master equation it is easy to see that |E0〉
is the only eigenstate with null eigenvalue of operators O1,i .
Although the operators O2,i presented in Leff(ρeff) rotate the
state |E0〉, the decay rates �2,i are much lower than �1,i . In
summary, the dissipative dynamics is dictated by the direct

exciton decay, ensuring that the only protected pure state
is |E0〉. To prove the uniqueness of the protected state, we
solve Eq. (A1) using the software Wolfram MATHEMATICA7
for an arbitrary initial state with density matrix elements
ρij (0) with i,j = 0,1,2 so that

∑2
i=0 ρii(0) = 1. We get the

expression for the density matrix elements in the asymptotic
time (t → ∞):

ρ00(∞) = T 4
e

(
T 2

e + �2
)
�1 + (

T 6
e + �6

)
�2(

T 2
e + �2

)[
T 2

e

(
T 2

e + �2
)
�1 + (

T 4
e + 2�4

)
�2

] ,

ρ11(∞) = �4�2

T 2
e

(
T 2

e + �2
)
�1 + (

T 4
e + 2�4

)
�2

,

ρ22(∞) = T 2
e �2

(
T 2

e + �2
)
(�1 + �2)(

T 2
e + �2

)[
T 2

e

(
T 2

e + �2
)
�1 + (

T 4
e + 2�4

)
�2

] ,

ρ02(∞) = −eiϕTe�
T 2

e

(
T 2

e + �2
)
�1 + (

T 4
e − �4

)
�2(

T 2
e + �2

)[
T 2

e

(
T 2

e + �2
)
�1 + (

T 4
e + 2�4

)
�2

] ,

ρ01(∞) = ρ12(∞) = 0.

Note that the elements ρij (∞) are independent of ρij (0).
Considering the range of values for the parameters �1,
�2, Te, and � used in the paper, �1 � �2 and Te � �,
the matrix element ρ11(∞)  ρ00(∞),ρ02(∞),ρ22(∞). Then,
the protected state is approximately |E0(θ,ϕ)〉 independently
of the initial state of the system. Another way to prove
the uniqueness of the protected state |E0(θ,ϕ)〉 is using
theorem 2 of Ref. [9]. Defining the jump operator c ≡ |0〉〈1|
and the “subspace” S ≡ {γ |E−(θ,ϕ)〉 + δ|E+(θ,ϕ)〉 with

γ,δ ∈ C and |γ |2 + |δ|2 = 1}, we observe that S �= cS for
every γ , δ, θ , and ϕ.

The time scale necessary to the system state to be stationary
is tss = 1/ min �1,i (i = 1, . . . ,5), which depends on �1, Te,
and �. Returning to the Schrödinger picture, we observe that
the unitary transformation Ũ (t) does not affect the protected
state, while U (t) introduces a relative phase between the states
|0〉 and |2〉.
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