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A key goal of quantum communication is to determine the maximum number of bits shared between two
quantum systems. An important example of this is in entanglement-based quantum key distribution (QKD)
schemes. A realistic treatment of this general communication problem must take account of the nonideal nature
of the entanglement source and the detectors. The aim of this paper is to give such a treatment. We obtain
analytic expression for the mutual information in terms of experimental parameters. The results are applied to
communication schemes that rely on spontaneous parametric down conversion to generate entangled photons.
We show that our results can be applied to tasks such as calculating the optimal rate of bits per photon in
high-dimensional time-bin-encoded QKD protocols (prior to privacy amplification). A key finding for such
protocols is that, by using realistic experimental parameters, one can obtain over 10 bits per photon. We also
show how our results can be applied to characterize the capacity of a fiber array and to quantify entanglement
using mutual information.
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I. INTRODUCTION

A central concern of quantum information theory is to
determine the maximum amount of information that can be
shared between two quantum systems. The shared information
gives an indication of the quantum correlations and is thus
of fundamental interest [1–4]. In addition to this, knowledge
of the shared information determines the performance of
quantum communications [5] and is vital for many proposed
applications of quantum information [6,7]. One important
example of this is in quantum key distribution which, in one
of the seminal insights within the field of quantum infor-
mation, was the realization that quantum mechanics allows
for the secure distribution of cryptographic keys [8–12]. An
important class of quantum key distribution (QKD) schemes
uses entanglement [13–16]. The security of entanglement-
based QKD is based on the nonlocality of quantum
mechanics.

An important issue to address for QKD is determining how
many bits of the secret key are distributed. A prerequisite
for this calculation is determining the maximum number of
unsecured bits that the two parties can share. This is the
information contained in the raw keys. To fully extract this
information, error correction is necessary, followed by privacy
amplification to minimize the information an eavesdropper
might have access to [17]. If one is looking to optimize both
the error correction and privacy amplification protocols, then
it is essential to know the mutual information shared between
the raw keys. This quantity will depend on both the detectors
and the details of the source of the entangled states. Realistic
physical models of each of these components is thus vital.

The effects of losses, inefficiencies, and imperfect sources
have been studied previously [18]. In particular, spontaneous
parametric down conversion sources with losses have been
studied with regards to QKD [19,20]. The existing work,
however, has concentrated on the case where the information is
encoded in the polarization degree of freedom. As a result, this
work cannot be applied to communications protocols that use
high-dimensional entangled states with the aim of encoding
multiple bits on each photon.

In this paper we determine the maximum shared infor-
mation for realistic quantum sources and detectors. As most
experimental implementations of quantum communication
protocols are optically based, the examples we study will be
limited to optical systems. The natural question to ask is what
is the maximum shared information per photon? The main
result of our paper will be to determine this for general but
experimentally relevant conditions. This result is broader in its
scope than earlier findings, such as [19,20]. In particular, our
results apply not only to information encoded in polarization,
but also to information encoded in high-dimensional entangled
degrees of freedom. This fact is illustrated by applying our
findings to different experimental setups, which include, but
are not limited to, QKD experiments. Our results can thus be
used to optimize a given experimental procedure. In particular,
one can determine the power at which to operate a pump laser
driving a spontaneous parametric down conversion source so
as to maximize the mutual information.

The paper is organized in the following way: In Sec. II we
discuss the general communication system that we consider.
Special attention is paid to time-bin-encoded communication
protocols [21–24]. In Secs. III and IV we construct simple
mathematical models of the source, channels, and imperfect
photon detectors. The mutual information is calculated in
Secs. V and VI for sources that produce entangled pairs with a
Poissonian distribution. In Sec. VII we discuss the relevance of
our results to other tasks such as characterizing the capacity of a
fiber array and information theoretic approaches to quantifying
entanglement. Finally, our results are discussed in Sec. VIII.

II. COMMUNICATING SHARED BITS USING
ENTANGLEMENT

The fundamental communications problem is distributing
a shared string of bits between two parties, called Alice and
Bob. One way of using quantum mechanics to achieve this is
to use an entangled state; that is, one of the form

|�〉AB =
∑

k

ck|ϕk〉A|ϕ′
k〉B, (1)
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where 〈ϕi |ϕj 〉 = 〈ϕ′
i |ϕ′

j 〉 = δij . It can also be useful to con-
sider hyperentangled states that have entanglement between
multiple degrees of freedom [25,26]. A string of bits can then
be generated from the correlation between one of the entangled
degrees of freedom. If one is looking to communicate multiple
bits per entangled state, then this requires high-dimensional
entanglement. The idea is best illustrated by some simple
examples.

Using spontaneous parametric down conversion (SPDC)
one can produce pairs of photons that are entangled both
in their polarization and in time and frequency [15,27].
It is convenient to express such states using continuous
time creation and annihilation operators, which satisfy the
commutator relation [â(t),â†(t ′)] = δ(t − t ′) [28]. The down-
converted state thus has the form

|�〉AB = 1√
2

(|HH 〉AB + |V V 〉AB)

⊗
∫

dt1dt2g(t1,t2)â†
A(t1)â†

B(t2)|0〉, (2)

where H and V respectively denote horizontal and vertical
polarization, â

†
A(t) [â†

B(t)] is the creation operator for Alice’s
(Bob’s) photons and g(t1,t2) is a normalized function that is
zero when |t1 − t2| become sufficiently large. This means that,
if Alice detects a photon at time T , then Bob should also detect
his photon at a time close to T . This correlation can be used to
form a random bit string shared between Alice and Bob. One
way of doing this is to divide the photon’s possible arrival times
into discrete time bins and record whether photons are found
in each time bin. The measurement record of M time bins can
then be used, at least in principle, to construct a string of M

bits. The zeros and ones of the bit string would respectively
correspond to the absence or detection of photons within a
time bin.

A second example is to use the spatial modes of entangled
photons generated by SPDC. It has been shown, for example,
that the down converted photons are entangled in their orbital
angular momentum and angular position [29–31]. The fact
that angular momentum requires an unbounded Hilbert space
means that measuring the angular momentum of the photons
enables multiple bits to be extracted per photon pair. For
example, if an experiment can distinguish between M different
angular momentum eigenstates, then one can extract up to
log2(M) bits per photon pair.

It is worthwhile noting the connection between this com-
munication problem and QKD. For a given quantum key
distribution protocol, one wishes to distribute a secret shared
string of bits. This requires us to outline a mechanism for
checking the security of the bits. A common approach is to
measure in two mutually unbiased bases and then publish
a random sample of Alice and Bob’s measurement results.
The presence of an eavesdropper can then be established by
looking at the cases where Alice and Bob measured in the same
basis. In the absence of an eavesdropper, these measurement
results should be correlated. The use of incompatible bases
and implementing security checks necessarily reduces the
communication rate.

The communication problem we are studying corresponds
to determining the shared information when Alice and Bob

both measure in the same basis. It is important to note that
this is not the number of shared secret bits. To determine
this one would need to find out the number of bits lost
due to the additional constraints of security. For details on
how the security of QKD decreases the shared information,
see Refs. [7,17].

III. MODELLING PHOTON SOURCE,
DETECTORS, AND LOSSES

The first part of the system that we will look at is the
source of the entangled photons. We first assume that the
source generates entangled pairs of photons. If four photons
are generated, then this will correspond to two pairs of
entangled photons.1 The next assumption is that we have a
probability P (m) of producing m photon pairs at a time and
that this is independent of the number of photon pairs produced
earlier. For the example of time-bin-encoded photons, P (m)
corresponds to the probability of producing m photon pairs
within a given time window. When the photons are generated
by SPDC, P (m) can be approximated by a Poissonian
distribution [32].

The next aspect that we consider is the measurement
process. We consider only measurements that are realized
either by the detection of photons within time bins or within
discrete spatial locations or modes. This does not limit us,
however, to considering only temporal or spatial encoded
information. The reason for this is that measurements of other
degrees of freedom can be converted into measurements of
either temporal or spatial degrees of freedom. A common
example of this is measuring polarization by using a polarizing
beam splitter. This converts information about the polarization
into information about the spatial location of a photon.
Similarly, one can convert measurements of different quantities
into measurements of the time of arrival of a photon. For
example, the spatial position of photons in an optical field have
been measured using a time multiplexing fiber array. Different
position at which the photon could be found were converted
into different time windows in which the photon could be
detected [33]. The advantage of this sort of experimental
procedure is that only one photon detector is required to detect
many different spatial modes.

Another assumption of our analysis is that one is equally
likely to obtain any of the measurement outcomes. For
example, in a time-binned system this would correspond to
it being equally likely that photons are sent in each time
bin. While the assumption is reasonable in the context of
time-binned communication systems, it can appear prohibitive
in other situations. The reason for making this assumption
is that the aim of our analysis is to determine the effect
of inefficiencies in the source, channel, and detectors. For
this reason we consider only the simplest possible form for
the entangled photonic states. More complex systems can,
however, still be approximated by our analysis. For example,
the effective Schmidt modes of a SPDC state with large

1In practice this condition may have to be relaxed slightly.
Alternatively, one might filter the output of the source so as to
postselect only those situations when pairs were emitted.
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Schmidt number can, to a good approximation, be taken to
be equiprobable [34].

Because our aim is to encode information on each photon
pair and not in the number of photons, we shall consider
only threshold detectors that do not resolve photon number.
Consider first the situation where we have no losses. This
would correspond to no transmission losses and ideal detectors
that detect all photons incident on them. The probability for
Alice or Bob’s detector to fire is

π (c) =
∞∑

m=1

P (m), (3)

where π (c) is the probability for the ideal detector to click
and P (m) is again the probability to find m photons within
each time bin or spatial mode. In a real experiment, however,
detectors do have losses. One can model an inefficient detector
as an ideal detector with a lossy medium in front of it [35,36].
For our purposes, the lossy medium can be viewed as a beam
splitter with transmission coefficient

√
ηd . The losses will thus

correspond to photons being reflected at the beam splitter. The
square of the transmission coefficient ηd corresponds to the
efficiency of the detector. It is clear that a single photon incident
on the nonideal detector will be detected with probability ηd .

In addition to the photons lost by the detectors there will
be losses during transmission. This can again be modelled
by a beam splitter, where the transmission coefficient is

√
ηl .

It is convenient to incorporate both of these sources of loss
into a single efficiency for the system. This would correspond
to a beam splitter with transmission coefficient

√
η, where

η = ηdηl . The total efficiency η again gives the probability for
any given emitted photon to be detected.

One further source of loss is in cross talk between multiple
modes. This would be an issue if one is transmitting the
information in spatial modes. The effect of cross talk is to cause
photons to be lost from one mode and appear in a different one.
A simple way to account for this in our current model is to
adjust the efficiency η to include loss from cross talk. The
effect of the photons appearing in a different mode can then
be dealt with by increasing the effective dark count rate.

IV. JOINT DETECTION PROBABILITY

To calculate the mutual information we need to determine
the joint probability for Alice and Bob to obtain the same
measurement outcome. The key mathematical tool in our
analysis is the moment generating function [37]. If P (n) is
the probability that a pulse contains n photons, then we define
the moment generating function to be

M(μ) =
∞∑

n=0

P (n)(1 − μ)n. (4)

Moment generating functions have many useful properties, the
simplest of which is

P (n) = 1

n!

(
− d

dμ

)n

M(μ)

∣∣∣∣
μ=1

. (5)

It is straightforward to generalize the definition of M(μ) to a
pair of pulses:

M(μ,ξ ) =
∞∑

m,n=0

P (m,n)(1 − μ)m(1 − ξ )n. (6)

In our case the pair of pulses correspond to the entangled
signal and idler beams for a single time bin or spatial mode.
The number of photons in each pulse is the same, hence

P (m,n) = P (n)δm,n. (7)

The merit of using the moment generating functions is that it
is easy to account for losses [37].

If we suppose that Alice and Bob both have identical
detectors and that both their channels have the same losses,
then we can assign to both parties the same total efficiency η.
The generating function is

Mloss(μ,ξ ) =
∞∑

m=0

P (m)(1 − ημ)m(1 − ηξ )m. (8)

Consider a particular measurement outcome. This will either
correspond to a spatial location at which photons can be
detected or a particular time bin in which the photons can
be found. Let c and 0 denote the detectors registering a click
and not registering a click, respectively. The joint probability
for Alice and Bob to both get the same measurement outcome
is πAB(i,j ), where i,j ∈ {0,c}. In the ideal case π (0,c) =
π (c,0) = 0; that is, Alice and Bob would either both detect
photons or neither would detect any. This is not the case,
however, when losses are present. In the absence of dark counts
the probabilities are

πAB(0,0) = Mloss(1,1),

πAB(c,0) =
∞∑
l=1

1

l!

(
− d

dξ

)l

Mloss(1,ξ )

∣∣∣∣∣
ξ=1

,

πAB(0,c) = πAB(c,0),

πAB(c,c) =
∞∑

n=1

P (n)[1 − (1 − η)n]2. (9)

The effect of the detectors registering dark counts can easily
be modelled. Let q be the probability that, within a given
period of time, Alice or Bob’s detector fires when no photons
are incident on it. The joint probability, PAB(i,j ), will thus be

PAB(0,0) = (1 − q)2πAB(0,0),

PAB(0,c) = (1 − q)πAB(0,c) + (1 − q)qπAB (0,0)

= PAB(c,0),

PAB(c,c) = πAB(c,c) + 2qπAB(0,c) + q2πAB(0,0).

(10)

It is straightforward to verify that these probabilities sum to
one. The marginal probabilities for Alice or Bob’s detector
to fire are P(0) = (1 − q)[π (0,0) + π (0,c)] and P(c) = 1 −
P(0). We have thus obtained a general expression for the
joint and marginal probability distributions. These expressions
are valid for any choice for the source probability P (m) and
consequently are not tied to one physical implementation.
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V. MUTUAL INFORMATION

In the classic paper of Shannon it was shown that the
maximum amount of information that two parties can share is
given by the mutual information [38,39]. For a joint probability
distribution PAB(i,j ) with marginal probabilities PA(i) and
PB(j ), the mutual information is defined as

H (A : B) =
∑

i,j=0,c

PAB(i,j ) log2

( PAB(i,j )

PA(i)PB(j )

)
. (11)

The quantity given in Eq. (11) is the mutual information that
Alice and Bob share when they obtain the same measurement
outcome. Consider a time-bin-encoded QKD protocol. If M

time bins are used to create a key, then Alice and Bob will share
a bit string of length MH (A : B). When one is interested in
QKD, then number of shared bits will, of course, be reduced
by the need to perform privacy amplification.

For communication in the quantum regime, it often im-
portant to know the number of shared bits per photon. We
must, however, be careful in how this quantity is defined. One
approach would be to divide the mutual information by the
mean number of photon pairs produced. If we denote the mean
number of photon pairs by λ, then the information per photon
is simply

Ig(A : B) = H (A : B)

λ
. (12)

The quantity Ig(A : B) is the information per generated photon
pair; however, not all generated photons are detected. This
fact suggests an alternative way to define the information per
photon. Instead of considering the information per generated
photon pair, we can use the information per detected photon
pair. This is defined as

Id (A : B) = H (A : B)

η2λ + q2
. (13)

The formalism developed so far applies to any choice for
P (m). We shall examine a concrete example, where P (m) is a
Poissonian distribution.

VI. MUTUAL INFORMATION FOR SPDC SOURCES

An important way of generating entangled photons is via the
process of spontaneous parametric down conversion (SPDC).
In this approach a pump beam illuminates a nonlinear crystal.
Within the crystal, each pump photon can be converted into
two lower-frequency photons, referred to as signal and idler
photons. By careful choice of the system parameters, one
can arrange for the emitted photon pairs to be entangled.
This entanglement can be both in the polarization and in the
transverse spatial modes [40–42]. This method of generating
entangled photons has been used in many experimental
realizations of QKD [25,43].

To illustrate how SPDC can be used to distribute a string
of random bits, consider the following two examples: A
time-binned protocol can be implemented using a pulsed
laser that is shone at a nonlinear crystal. The resulting down-
converted photon pairs are entangled in time. Distributing these
photons to Alice and Bob allows them to construct a shared
random string of bits. The entangled time-bin states needed

for this protocol have already been experimentally generated
[21–23]. The second example is to use the spatial modes of
photons generated by SPDC. By using a pump beam with
an appropriate profile [44], one can generate photon pairs that
carry angular momentum in their transverse modes [41,42,45].
The down converted photons will be entangled in the angular
momentum degree of freedom. A mode sorter can be used to
separate some of the different angular momentum states into
different spatial locations, where photon detectors are located.
In the limit of large Schmidt number, the effective modes of
the photon pairs will be approximately equiprobable [34]. The
analysis we present will apply to both of these examples as
well as many other situations where photons are generated by
SPDC.

The probability distribution for m pairs of photons to be
generated by SPDC can be approximated by a Poissonian
distribution

P (m) = e−λ λm

m!
. (14)

It can easily be verified that λ is the mean number of
photon pairs. Using this distribution we can derive the mutual
information for QKD schemes that use SPDC to generate
pairs of entangled photons. The use of a Poissonian for the
probability distribution is only valid when the initial laser
pulses are not too short. If we instead have short pulses,
then it becomes necessary to use a thermal distribution [i.e.,
P (m) = λm/(λ + 1)m+1]. The moment generating function
can again be calculated and the results of Sec. IV can be
used to calculated the new value for the mutual information.2

The distribution (14) in Eq. (8) yields the following
expression for the moment generating function:

Mloss(μ,ξ ) = exp [−ηλ(μ + ξ − ημξ )] . (15)

From Eqs. (9) and (10) we find that the joint probability
distribution for the detectors is

PAB(0,0) = (1 − q)2e−λη(2−η),

PAB(c,0) = (1 − q)e−λη − (1 − q)2e−λη(2−η),

PAB(0,c) = PAB(c,0),

PAB(c,c) = 1 − 2(1 − q)e−λη + (1 − q)2e−λη(2−η). (16)

The marginal probabilities for Alice’s (or Bob’s) detector to
click is thusP(0) = (1 − q)e−λη andP(c) = 1 − (1 − q)e−λη.
The mutual information can easily be calculated and is found
to be

H (A : B) = 2H2 (A) + B log2 B

+ 2(A − B) log2(A − B) (17)

+ [1 − 2A + B] log2[1 − 2A + B],

where H2(x) = −x log2(x) − (1 − x) log2(1 − x), A = (1 −
q)e−λη, and B = A2eλη2

. The above expression gives the
mutual information between Alice and Bob as a function of the
mean number of photons λ, the efficiency η and the probability
of getting a dark count q. In Fig. 1 the mutual information is

2A quick calculation shows that, for a thermal distribution, the mo-
ment generating function is Mloss(μ,ξ ) = (1 + ηλ[μ + ξ − ημξ ])−1.
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FIG. 1. (Color online) Plot of H (A : B) as a function of λ, for
different values of efficiency. In all of the plots q = 3.9 × 10−8, which
corresponds to a dark count rate of 300/s and a time-bin width of
130 ps. The solid black line is for η = 0.8, the dashed line corresponds
to η = 0.7, while the dotted line corresponds to η = 0.6. The mutual
information H (A : B) is measured units of bits.

plotted as a function of λ for different values of η, with q =
3.9 × 10−8, which corresponds to time bins of width 130 ps
and the detectors having on average 300 dark counts per
second. In the ideal case, H (A : B) would be one bit. From
Fig. 1 we see that inefficiencies can significantly decrease
the mutual information. It is thus important to maximize the
possible mutual information by controlling the value of λ. The
optimal value for λ can be found using Eq. (17).

In order to compare different experimental QKD schemes
it is often useful to determine the number of bits per photon.
Equation (12) gives the number of bits per generated photon,
while Eq. (13) gives the number of bits per detected photon.
The mutual information per generated photon, Ig(A; B), is
plotted in Fig. 2 as a function of λ. Figure 2(a) shows that,
for an efficiency of 0.85, we can have greater than 10 bits per
generated photon. Figure 2(b) shows that, with a lower dark
count and efficiency of 0.8, one can achieve more than 13 bits
per generated photon. The information per detected photon,
Id (A; B), is plotted in Fig. 3 as a function of λ. One can see
that, in Fig. 3(a), we have more than 14 bits per detected
photon, for η = 0.8. In Fig. 4(b) we find that, for η = 0.8 and
a dark count that is about 10% of λ, we obtain about 20 bits
per detected photon.

The result (17) can be used with Eqs. (12) and (13) to find
the value of λ that maximizes the information per photon. From
the perspective of experimentally implementing high-bit-rate
QKD, one might wish to determine the laser intensity that
optimizes the number of bits per photon. This task can be
achieved using our results together with the fact that the value
of λ will depend on the laser intensity [46]. This is one of the
key findings of this paper.

The dependence of Ig(A : B) and Id (A : B) on the ef-
ficiency can be of practical significance for implementing
QKD. For example, in an experiment one might what to
know how big an improvement there would be if better
detectors are used. This problem can again be solved using
Eq. (17). Mathematically the problem is to find the maximum
of Ig(A : B) or Id (A : B) for fixed values of η and q. This
quantity is plotted in Fig. 4. The plot is for a fixed value of
q; however, decreasing q does not significantly increase the
information. Similarly, the information is not decreased by too

FIG. 2. Plot of Ig(A; B) as a function of λ. Plots (a) have q =
3.9 × 10−6 and the dotted line is for η = 0.6, while the solid line is
for η = 0.85. Plots (b) have q = 3.9 × 10−8 and the dotted line is for
η = 0.6, while the solid line is for η = 0.8. In all plots the mutual
information per generated photon is measured units of bits.

FIG. 3. Plot of Id (A; B) as a function of λ. Plots (a) are for q =
3.9 × 10−6, while in plots (b) are for q = 3.9 × 10−8. In both plots
the dotted line is for η = 0.4 and the solid line corresponds to η =
0.8. The mutual information per detected photon is measured units
of bits.
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FIG. 4. Plot of I (A; B) as a function of η. The probability of
dark counts, q, is 3.9 × 10−8. The mutual information per photon is
measured units of bits.

much if q is increased by an order of magnitude. If q is
increased by several orders of magnitude, then Ig,d (A : B)
will be decreased by an noticeable amount. One thus sees that
for reasonable small dark counts, the efficiency is the main
factor limiting the information per photon.

VII. FURTHER APPLICATIONS

A. Information-based classification of high-dimensional
entangled states

The theory we have outlined has, thus far, been applied to
quantum communication. There are, however, other situations
where these results can be applied. An example of this is in
developing experimentally useful classifications of entangled
states. One approach is to use the information that two parties
can extract from an entangled state as a figure of how entangled
the state is [3,4,47]. Recently, this approach has been used as
the basis for an experimental procedure for quantifying the
entanglement in photons generated by SPDC [48]. The idea
was to use the fact that a pair of photons generated by SPDC
are entangled both in position and momentum. The results
of measurements on each photon’s position or momentum
would thus be correlated.3 The mutual information gained by
measuring these quantities will thus give us an indication of
the strength of the entanglement.

If one is to make accurate comparisons between experimen-
tal results and theory, it is important to factor in effects such as
detector inefficiencies, dark counts, and imperfections in the
source. This can be achieved using the formalism that we have
developed. In particular, one can see how the experimental
imperfections should affect the measured entanglement of the
state.

In the experiments discussed in [48] the measurements of
position and momentum were made using spatial-resolving
photon detectors. These consisted of a detector with discrete
pixels. Detection of photons by one of the pixels would thus
allow for a measurement of the spatial location of the photons.
Each pixel has a finite width. The measurement thus has a

3To simplify the discussion we do not differentiate between
correlations and anticorrelations. The term correlated will thus
encompass both situations.

discrete set of outcomes. One subtle point is that if the region
of space is chosen sufficiently large, then the probability for
detecting photons at various locations can vary. In our analysis
we implicitly assume that each outcome is equiprobable. This
assumption means that applying our theory to this experiment
will lead to a slight overestimate of the mutual information.
This suggests that the proper way of viewing our results, when
applied to this setup, is as providing an upper bound on the
possible mutual information.

B. Capacity of fiber arrays

Another interesting application of our theory is in char-
acterizing the information capacity of a fiber array. This
would entail treating the array as a information channel and
calculating the maximum mutual information between the
outputs and input with a fixed probe beam. The capacity gives
an information theoretic measure of the ability of a given array
to transmit and sort optical pulses. An example of the sort of
system where this could be important is in time multiplexing
of detectors [33,49].

The two situations we consider are M input fibers coupled
to a single detector and a single input fiber coupled to M

fibers. In the former situation we have M inputs and one
detector, while in the later we have one input and M detectors.
One crucial difference between both of these cases and all
our previous examples is that we are not considering pairs
of entangled photons. Instead, our inputs will be pulses that
contain n photons with probability P (n). In many instances
the statistics of the input pulses can be approximated by a
Poissonian distribution; for example, if one takes each pulse
to be in a coherent state [28]. When this is the case, the capacity
can be calculated using Eq. (17).

The approach is best illustrated by a simple example. Sup-
pose we have a fiber array composed of 8 output fibers coupled
to a single detector. This situation has been experimentally
realized in [33]. The array is designed so that each fiber has a
different length so that the different inputs reach the detector at
different well-defined times. Let us assume that the separation
between these time bins is 1 ns, which is larger than the jitter of
our detector. The efficiency of the detector and array is taken
to be 40%, while the dark count rate is 300/s. The probability
of obtaining a dark count in a given time window is thus
q = 3 × 10−7. Finally, we assume that the input pulses have a
Poissonian photon distribution with mean λ and that the pulses
are equally likely to enter each input. Under these conditions

FIG. 5. Plot of Ig(A; B) as a function of λ. The probability of
dark counts, q, is 3 × 10−7 and the efficiency is η = 0.4. The quantity
Ig(A; b) is measured in units of bits.
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Eq. (17) can be used to calculate the total information as a
function of λ. In Fig. 5 we plot the average information per
generated photon.

The previous calculations were for a beam that has a
Poissonian photon distribution. If the beam is not Poissonian
or cannot be approximated by a Poissonian, then Eq. (17)
cannot be used. Instead, one can use the general formalism
outlined in Sec. III. The procedure would thus be to cal-
culate the generating function for the given choice of P (n).
Equations (9) and (10) can then be used to calculate the Alice
and Bob’s joint probability distribution.

VIII. CONCLUSIONS

We have investigated how realistic experimental conditions
affect the amount of shared information that two parties can
extract from entangled photons. A key goal of our work is
to investigate systems where multiple bits can be encoded
on each photon. This means that our analysis goes beyond
previous work, which has focused on encoding information in
polarization. Our approach was to construct simple but realistic
models of the entangled photon source, the information
channel and the detectors. These models allowed us to take
account of effects such as transmission losses, cross talk,
detector inefficiencies, and dark counts. After developing
the general theory in Secs. III and IV, the formalism was
illustrated by looking at systems where the photon pairs are
generated by spontaneous parametric down conversion. An

explicit expression for the mutual information, Eq. (17), was
given for this case. This represented one of the main results
of the paper. Within a QKD scheme the quantity we have
calculated corresponds to the shared information in Alice
and Bob’s keys, before privacy amplification. Our results can
thus be used in the design of QKD experiments to choose
parameters that maximize both the mutual information and the
average information per photon. As an example, Fig. 4 shows
the optimal amount of information per photon that two parties
can share as a function of the efficiency.

Our findings have applications out with quantum key
distribution. This was demonstrated by two examples. The first
was using the mutual information as a basis for an experimental
protocol to quantify photonic entanglement [48]. The second
application was in characterizing the efficiency of an optical
array in terms of how well it transmits information. This
provides a useful, experimentally accessible, figure of merit
for how well an optical array can sort and transmit optical
signals.
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N. Lüthenhaus and M. Peev, Rev. Mod. Phys. 81, 1301
(2009).

[12] G. M. Nikolopoulos and G. Alber, Phys. Rev. A 72, 032320
(2005).

[13] A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991).

[14] C. H. Bennett, G. Brassard, and N. D. Mermin, Phys. Rev. Lett.
68, 557 (1992).

[15] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Phys. Rev. Lett.
84, 4737 (2000).

[16] I. Ali-Khan, C. J. Broadbent, and J. C. Howell, Phys. Rev. Lett.
98, 060503 (2007).

[17] C. H. Bennett, G. Brassard, and J. M. Robert, SIAM J. Comput.
17, 210 (1988).

[18] G. Berlı́n, G. Brassard, F. Bussières, N. Godbout, J. A. Slater,
and W. Tittel, Natl. Commun. 2, 561 (2011).

[19] X. Ma, Chi-Hang Fred Fung, H.-K. Lo, Phys. Rev. A 76, 012307
(2007).

[20] A. Scherer, B. Sanders, and W. Tittel, Opt. Express 19, 3004
(2011).

[21] I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden,
and N. Gisin, Phys. Rev. A 66, 062308 (2002).

[22] H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden,
and N. Gisin, Phys. Rev. A 69, 050304 (2004).

[23] D. Stucki, H. Zbinden, and H. Gisin, J. Mod. Opt. 52, 2637
(2005).

[24] M. A. Wayne, E. R. Jeffrey, G. M. Akselrod, and P. G. Kwiat,
J. Mod. Opt. 56, 516 (2009).

[25] P. G. Kwiat, J. Mod. Opt. 44, 2173 (1997).
[26] J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat,

Phys. Rev. Lett. 95, 260501 (2005).
[27] A. Joobeur, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A 50,

3349 (1994).

032322-7

http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://dx.doi.org/10.1103/PhysRevA.40.2404
http://dx.doi.org/10.1103/PhysRevA.40.2404
http://dx.doi.org/10.1103/PhysRevA.44.535
http://dx.doi.org/10.1103/PhysRevA.74.062308
http://dx.doi.org/10.1103/PhysRevA.74.062308
http://dx.doi.org/10.1109/18.720553
http://dx.doi.org/10.1109/18.720553
http://dx.doi.org/10.1103/PhysRevLett.68.3121
http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1103/RevModPhys.81.1301
http://dx.doi.org/10.1103/PhysRevA.72.032320
http://dx.doi.org/10.1103/PhysRevA.72.032320
http://dx.doi.org/10.1103/PhysRevLett.67.661
http://dx.doi.org/10.1103/PhysRevLett.68.557
http://dx.doi.org/10.1103/PhysRevLett.68.557
http://dx.doi.org/10.1103/PhysRevLett.84.4737
http://dx.doi.org/10.1103/PhysRevLett.84.4737
http://dx.doi.org/10.1103/PhysRevLett.98.060503
http://dx.doi.org/10.1103/PhysRevLett.98.060503
http://dx.doi.org/10.1137/0217014
http://dx.doi.org/10.1137/0217014
http://dx.doi.org/10.1038/ncomms1572
http://dx.doi.org/10.1103/PhysRevA.76.012307
http://dx.doi.org/10.1103/PhysRevA.76.012307
http://dx.doi.org/10.1364/OE.19.003004
http://dx.doi.org/10.1364/OE.19.003004
http://dx.doi.org/10.1103/PhysRevA.66.062308
http://dx.doi.org/10.1103/PhysRevA.69.050304
http://dx.doi.org/10.1080/09500340500283821
http://dx.doi.org/10.1080/09500340500283821
http://dx.doi.org/10.1080/09500340802553244
http://dx.doi.org/10.1103/PhysRevLett.95.260501
http://dx.doi.org/10.1103/PhysRevA.50.3349
http://dx.doi.org/10.1103/PhysRevA.50.3349


THOMAS BROUGHAM AND STEPHEN M. BARNETT PHYSICAL REVIEW A 85, 032322 (2012)

[28] R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford
University Press, Oxford, 2000).

[29] A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature (London)
412, 3123 (2001).

[30] J. B. Götte, S. Franke-Arnold, and S. M. Barnett, J. Mod. Opt.
53, 627 (2007).

[31] J. Leach, B. Jack, J. Romero, A. K. Jha, A. M. Yao, S. Franke-
Arnold, D. G. Arnold, D. G. Ireland, R. W. Boyd, S. M. Barnett,
and M. J. Padgett, Science 329, 662 (2010).

[32] M. M. Haget, A. Joobeur, and B. E. A. Saleh, J. Opt. Soc. Am.
A 16, 348 (1999).

[33] R. E. Warburton, F. Izdebski, C. Reimer, J. Leach, D. G. Ireland,
M. Padgett, and G. S. Buller, Opt. Express 19, 2670 (2011);
J. Leach, R. E. Warburton, D. G. Ireland, F. Izdebski, S. M.
Barnett, A. M. Yao, G. S. Buller, and M. J. Padgett, Phys. Rev.
A 85, 013827 (2012).

[34] F. M. Miatto, T. Brougham, and A. M. Yao, e-print
arXiv:1111.6449 [quant-ph] (2012).

[35] J. Jeffers, New J. Phys. 8, 268 (2006).
[36] P. P. Rohde and T. C. Ralph, J. Mod. Opt. 53, 1589

(2005).
[37] S. M. Barnett and P. M. Radmore, Methods in Theo-

retical Quantum Optics (Oxford University Press, Oxford,
1997).

[38] W. Weaver and C. E. Shannon, The Mathematical Theory of
Communication (University of Illinois Press, Urbana, Illinois,
1949).

[39] T. M. Cover and J. A. Thomas, Elements of Information Theory,
(John Wiley and Sons, New York, 1991).

[40] P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V.
Sergienko, and Y. Shih, Phys. Rev. Lett. 75, 4337 (1995).

[41] J. P. Torres, A. Alexandrescu and Lluis Torner, Phys. Rev. A 68,
050301 (2003).

[42] F. M. Miatto, A. M. Yao, and S. M. Barnett, Phys. Rev. A , 83,
033816 (2011).

[43] G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Phys.
Rev. Lett. 85, 1330 (2000).

[44] A. M. Yao, New J. Phys. 13, 053048 (2011).
[45] L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular

Momentum (Institute of Physics, Bristol, 2003).
[46] A. Ling, A. Lamas-Linares, and C. Kurtsiefer, Phys. Rev. A 77,

043834 (2008).
[47] M. J. W. Hall, Phys. Rev. A 55, 100 (1997).
[48] P. B. Dixon, G. A. Howland, J. Schneeloch, and J. C. Howell,

e-print arXiv:1107.5245 [quant-ph] (2011).
[49] D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, I. A.

Walmsley, M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D.
Franson, J. Mod. Opt. 51, 1499 (2004).

032322-8

http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1038/35085529
http://dx.doi.org/10.1080/009500340500227075
http://dx.doi.org/10.1080/009500340500227075
http://dx.doi.org/10.1126/science.1190523
http://dx.doi.org/10.1364/JOSAA.16.000348
http://dx.doi.org/10.1364/JOSAA.16.000348
http://dx.doi.org/10.1364/OE.19.002670
http://dx.doi.org/10.1103/PhysRevA.85.013827
http://dx.doi.org/10.1103/PhysRevA.85.013827
http://arXiv.org/abs/arXiv:1111.6449
http://dx.doi.org/10.1088/1367-2630/8/11/268
http://dx.doi.org/10.1080/09500340600578369
http://dx.doi.org/10.1080/09500340600578369
http://dx.doi.org/10.1103/PhysRevLett.75.4337
http://dx.doi.org/10.1103/PhysRevA.68.050301
http://dx.doi.org/10.1103/PhysRevA.68.050301
http://dx.doi.org/10.1103/PhysRevA.83.033816
http://dx.doi.org/10.1103/PhysRevA.83.033816
http://dx.doi.org/10.1103/PhysRevLett.85.1330
http://dx.doi.org/10.1103/PhysRevLett.85.1330
http://dx.doi.org/10.1088/1367-2630/13/5/053048
http://dx.doi.org/10.1103/PhysRevA.77.043834
http://dx.doi.org/10.1103/PhysRevA.77.043834
http://dx.doi.org/10.1103/PhysRevA.55.100
http://arXiv.org/abs/arXiv:1107.5245

