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It has been known that one reservoir of driven two-level atoms can establish two-mode interactions and
generate bipartite continuous-variable entangled light. Here we show that three-mode interactions can be created
by combining two such reservoirs, each of which interacts with two adjacent fields in frequency. It is shown that the
van Loock–Furusawa criteria [Phys. Rev. A 67, 052315 (2003)] are well satisfied for a wide range of the relevant
parameters. This determines that tripartite continuous-variable Greenberger-Horne-Zeilinger entanglement is
obtainable. The scalability to more fields is straightforward, allowing an alternative implementation of a
multipartite quantum networks with continuous variables.
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I. INTRODUCTION

Continuous-variable (CV) entanglement has great potential
in quantum networks and information processing [1]. Possible
applications range from quantum teleportation [2–6] to con-
trolled dense coding [7] and secret sharing [8]. The simplest
teleportation schemes rely on bipartite entanglement. How-
ever, more sophisticated protocols may require entanglement
of three parts or more [9–12]. Greenberger-Horne-Zeilinger
(GHZ) state is one of important types of genuine multiple
entanglement. In particular, the tripartite CV GHZ state
[13] is a three-mode momentum (position) eigenstate with
total momentum p1 + p2 + p3 = 0 (total position x1 + x2 +
x3 = 0) and relative positions xi − xj = 0 (relative momenta
pi − pj = 0), i, j = 1,2,3, i �= j , and exhibits maximum
entanglement. Experimental progress has been made by using
independent squeezed fields and beam splitters [9–12].

In the context of cavity quantum electrodynamics, the atom-
field interactions are fundamental mechanisms for creating
the multipartite entanglement without use of initially prepared
squeezing. Typically, there are the following three kinds of
related systems for the generation of two-mode CV entan-
glement: The first one is a two-photon-correlated emission
laser, where the laser gain and the quantum correlation are
established by combining Raman and electromagnetically
induced transparency (EIT) [14–18] interactions [19–21] in
lambda systems. For this case, CV entanglement is compatible
with large numbers of photons in the two modes. The second
kind of systems is to use dispersive interactions of atoms
with both the driving and cavity fields to create parametric
conversion [22,23]. In this way one can obtain a two-mode
squeeze operator and thus the Einstein-Podolsky-Rosen en-
tangled light [24]. The third kind of schemes is based on the
wave-mixing interactions in near-resonant systems. Typically,
two-level atoms are used for this purpose [25,26]. The new
photons are emitted into the cavity modes simultaneously
when the atoms absorb two photons from the strong driving
field. The frequencies of the cavity fields are determined by
Rabi resonances. The common essence in the three different
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kinds of systems mentioned above is the two-photon process,
which is responsible for the desired quantum correlations.

To obtain multipartite entanglement, it seems that one has to
resort to multilevel atomic systems [27–35], which are usually
driven by two or more strong fields. On the one hand, the strong
driving fields could cause cross couplings between adjacent
transitions in frequency. The cross couplings lead not only to
Stark shifts but also to remarkable phase damping [16,36].
This damping will spoil the desirable quantum correlations.
On the other hand, the dressed multilevel atomic systems
generally have closely spaced dressed states, which gives rise
to a difficulty in separating Rabi resonances. At the same
time, the coupling of the cavity fields to the adjacent dressed
transitions will play an opposite role in creating the desired
quantum correlations.

Here we propose an alternative scalable scheme for con-
current interactions and multipartite GHZ entanglement. In
the present work, we focus on the case where three cavity
fields interact with two atomic ensembles. Each ensemble
is only driven by one external field and is coupled to two
weak cavity fields of adjacent frequencies. By using the van
Loock–Furusawa [37] criteria we examine the three-mode
correlations. The results show that GHZ entanglement can
be achieved. The present scheme has the following three
advantages: First, GHZ entanglement is generated without
the use of the initial squeezed states. All field components
are amplified from the vacuum fields, unlike those that use
initially squeezed fields [9–12]. Second, each atomic ensemble
is driven by a single driving field, and the cross couplings on the
adjacent transitions are greatly reduced. Last but not the least,
this scheme is more easily scalable to multimode systems.

The remaining parts of the present paper are organized as
follows: In Sec. II, we describe our model and derive the master
equation. In Sec. III, we calculate the correlations of the three
fields and examine whether tripartite entanglement criteria are
satisfied. In Sec. IV, we give realistic considerations of our
proposal. A summary is given in Sec. V.

II. MODEL AND MASTER EQUATION

Our scheme uses two ensembles of two-level atoms in an
optical cavity, as shown in Fig. 1. The atoms are cooled in a
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FIG. 1. (Color online) Possible cavity setsup. Two atomic ensem-
bles are respectively driven by two strong fields and three cavity fields
a1, a2 and a3 are generated.

standard magneto-optical trap [38,39]. Ensemble j consists of
Nj atoms and is driven by one external field, j = 1,2. Three
cavity fields are generated, which are described by annihilation
and creation operators al and a

†
l , respectively, with l = 1,2,3.

The fields a1 and a3 are coupled to the two different atomic
ensembles 1 and 2, respectively, while the field a2 is coupled
to both ensembles. The atoms in two different ensembles have
different but near-resonance frequencies. Figure 2 shows the
frequency positions of the atoms ω̄1 and ω̄2, the applied fields
ω1 and ω2, and the cavity fields ν1, ν2, and ν3. In the rotating
wave approximation and in an appropriate rotating frame, we
derive the master equation for the density operator ρ of the
atom-field composite system as [40]

ρ̇ = − i

h̄
[H,ρ] + Lρ, (1)

with the Hamiltonian H = H0 + H1, where

H0 =
2∑

j=1

Nj∑
μj =1

h̄

[
�jσ

μj

11 + �j

2

(
σ

μj

10 + σ
μj

01

)]
(2)

describes the interaction of the driving fields with the atoms,
and

H1 =
2∑

j=1

Nj∑
μj =1

h̄σ
μj

10

(
g

(j )
− aj e

−i�
(j )
− t + g

(j )
+ aj+1e

−i�
(j )
+ t

) + H.c.

(3)

represents the interaction of the cavity fields with atoms.
Here H.c. is the Hermitian conjugate. For the μj th atom,
σ

μj

αβ = |α〉μj
〈β| (α,β = 0,1) are the atomic spin-flip operators

when α �= β and the projection operators when α = β. The
quantity �j = ω̄j − ωj is the detuning between the atomic
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FIG. 2. (Color online) Frequencies of the atoms ω̄1 and ω̄2, the
applied fields ω1 and ω2, the cavity fields ν1, ν2, and ν3.

ensemble j and the driving field j , and �
(j )
+ = νj+1 − ωj

(�(j )
− = νj − ωj ) denotes the detuning between the applied

field j and the higher (lower) sideband. �j is the Rabi
frequency and is assumed to be real. g

(j )
+ (g(j )

− ) is the coupling
strength between the atomic ensemble j and the higher
(lower) sideband. The decay term in Eq. (1) takes the form
Lρ = Laρ + Lcρ, where

Laρ =
2∑

j=1

Nj∑
μj =1

γj

2
D

[
σ

μj

01

]
ρ (4)

denotes the atomic relaxation and

Lcρ =
3∑

l=1

κl

2
D[al]ρ (5)

stands for the cavity loss. We have defined the superoperator
D[Q]ρ ≡ [Qρ,Q†] + [Q,ρQ†] for an operator Q. γ1,2 and
κ1,2,3 represent the atomic spontaneous decay rates and the
cavity decay rates, respectively.

It becomes evident that, in the presence of only the atomic
ensemble 1, an atom absorbs two photons from the driving
field 1 and then emits two sideband photons, as shown
in Fig. 3(a). Through two-photon process, entanglement is
created between the two sidebands a1 and a2. The case is
the same for the presence of only the atomic ensemble 2
[as shown Fig. 3(b)], and a2 and a3 is entangled with each
other. At present, we combine the above two cases. The field
a2 is coupled simultaneously to the two atomic ensembles.

|11
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FIG. 3. (Color online) Atomic transitions due to the driving fields
and the cavity fields (a) for ensemble 1 and (b) for ensemble 2.
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It is expected that three cavity fields are correlated via the
concurrent interactions.

We diagonalize the Hamiltonian H0 for the interaction of the
driving fields with two atomic ensembles to show the resonant
interactions of the cavity fields with the atoms [41]. For the
j th atomic ensemble, the dressed states are obtained as

|+〉j = sj |0〉j + cj |1〉j ,
(6)

|−〉j = cj |0〉j − sj |1〉j ,
where

sj =
√√√√1

2
− δj

2
√

1 + δ2
j

,

cj =
√

1 − s2
j ,

δj = �j

�j

are defined as the normalized detunings, with j = 1,2.
The dressed-states |±〉j have eigenvalues λ

(j )
± = 1

2 (�j ± dj ),
respectively, where we have used the generalized Rabi frequen-

cies dj =
√

�2
j + �2

j . Then the Hamiltonan (2) simplifies to

H0 =
2∑

j=1

Nj∑
μj =1

h̄
(
λ

(j )
+ σ

μj

++ + λ
(j )
− σ

μj

−−
)
,

where σ
μj

±± = |±〉μj
〈±|. We assume the driving fields to be

strong (dj � γj ) and the cavity fields to be resonant with the
Rabi sidebands �

(j )
+ = −�

(j )
− = dj [42,43]. After applying a

unitary transformation U = exp(−iH0t/h̄) and neglecting the
rapidly oscillating factors exp(±idj t) and exp(±2idj t), we
rewrite the Hamiltonian for the interaction of the cavity fields
with the two atomic ensembles as

H1 =
2∑

j=1

Nj∑
μj =1

h̄σ
μj

+−
(
g

(j )
− c2

j aj − g
(j )
+ s2

j a
†
j+1

) + H.c. (7)

Correspondingly, the atomic damping term becomes

Laρ =
2∑

j=1

Nj∑
μj =1

γj

2

{
c4
jD[σ

μj

−+]ρ + s4
jD[σ

μj

+−]ρ

+ c2
j s

2
jD[σ

μj

++ − σ
μj

−−]ρ
}
. (8)

We assume that the cavity relaxation times κ−1
l (l = 1,2,3)

are much larger than the atomic relaxation times γ −1
j (j =

1,2). Then we can work in the adiabatic approximation and
eliminate the atomic variables from the coupled system [40].
In the linear theory [40,43], the cavity fields do not change the
atomic populations. The equation for the dressed populations
P ±

j = (1/Nj )
∑Nj

μj =1〈σμj

±±〉 is derived as

Ṗ +
j = γj s

4
j P

−
j − γj c

4
jP

+
j , (9)

together with the closure relation P +
j + P −

j = 1. In the steady
state we have the dressed populations

P +
j = s4

j

c4
j + s4

j

, P −
j = c4

j

c4
j + s4

j

. (10)

Finally the master equation for the cavity fields is obtained
as

ρ̇ = 1

2

3∑
l=1

{λl[a
†
l ρ,al] + (ξl + κl)[alρ,a

†
l ]}

− 1

2

2∑
j=1

{χj,j+1([ajρ,aj+1] + [aj ,ρaj+1])

+χj+1,j ([aj+1ρ,aj ] + [aj+1,ρaj ])} + H.c., (11)

where the λl (l = 1,2,3) terms together with their Hermitian
conjugates indicate the gain to the cavity mode al due to the
medium, the ξl terms together with their Hermitian conjugates
represent the absorption, and the χj,j+1 and χj+1,j (j = 1,2)
terms together with their Hermitian conjugates describe the
cross couplings between the cavity fields j and j + 1. These
parameters read

λ1 = c4
1A

−
1 P +

1 ,

λ2 = s4
1A

+
1 P −

1 + c4
2A

−
2 P +

2 ,

λ3 = s4
2A

+
2 P −

2 ,

ξ1 = c4
1A

−
1 P −

1 ,

ξ2 = s4
1A

+
1 P +

1 + c4
2A

−
2 P −

2 ,

ξ3 = s4
2A

+
2 P +

2 ,

χ12 = c2
1s

2
1B1P

−
1 ,

χ21 = c2
1s

2
1B1P

+
1 ,

χ23 = c2
2s

2
2B2P

−
2 ,

χ32 = c2
2s

2
2B2P

+
2 ,

A±
j = 2|g(j )

± |2Nj�
−1
j ,

Bj = 2g
(j )
+ g

(j )
− Nj�

−1
j ,

�j = γj

(
1

2
+ c2

j s
2
j

)
.

In what follows we will show that the cross-coupling terms are
responsible for tripartite entanglement.

III. FIELD CORRELATIONS AND INSEPARABILITY

Here we will demonstrate genuine tripartite entanglement in
our system. To do this we follow the standard techniques [44]
and calculate the correlation of the generated fields. Choosing
the normal order a

†
1, a

†
2, a†

3, a1, a2, a3, using the generalized P

representation [45], and defining the corresponding c-number
variables α

†
1, α

†
2, α

†
3, α1, α2, α3, we derive the Langevin

equations from the master equation (11) as

α̇1 = λ̃1α1 + χ̃12α
†
2 + Fα1 ,

α̇2 = λ̃2α2 − χ̃12α
†
1 + χ̃23α

†
3 + Fα2 , (12)

α̇3 = λ̃3α3 − χ̃23α
†
2 + Fα3 ,

together with those equations for α
†
1, α

†
2, and α

†
3. Here we

have used the parameters λ̃l = 1
2 (λl − ξl − κl) and χ̃jk =

1
2 (χjk − χkj ) for conciseness, l,j,k = 1,2,3, j < k. The fluc-
tuating terms have the vanishing means 〈Fx(t)〉 = 0 and the
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white noise correlations 〈Fx(t)Fy(t ′)〉 = Dxyδ(t − t ′). The
nonvanishing diffusion coefficients are D

α
†
1α1

= λ1, D
α
†
2α2

=
λ2, D

α
†
3α3

= λ3, Dα1α2 = 1
2 (χ12 + χ21), and Dα2α3 = 1

2 (χ23 +
χ32), and Dxy = Dyx and Dy†x† = D

†
xy . Arranging the field

variables together in the vector R = (α1, α2, α3, α
†
1, α

†
2, α

†
3)T

and writing δR = R − 〈R〉, we obtain the linearized Langevin
equations as

d

dt
δR(t) = −GδR(t) + F (t), (13)

where the drift matrix G can easily be obtained from Eq. (12).
The correlation matrix for the noise term 〈F (t)FT (t ′)〉 =
Dδ(t − t ′) is easily obtained from the above diffusion co-
efficients. The system reaches its steady state and is stable
when all of the eigenvalues of G have positive real parts.
The linearized Langevin equations (13) can be rewritten in
terms of the frequency spectrum, which is defined by δR(ω) =

1√
2π

∫
dte−iωt δR(t). Thus we can calculate the correlation

spectrum 〈δR(ω)δRT (ω′)〉 = S(ω)δ(ω + ω′), where

S(ω) = (G − iωI )−1D(GT + iωI )−1. (14)

Here we are interested in the case where the density matrix
is not separable in any form, i.e., the tripartite CV GHZ-type
states. We use a set of conditions to investigate the presence
of entanglement in this system, which was put forward by
van Loock and Furusawa [37]. The guaranty of any two of
the following inequalities is sufficient to demonstrate true CV
tripartite entanglement:

Vjk = 〈[
δ
(
Xo

j − Xo
k

)]2〉 + 〈[
δ
(
Y o

j + Y o
k + flY

o
l

)]2〉
< 4, (15)

where j,k,l = 1,2,3 and j < k �= l. We have defined the
position and momentum operators Xo

l = aout
l + a

†out
l and Y o

l =
−i(aout

l − a
†out
l ) for the output fields aout

l , which relate to
the intracavity fields al and the input fields ain

l through the
relations [44]: ain

l + aout
l = √

κlal . The factors fl are arbitrary
real numbers to minimize the variances in Eq. (15) and are
calculated as

fl = −
〈
δY o

j δY o
l

〉 + 〈
δY o

k δY o
l

〉
〈(
δY o

l

)2〉 . (16)

Here we use the vacuum inputs and derive the spectra of the
output fields Vjk(ω). The required autocorrelation spectra and
cross-correlation spectra are, respectively,

〈(
δXo

j

)2〉
(ω) = 〈(

δY o
j

)2〉
(ω) = 1 + κj

〈(
δXj

)2〉
(ω), (17)

and 〈
δXo

j δX
o
k

〉
(ω) = (−1)j−k

〈
δY o

j δY o
k

〉
(ω)

= √
κjκk〈δXjδXk〉(ω), (18)

where we have used the expressions 〈(δXo
j )2〉(ω)δ(ω +

ω′) = 〈δXo
j (ω)δXo

j (ω′)〉, 〈δXo
j δX

o
k〉(ω)δ(ω + ω′) =

〈δXo
j (ω)δXo

k (ω′)〉 (j,k = 1,2,3; j �= k), and the similar

expressions for the position operators Xj = aj + a
†
j of the

intracavity fields aj .
So far we get the measurable spectral quantities outside

the cavity Vjk(ω). Below, we present the following numerical

results. We assume that g(j )
+ = g

(j )
− = gj (j = 1,2) and rescale

the decay rates in units of γ1. Cooperativity parameters are
defined as Cj = |gj |2Nj/γ

2
1 . In Fig. 4 we plot the output

zero-frequency spectra Vjk(0) as functions of the normalized
detuning δ1 for [Figs. 4(a) and 4(b)] δ2 = ±0.2, [Figs. 4(c) and
4(d)] δ2 = ±0.5, [Fig. 4(e)] δ2 = 1, and [Fig. 4(f)] δ2 = −2.
The other parameters are γ1 = γ2 = 1, κ1 = κ2 = κ3 = 0.1,
C1 = C2 = 20. We see from this figure that, for various values
of the normalized detuning δ2, there are wide ranges of the
normalized detuning δ1 where at least two of the correlations
are below 4. Any two correlations falling below 4 are sufficient
for the occurrence of tripartite GHZ entanglement. Due to the
symmetry of the system, if we exchange δ1 and −δ2, the curves
V12 and V23 will interchange. In fact, V12 = V23 at δ1 = −δ2

is a signature of this feature.
In Fig. 5 we show the correlation spectra for different

parameters. For the sake of comparison we have taken Fig. 4(d)
as an example, which is replotted in Fig. 5(a). Figure 5(b) is for
different cooperativity parameters C1 = 10, C2 = 20, Fig. 5(c)
is for the different rates of atomic decay γ1 = 1, γ2 = 5,
and Fig. 5(d) is for different rates of cavity loss κ1 = 0.1,
κ2 = 0.15, κ3 = 0.2. In Figs. 5(b)–5(d), the other parameters
are the same as in Fig. 5(a). We clearly see that the correlation
spectra are insensitive to various parameters. This means that
the above GHZ entanglement is achievable for a wide range
of parameters.

From the master equation (11) [or the Langevin equations
Eqs. (12)], we can see that the above nonclassical correlations
are attributed to the cross couplings described by the χ

terms. These terms that cause the correlation 〈δα1(ω)δα2(−ω)〉
(〈δα2(ω)δα3(−ω)〉) in Eq. (18) originate from the absorption
of two photons from the driving fields and the emission of
two sideband photons into the cavity fields. For the atomic
ensemble 1, an atom absorbs two photons from the driving
field 1 and then emits two sideband photons, as shown in
Fig. 3(a). Through a two-photon process, entanglement is
created between the two sidebands a1 and a2. Similarly, for
the atomic ensemble 2 [as shown Fig. 3(b)], a2 and a3 is
entangled with each other. Our case combines the above two
ensembles. The field a2 is coupled simultaneously to the two
atomic ensembles. This plays a crucial role in the correlations
between the three modes a1, a2, and a3. By virtue of the
connecting action of a2, quantum correlations between the
indirect-coupling cavity fields a1 and a3 can also be established
[〈δα1(ω)δα†

3(−ω)〉 �= 0]. This determines the inseparability
of the cavity fields a1 and a3. In a word, by the concurrent
interactions, three cavity fields become fully inseparable.

It is hard to give the exact conditions for the normalized
detunings δ1,2 under which entanglement is existent. We can
make a rough estimate of the parameters for entanglement.
First, we note that no entanglement occurs when δ1 = 0 and/or
δ2 = 0 (i.e., when either or both of the driving fields are
resonant with the atoms). When δj = 0 (j = 1,2) we have
c2
j = s2

j = 1
2 , P +

j = P −
j = 1

2 , which correspond to λ̃1 = − κ1
2 ,

χ̃12 = 0 for j = 1 and to λ̃3 = − κ3
2 , χ̃23 = 0 for j = 2. We

see from Eq. (12) that, once on resonance, a1 and/or a3 are
only damped by the vacuum reservoir but are not amplified by
any mechanism, let alone the cross coupling between a1 and
a2 and/or the coupling between a2 and a3 [42,43]. Therefore,

032320-4



SCALABLE CONTINUOUS-VARIABLE ENTANGLEMENT OF . . . PHYSICAL REVIEW A 85, 032320 (2012)

-2 -1 0 1
0

1

2

3

4

5

-2 -1 0 1
0

1

2

3

4

5

-2 -1 0 1
0

1

2

3

4

5

-2 -1 0 1 2
0

1

2

3

4

5

-2 -1 0 1 2
0

1

2

3

4

5

-4 -2 0 2 4
0

1

2

3

4

5

V
12

V
23

V
13

(a)

V
12

V
23

V
13

(b)

V
12

V
23

V
13

(c)

V
12

V
23

V
13

(d)

V
jk
(0)

V
jk
(0)

V
jk
(0)

V
12

V
23

V
13

(e)

V
12

V
23

V
13

(f)

FIG. 4. (Color online) Output zero-frequency spectra Vjk(0) as functions of normalized detuning δ1 for [(a), (b)] δ2 = ±0.2, [(c), (d)]
δ2 = ±0.5, (e) δ2 = 1, and (f) δ2 = −2. The other parameters are listed in the text. Any two of the correlations falling below 4 are sufficient to
demonstrate that genuine tripartite entanglement is present.

tripartite entanglement appears only when the driving fields
are off resonance with the atomic transitions. Similarly, the
detunings are required for the related schemes, such as the
double lambda schemes [20,21], where no entanglement
occurs on exact double resonances, as was pointed out in
Ref. [21].

Second, the entanglement criteria are well satisfied for the
present scheme when the two normalized detunings δ1 and δ2

have the oppositive signs. This is referred to as a characteristic
feature as above. In order to show this feature clearly, we
plot the output zero-frequency spectra V12(0), V23(0), and
V13(0) in Fig. 6 for various ratios of the normalized detunings:
Fig. 6(a), δ2 = − 1

3δ1; Fig. 6(b), δ2 = − 1
2δ1; Fig. 6(c), δ2 =

−δ1; Fig. 6(d), δ2 = −2δ1; Fig. 6(e), δ2 = −3δ1; and Fig. 6(f),
δ2 = −4δ1. Let us examine first the right wing (δ1 > 0). Any
two of these three curves dropping below 4 are sufficient for
tripartite GHZ entanglement. Indeed, for various cases, there
is a range where there are at least two curves falling below
4. For δ2 = −δ1, the curves V12 and V23 coincide and both

fall below 4 when δ1 > 0.1. As the ratio δ2/δ1 deviates from
−1, the minimal value of δ1 for two correlations less than 4
rises slightly. For δ2 = − 1

2δ1, both V13 and V23 are less than
4 when δ1 > 0.5, and for δ2 = − 1

3δ1, both V12 and V23 are
reduced below 4 when δ1 > 1.16. For δ2 = −2δ1, both V12

and V13 descend below 4 when δ1 > 0.25. For δ2 = −3δ1 and
δ2 = −4δ1, both V12 and V23 are smaller than 4 when δ1 > 0.38
and δ1 > 0.55, respectively. For various cases, all correlations
approach 4 when δ1 is large (i.e., when δ1 approaches 4). This
is because the atom-field interactions become so weak for the
large detunings. Roughly, we have the range of the normalized
detunings for entanglement in the δ1 > 0 wing

−3 � δ2

δ1
� −1

3
, z1 � (δ1, − δ2) � 4, (19)

where 0.1 � z1 � 1.16, and the parameter z1 has the minimal
value 0.1 for δ2/δ1 = −1, and becomes large as δ2/δ1 deviates
from −1. Then let us turn to the left wing (δ1 < 0). We can
see a limited range where the curves V12 and V23 fall below
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FIG. 5. (Color online) Output zero-frequency spectra Vjk(0) as
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other parameters are the same as in panel (a).

4. For δ2/δ1 = −1, the curves V12 and V23 are identical and
fall below 4 in the range of δ1 ∼ (−1, − 0.1). As the ratio
δ2/δ1 deviates from −1, the range of δ1 for entanglement
becomes narrow. For δ2 = − 1

2δ1 and δ2 = −2δ1, both V12 and
V23 are less than 4 in the regions of δ1 ∼ (−0.95, − 0.21) and
(−0.47, − 0.11), respectively. Roughly, we have the limited
range of the normalized detunings for entanglement in the
δ1 < 0 wing:

−2 � δ2

δ1
� −1

2
, z2 � (δ1, − δ2) � z3, (20)

where −1 � z2 � 0.47, −0.21 � z3 � −0.1, and the param-
eter z2 (z3) has minimal (maximal) value −1 (−0.1) when
δ2/δ1 = −1 and rises (falls) as δ2/δ1 deviates from −1.

Third, as a comparison, we find that the entanglement
criteria are not well satisfied when the normalized detunings
δ1 and δ2 have the same signs. In this case, we show the
output zero-frequency correlations in Fig. 7 for Fig. 7(a),
δ2 = 1

3δ1; Fig. 7(b), δ2 = 1
2δ1; Fig. 7(c), δ2 = δ1; Fig. 7(d),

δ2 = 2δ1; Fig. 7(e), δ2 = 3δ1; Fig. 7(f), δ2 = 4δ1. This figure
shows that when 0 < δ2/δ1 < 1, there is a narrow region in
the left wing where both V12 and V23 are below 4. Such a
narrow region is transferred to the right wing when δ2/δ1 > 1.
In both cases, however, either V23 or V12 is just slightly below
4. This indicates that the entanglement criteria are not so well
satisfied even in such a narrow region when the normalized
detunings have the same signs. The remarkable difference has
its physical origin. We see from the middle equation of Eq. (12)
that the modes a1 and a3 are coupled to the mode a2 through the
cross-coupling coefficients −χ̃12 and χ̃23, respectively, where
the minus sign means an extra phase difference π . When δ1

and δ2 have the same signs, so do χ̃12 and χ̃23. This determines

that the interactions of a1 and a3 with a2 have the opposite
roles. It is not difficult to understand that the detunings of
the same signs are not so suitable for creating entanglement.
The case is reversed for the detunings of the opposite signs.
When δ1 and δ2 have the opposite signs, so do χ̃12 and χ̃23,
which instead indicates that the fields a1 and a3 are coupled to
a2 with the same phase. By comparison, as a rough estimate,
Eqs. (19) and (20) turn out to be good conditions for tripartite
GHZ entanglement in the present scheme.

IV. REALISTIC CONSIDERATIONS

So far we have shown the quantum correlations by
considering a zero-temperature environment and neglecting
the driving-field linewidths. At nonzero temperature the bath
has nonzero thermal photons. Then we should include the
effects of thermal photons [46]. The average number of thermal
photons of frequency ωT is n̄(ωT ) = [exp(h̄ωT /kT ) − 1]−1,
where k is the Boltzmann constant and T is the thermal bath
temperature. At room temperature (T = 300 K), λ ≈ 50 μm
and ωT ≈ 6 × 1012 Hz correspond to h̄ωT /kT = 1. For ωT �
6 × 1012 Hz, n̄(ωT ) → 0. For example, for λ = 620.1 nm and
ωT = 2π × 4.838 × 1014 Hz, we have h̄ωT ≈ 2 eV, which is
much larger than the room temperature energy, kT ≈ 1/40 eV.
This corresponds to a negligible average number of thermal
photons n̄ ≈ e−80 ≈ 0. In this case the thermal reservoir has
a negligible effect. If ωT is comparable to 6 × 1012 Hz, for
example, λ = 2 × 104 nm and ωT = 2π × 1.5 × 1013 Hz, we
have an average thermal photon number of n̄ = 0.1. In such
a situation, the thermal reservoir effect has to be included.
According to the standard reservoir theory [46], we add to
Eq. (5) the additional term

L′
cρ =

3∑
l=1

κln̄l

2
(D[al]ρ + D[a†

l ]ρ). (21)

On the other hand, the applied driving fields usually have the
fluctuating phases, which correspond to finite bandwidths [40].
We assume �j (t) to be the fluctuating phases associated with
Rabi frequencies �j . These fluctuations are characterized by
the random forces �̇j (t) = χj (t) with zero averages and the
white noise correlations [46]: 〈χj (t)〉 = 0 and 〈χj (t)χj (t ′)〉 =
γDj

δ(t − t ′), where γDj
are the linewidths of the laser fields

�j . In this case we add to Eq. (4) an additional atomic damping
term

L′
aρ =

2∑
j=1

Nj∑
μj =1

γDj

4
D

[
σ

μj

11 − σ
μj

00

]
ρ. (22)

Using the unitary transformations in Eq. (6), we rewrite the
additional term as

L′
aρ =

2∑
j=1

Nj∑
μj =1

γDj

4

{
4c2

j s
2
j (D[σ

μj

+−]ρ + D[σ
μj

−+]ρ
)

+ (
c2
j − s2

j

)2D[σ
μj

++ − σ
μj

−−]ρ
}
. (23)

The equation for the dressed populations P ±
j is changed as

Ṗ +
j = γj s

4
j P

−
j − γj c

4
jP

+
j + 2γDj

c2
j s

2
j (P −

j − P +
j ), (24)
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FIG. 6. (Color online) Output zero-frequency spectra Vjk(0) as functions of normalized detuning δ1 for (a) δ2 = − 1
3 δ1, (b) δ2 = − 1

2 δ1,
(c) δ2 = −δ1, (d) δ2 = −2δ1, (e) δ2 = −3δ1, and (f) δ2 = −4δ1.

together with the closure relation P +
j + P −

j = 1. At the steady
state we obtain the dressed populations

P +
j = γj s

4
j + 2γDj

c2
j s

2
j

γj

(
c4
j + s4

j

) + 4γDj
c2
j s

2
j

,

P −
j = γjc

4
j + 2γDj

c2
j s

2
j

γj

(
c4
j + s4

j

) + 4γDj
c2
j s

2
j

. (25)

Taking into account the change in the dressed populations
and changing the parameters in Eq. (11) as λl → λl +
κln̄l , ξl → ξl + κln̄l (l = 1,2,3) together with �j → �j +
γDj

(c4
j + s4

j ) (j = 1,2), we obtain the master equation for the
cavity fields. Again we can follow the same steps as above
to give the correlations. For simplicity, we assume that the al

modes have the same average thermal photon numbers n̄l = n̄,

and that the driving fields have the same linewidths γDj
= γD .

The effects of the realistic factors on the quantum correlations
are presented in Figs. 8 and 9. Figure 8 shows the effects of the
thermal photons. The parameters are Fig. 8(a), n̄ = 0; Fig. 8(b),
n̄ = 0.05; Fig. 8(c), n̄ = 0.1; and Fig. 8(d), n̄ = 0.2. The other
parameters are γD = 0 and those as in Fig. 4(d). It is clear that
the thermal photons lead to significant reduction of correlation.
With increasing numbers of thermal photons, the correlation
spectra are further suppressed. However, even for n̄ = 0.2,
we have good entanglement. In Fig. 9 we show the effects of
the driving-field linewidths for Fig. 9(a), γD = 0; Fig. 9(b),
γD = 0.25; Fig. 9(c), γD = 0.5; and Fig. 9(d), γD = 1. The
other parameters are n̄ = 0 and those as in Fig. 4(d). Although
the linewidth varies from γD = 0 to γD = 1, the correlation
spectra are not significantly changed. It shows clearly that the
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FIG. 7. (Color online) Output zero-frequency spectra Vjk(0) as functions of normalized detuning δ1 for (a) δ2 = 1
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present scheme is robust against the thermal fluctuations and
laser linewidths.

For experimental realization, the present scheme is acces-
sible in alkali-metal atomic systems. In order to avoid the
Doppler effect and to resolve the fine levels we use two
ensembles of cold atoms [38,39]. As an example, we can
use 87Rb D2 transition hyperfine structure for the atomic
ensembles. We employ the |5S1/2,F = 2〉 ↔ |5P3/2,F

′ = 2〉
transition for the first ensemble, and the second ensemble
uses the |5S1/2,F = 2〉 ↔ |5P3/2,F

′ = 3〉 transition. The two
transitions are separated from each other by 267 MHz. Two
hyperfine levels |5P3/2,F

′ = 1〉 and |5P3/2,F
′ = 0〉 lie below

the lower excited state by 157 and 229 MHz, respectively.
When �1 is far less than 157 MHz, the two adjacent levels are
far-off resonance and the additional Stark shifts are negligibly
small. Since |5S1/2,F = 1〉 is below |5S1/2,F = 2〉 by 6.8 GHz
and |5P3/2,F

′ = 3〉 is 267 MHz above |5P3/2,F
′ = 2〉, we

can use the transition |5S1/2,F = 1〉 ↔ |5P3/2,F
′ = 0〉 as a

repumping transition.

Finally, it is interesting to compare the present system
with the existing multilevel schemes, which are divided into
three kinds in the introduction paragraph. The essence in
common is to use the two-photon processes. The remarkable
difference between them lies in that the two-photon processes
are created in different circumstances. First, for the correlated
emission laser schemes [19–21], the two-photon process is
established by combining the EIT and Raman transitions in
lambda systems to form a loop of transitions. In the loop,
two cavity fields are in the two-photon interactions, which
occurs between the resonantly or near-resonantly coupled
atomic levels. By such arrangements, the atomic coherence
by the resonant or near-resonant driving is responsible for
both the laser gain and the quantum entanglement. Second, for
those schemes based on the parametric interactions [22,23], the
atoms are almost not excited and the field operators are isolated
from the atomic operators. Through a loop of transitions, the
involved cavity fields can be made to be in a two-photon
interaction. However, the susceptibility is weak due to the
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fact that all fields, including the driving and cavity fields, are
far off resonance with the atoms.

Our model belongs to the third kind of schemes, which
are based on the wave-mixing interactions in near-resonant
systems [27–35]. The common physics is to use the Rabi
resonances to create the two-photon interactions and the
quantum correlations between the cavity fields [42,43]. The
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The other parameters are n̄ = 0 and those as in Fig. 4(d).

essential difference of the present scheme from the previous
ones lies in the structure of the dressed states [41]. Our system
involves two-level atoms, the dressed states of which are in
an infinite ladder of doublets. The dressed states of the same
doublet can be sufficiently separated simply by increasing the
driving-field amplitude and/or the atom-field detuning. The
classic example is the Mollow structure of the resonance
fluorescence spectrum [40–43]. The Rabi resonances are
separated simply by the generalized Rabi frequency. In sharp
comparison, the three-or-more-level systems have an infinite
cascade of triplets or more of dressed states. Within the
same multiplets, the dressed states generally are not equally
spaced unless all involved fields are resonant with respective
transitions. More often than not, there are two or more that
are closely spaced. In this case, the adjacent Rabi resonances
are not easily separated from each other. Such examples were
verified for the resonance fluorescence spectrum of an off-
resonantly driven multilevel atom [47–49]. For the close Rabi
resonances, it is difficult to choose and control frequencies of
the cavity fields. Once a cavity field is coupled to adjacent
dressed transitions, different transitions will play opposite
effects on the quantum correlations. Clearly, this increases
the difficulty in obtaining the desired quantum correlations.
The above comparison shows clearly that it is advantageous
to use a cascade of two-level atomic ensembles as in our
scheme.

Another advantage lies in that the frequencies of the cavity
fields can be controlled independently for the present two-level
scheme but not for the multilevel schemes. As is well known,
varying any driving field in multilevel systems will modify
eigenvalues of all dressed states. In other words, all Rabi
resonances change their frequencies so long as any driving
field is varied. As a consequence, the frequencies of all the
cavity fields from the Rabi resonances are modified due to
the change in any driving field. However, the case differs
completely for the the present scheme. Different ensembles
of atoms are separated from each other, each of which is
driven by a different driving field. When we change the
dressed states of one atomic ensemble, the dressed states of
another atomic ensemble can be kept unchanged. Therefore,
we can first fix the frequencies of the cavity fields a1 and
a2 as ν1,2 = ω1 ∓√

�2
1+�2

1 by controlling the first driving
field, and then adjust the frequency of the cavity field a3 as
ν3 = ω2 +√

�2
2+�2

2 by varying the second driving field. This
can be generalized to more modes in the same way.

V. CONCLUSION

In summary, we have presented a scheme for three-mode
interactions and GHZ entanglement. This scheme involves
two atomic ensembles, each of which is driven by a single
driving field. The concurrent interactions are established since
the cavity field of the in-between frequency is simultaneously
coupled to the higher Rabi sideband of one ensemble and to the
lower Rabi sideband of the other. It has been shown that GHZ
entanglement is achievable for a wide range of parameters.
Such a scheme is straightforwardly scalable when more atomic
ensembles of close frequencies are included. This device can
be used as a useful multipartite entangled resource for the CV
quantum networks and information.
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