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Multipartite entanglement generation assisted by inhomogeneous coupling
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We show that controllable inhomogeneous coupling between two-level systems and a common data bus
provides a fast mechanism to produce multipartite entanglement. Our proposal combines resonant interactions
and engineering of coupling strengths—between the qubits and the single mode—leading to well-defined
entangled states. Furthermore, we show that, if the two-level systems interact dispersively with the quantized
mode, engineering of coupling strengths allows the controlled access of the symmetric Hilbert space of
qubits.
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I. INTRODUCTION

Nowadays, complex quantum architectures are being de-
veloped aiming at physical implementations in quantum
information processing [1–10]. Their complexity is often
revealed by intrinsic inhomogeneities which may limit the
quantum control, for example, to prepare entangled states.
This situation is found in a quantum dot, where the spatial
distribution of the single-electron wave function makes its
coupling to the spin bath position-dependent [2]. Inho-
mogeneities also appear in circuit QED [3–5], where the
coupling strength of light-matter interaction depends on
intrinsic parameters of qubits [6,7]. Other physical scenarios
exhibiting inhomogeneities are impurities embedded in silicon
[8], as well as hybrid systems involving NV centers [9,10].
Nonetheless, the advent of these platforms—particularly cir-
cuit QED—brings new possibilities for engineering direct
or indirect coupling among qubits in order to produce
multipartite entangled states [11]. Most implementations are
based on slow off-resonant interaction among the qubits
and a common data bus; however, resonant interactions
have the advantage that their gating time scales with the
inverse of the coupling strength, resulting in faster two-qubit
gates [12–14].

In this work, we show that engineering the inhomo-
geneities of the coupling strengths between the two-level
systems and a single-mode resonator, provides a fast mech-
anism for generating multipartite entangled states. First,
we discuss the simplest case of a two two-level system
interacting inhomogeneously with a single-mode resonator,
looking for the specific conditions to generate well-defined
amounts of entanglement. We extend this study to the
multipartite case, where our proposal allows the generation
of W entangled states. Second, we consider a dispersive
interaction among qubits and the single-mode resonator
such that the engineering of coupling strengths allows the
controlled access of the symmetric space of qubits. In
particular, we profit from the resulting quantum dynam-
ics to propose a mechanism to produce different classes
of entangled states. Finally, we present our concluding
remarks.

II. TWO-QUBIT SYSTEM INTERACTING
INHOMOGENEOUSLY WITH A SINGLE

QUANTIZED MODE

Let us start our discussion considering the simplest case
of a two-qubit system interacting with a single quantized
mode. A main assumption of our model will be the individual
addressing of qubits, allowing the controllability of their
coupling strengths with the single mode. We aim to generate
correlated states between qubits, so the physical mechanism
has to be the exchange of a single excitation mediated by
the quantum mode. If the first qubit is in the excited state,
the second qubit in the ground state, and the quantized mode
having no excitations, the single excitation located in the first
qubit will be transferred among the parties according to the
Hamiltonian

Ĥ = h̄χ1(|e1〉〈g1|â + |g1〉〈e1|â†)

+ h̄χ2(|e2〉〈g2|â + |g2〉〈e2|â†), (1)

where each qubit is coupled inhomogeneously (χ1 and χ2) to
the quantum mode. As the initial condition is |ψ0〉 = |e1g2〉|0〉,
the accessible Hilbert space for the composed system is
spanned by vectors {|e1g2〉|0〉,|g1g2〉|1〉,|g1e2〉|0〉}, so that the
state of the system reads

|ψ(t)〉 = c1(t)|e1g2〉|0〉 + c2(t)|g1g2〉|1〉 + c3(t)|g1e2〉|0〉.
(2)

The quantum dynamics supported by Hamiltonian (1)
induces entanglement between the qubits through their interac-
tion with the quantum bus. However, it would be noticeable to
produce maximal entanglement between the qubits in a single
step. From Eq. (2), a maximal entanglement could be achieved
when the probability amplitude c2(t) vanishes. The probability
amplitudes in Eq. (2) are given by

c1(t) = 1 + χ2
1

μ2
[cos μt − 1], (3)

c2(t) = −i
χ1

μ
sin μt, (4)
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c3(t) = χ1χ2

μ2
[cos μt − 1], (5)

where μ =
√

χ2
1 + χ2

2 . Imposing the condition c2(t) = 0,

we obtain c1(t) = 1 − 2χ2
1 /μ2 and c3(t) = −2χ1χ2/μ

2, thus
resulting in the entangled state

|ψ(t = π/μ)〉 =
(

1 − 2
χ2

1

μ2

)
|e1g2〉 − 2

χ1χ2

μ2
|g1e2〉. (6)

We realize that a maximally entangled state cannot be
achieved in a single step with resonant interactions and
both qubits having same the coupling strengths. Here the
inhomogeneous coupling will play a key role. In order to reach
a maximally entangled state |ψ(0)〉 = (|e1g2〉 + |g1e2〉)/

√
2,

the coupling strengths, χ1 and χ2, have to satisfy the relation
χ2 = −(

√
2 + 1)χ1 or χ2 = (

√
2 − 1)χ1. This simple analysis

shows that a suitable control of couplings strengths can be a
useful mechanism to control the access to the Hilbert space of
a two-qubit system. The natural extension of this idea is the
case of a N -qubit system.

Consider an array of N qubits, interacting inhomoge-
neously with the quantum mode. At resonance, this situation
can be described by the Hamiltonian

Ĥ = h̄
∑

i

χi(|ei〉〈gi |â + |gi〉〈ei |â†). (7)

Let us assume the kth qubit initially in the excited state and
the remaining qubits be in the ground state, that is, |ψ(0)〉 =
|gg, . . . ,ek, . . . ,gg〉. For this initial condition, the evolution
given by Hamiltonian (7) leads to the state

|�(t)〉 = c0(t)|g1g2, . . .〉|1〉
+

∑
i

ci(t)|g1g2, . . . ,eigi+1, . . .〉|0〉, (8)

where the probability amplitudes read

c0 = −i
χk

μ
sin μt, cj = δjk + χjχk

μ2
[cos μt − 1], (9)

with μ =
√∑

j χ2
j , ck(0) = 1, and cj �=k(0) = 0. From these

expressions we learn that inhomogeneous coupling allows
us to achieve a maximally multipartite entangled W state
resonantly and in a single step, by setting the interaction time
to t = π/μ and δjk − 2χjχk/μ

2 = 1/
√

N . This leads to the
following condition for the coupling strengths:∑

j χj∑
j χ2

j

= (1 −
√

N )
1

2χk

. (10)

For example, if the first qubit is initially excited and has
a coupling constant χ1, and the remaining qubits are in the
ground state with a coupling constant χ , the condition (10) is
fulfilled when χ1 = (1 + √

N )χ , resulting in the W state

|ψ(t = π/μ)〉 = 1√
N

∑
j

|gg, . . . ,ej , . . . ,gg〉|0〉. (11)

Thus, we have been able to find conditions under which in-
homogeneity allows the preparation of maximally multipartite
entanglement with a single resonant interaction. Nonetheless,
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FIG. 1. Fidelity of maximal entanglement as a function of the
number N of qubits. We have considered that the first qubit
has the experimental parameters following Ref. [20], while the
remaining ones follow the corresponding engineered coupling values.
Maximum coupling: χ1 = 54 MHz, cavity κ = 3.2 MHz, and the
qubit spontaneous emission rate γ = 0.6 MHz. The initial condition
is |ψ(0)〉 = |gg, . . . ,g〉|1〉.

this physical mechanism is limited to the generation of
entangled states involving a single excitation. Naturally, other
limitations are those imposed by dissipative effects acting on
the qubit or the quantum mode.

A physical setup where these ideas could be implemented,
considering the available experimental resources, is circuit
QED [3–5]. Two-qubit interactions mediated by a single
mode of a resonator have been reported by several experi-
mental groups [15–18]. In particular, in Ref. [16], the Tavis-
Cummings model [19] has been demonstrated experimentally
up to three qubits, reaching maximally entangled states.

As an example, in Fig. 1, the fidelity of the preparation
of a N -particle W state in a circuit QED setup is shown
as a function of the number of qubits. In this simulation,
we have considered dissipative mechanisms for cavity and
qubits (dephasing and relaxation) using parameters of recent
experiments [20]. It is clear that the fidelity of the W state
increases as a function of the number of qubits, as expected
from the higher effective coupling ∼√

Nχ .
Another physical setup where maximal entanglement can

be reached resonantly in a single step is trapped-ion systems
[21]. Here, an alternative procedure can be followed: Consider
the first qubit tuned in the blue sideband transition and second
qubit tuned in the red sideband one. For an initial condition
|ψ(0)〉 = |g1g2〉, the system will evolve within the subspace
spanned by {|g1g2〉|0〉,|e1g2〉|1〉,|e1e2〉|0〉}. Imposing similar
conditions as for the previous case, this procedure will lead
to the maximally entangled state |ψ(t = μπ )〉 = (|e1e2〉 +
|g1g2〉)/

√
2).

032319-2



MULTIPARTITE ENTANGLEMENT GENERATION ASSISTED . . . PHYSICAL REVIEW A 85, 032319 (2012)

|g

|e

|g

|e

FIG. 2. (Color online) Schematic representation of N qubits
coupled to a single mode with coupling strength g1 and other M

qubits with a coupling strength g2.

III. COLLECTIVE CONTROL OF SYMMETRIC
DICKE SPACE

A resonant interaction between qubits and the quantum
mode limits the possibility of generating other states than
a W state among qubits. As the quantum mode acts as
an intermediary system, we can explore a regime where it
can be adiabatically eliminated, allowing a direct transfer of
excitations between qubits. In this way, a set of qubits having
a given number of k excitations could directly interact with
another set of qubits having q excitations, giving rise to the
generation of states with k + q excitations. To this purpose,
we consider a collection of N qubits, coupled to a quantum
mode with coupling strengths g1 and detuned from the qubit
transition by 	1. In addition, we consider M qubits coupled
to the same quantum mode with coupling strengths g2 and
detuning 	2. This setup is schematically shown in Fig. 2. The
Hamiltonian describing this situation in the interaction picture
reads

Ĥ = h̄g1âŜ†ei	1t + h̄g2âĴ †ei	2t + H.c., (12)

where we have defined the collective operators Ŝ† =∑N
j=1 |e〉j 〈g| and Ĵ † = ∑M

j=N+1 |e〉j 〈g|. In the far off-
resonance regime, that is, 	1,	2 � g1,g2, an effective inter-
action between the N -qubit and the M-qubit subsystems arises.
Under the assumption that no photons are initially present in
the quantum mode, the effective Hamiltonian reads

Ĥeff = h̄λ1Ŝ
†Ŝ + h̄λ2Ĵ

†Ĵ

+ h̄�eff
[
Ŝ†Ĵ e−i(	1−	2)t + ŜĴ †ei(	1−	2)t], (13)

where λj = g2
j /	j , �eff = g1g2/	̃, and 	̃ = 2	1	2/(	1 +

	2). By noticing that

Ŝ†Ŝ =
N∑

i �=j=1

σ̂
†
i σ̂j +

N∑
j=1

|ej 〉〈ej |, (14)

Ĵ †Ĵ =
M∑

i �=j=N+1

σ̂
†
i σ̂j +

M∑
j=N+1

|ej 〉〈ej |, (15)

the Hamiltonian (13) can be rewritten in a more convenient
form Ĥeff = Ĥ0 + ĤI , where

Ĥ0 = h̄λ1

N∑
i �=j=1

σ̂
†
i σ̂j + h̄λ2

M∑
i �=j=N+1

σ̂
†
i σ̂j ,

(16)
ĤI = h̄�eff(Ŝ

†Ĵ e−iδt + ŜĴ †eiδt ),

where δ = 	2 − 	1 + λ2 − λ1 is the effective detuning pa-
rameter. This Hamiltonian is the starting point for the sub-
sequent discussion about the selective control of symmetric
Dicke space. Indeed, by conveniently choosing initial condi-
tions for the set of N and M qubits we can force the evolution
within symmetric Dicke space. In what follows, we consider
the general problem of the evolution of the set of N and M

qubits, prepared in a special product of symmetric Dicke states.
The same protocol will show us how to prepare a set of qubits
in such states. Let us consider the overall system initially
in a product state of the N -qubit subsystem in a symmetric
state with k excitations and the M-qubit subsystem having q

excitations, that is,

|�0〉 = ∣∣DN
k

〉∣∣DM
q

〉
, (17)

where |DN
j 〉 stands for a N -particle Dicke state with j

excitations. In general, this initial state will evolve—under
the action of the Hamiltonian (16)—within the subspace{∣∣DN

k

〉∣∣DM
q

〉
,

∣∣DN
k±1

〉∣∣DM
q∓1

〉
,

∣∣DN
k±2

〉∣∣DM
q∓2

〉
, . . .

}
. (18)

We aim to gain control of the symmetric space by reducing
the size of the effective Hilbert space that the system can
visit. More precisely, given the initial state (17) we would like
the evolution be restricted to the two-dimensional subspace:
{|DN

k 〉|DM
q 〉,|DN

k±1〉|DM
q∓1〉}. This can be done by adjusting the

parameter δ, setting this transition to resonance and leaving
other possible transitions far from resonance. To see how this
works let us analyze how the Hamiltonian (16) acts on the
initial state (17)

Ĥ0|�0〉 = h̄δk,q

∣∣DN
k

〉∣∣DM
q

〉
,

ĤI |�0〉 = h̄�eff
(
fk+1,q−1e

−iδt
∣∣DN

k+1

〉∣∣DM
q−1

〉
+fk−1,q+1e

iδt
∣∣DN

k−1

〉∣∣DM
q+1

〉)
,

with

fk,q ≡
√

(k + 1)(q + 1)(N − k)(M − q), (19)

δk,q ≡ λ1k(N − k) + λ2q(M − q). (20)

Thus, each transition {|DN
k 〉|DM

q 〉,|DN
k±1〉|DM

q∓1〉} has associ-
ated a detuning equal to δ̃ = ∓δ − (δk±1,q∓1 − δk,q). Setting
δ̃ = 0 for given values of k, q, N , and M , for a chosen transition
other subspaces will be far from resonance, provided that this
detuning is much larger than the effective coupling �eff . As
an example, let us consider the case when the first subsystem
has single qubit in the excited state (N = 1 and k = 1) while
the second subsystem is initially in a symmetric state with M

qubits and q excitations, that is,

|�0〉 = |e〉
M∑

j=0

aj

∣∣DM
j

〉
. (21)
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FIG. 3. (Color online) Evolution of populations of states compos-
ing the initial condition: |�0〉 = (1/b)|e〉 ∑M

j=0 aj |DM
j 〉 for M = 4

as a function the time τ = 2f0,4�eff t/π . The initial probability
amplitudes are a0 = 0.1, a1 = 0.2, a2 = 0.3, a3 = 0.4, a4 = 0.5,
and b is a normalization constant. The parameters are g1/g2 = 0.02,
	2/	1 = 1.002, and 	1/g2 = 100.

Considering this initial state and setting the parameters such
that δ̃ = δ − δ1,q+1 − δ0,q = 0, we enforce the system to
evolves only in an effective two-dimensional Hilbert space
spanned by {|e〉|DM

q 〉,|g〉|DM
q+1〉}. This selectivity is provided

by δ̃ � �eff , such that others subspaces do not evolve. When
these requirements are fulfilled, the initial state (22) becomes

|�t 〉 = |e〉
∑
j �=q

aj

∣∣DM
j

〉 + aq

[
cos (�efff0,q t)

+ |e〉∣∣DM
q

〉 + i sin (�efff0,q+1t)|g〉∣∣DM
q+1

〉]
.

For example, in Fig. 3 we show the dynamics for the case
M = 4 and q = 3. Here we see that the dynamics occurs only
in the selected subspace spanned by {|e〉|DM

3 〉,|g〉|DM
4 〉}, while

the population of other states remains virtually unchanged.
This reduced dynamics can be used to prepare arbitrary Dicke
states by measuring the state of the first qubit [22]. That is, if we
allow the system to evolve during a time t = π/(2�efff0,q+1)
and measuring the state of the first qubit we find that the
M-qubit subsystem will collapse into a Dicke state |DM

q+1〉
with probability |aq |2.

However, preparation of arbitrary Dicke states can also be
achieved deterministically using the ideas above. For example,
we consider the system initially in the state

|�0〉 = |e〉∣∣DM
q

〉
. (22)

Under the action of Hamiltonian (16), this initial state will
couple such as

Ĥ0|�0〉 = h̄δ1,q |e〉
∣∣DM

q

〉
,

ĤI |�0〉 = h̄�efff0,q+1e
iδt |g〉∣∣DM

q+1

〉
,

leading to an effective two-level dynamics in the subspace
{|e〉|DM

q 〉,|g〉|DM
q+1〉}. If we set the parameter such that, δ =

δ1,q − δ0,q+1, the evolution of the initial state will be

|�t 〉= cos (�efff0,q+1t)|e〉
∣∣DM

q

〉+ i sin (�efff0,q+1t)|g〉∣∣DM
q+1

〉
.

When this state evolves during a time t = π/(2�efff0,q+1), the
resulting state will be a symmetric M-particle Dicke state with
q + 1 excitations,

|�t 〉 = |g〉∣∣DM
q+1

〉
. (23)

Now, if the interaction time is set to be

τM,q = 1

�efff0,q+1
arcsin

√
M − q

M + 1
, (24)

the system will evolve into

|�t 〉 = ∣∣DM+1
q+1

〉
; (25)

that is, it becomes a (M + 1)-particle Dicke state with q + 1
excitations.

Following this idea, arbitrary Dicke states can be deter-
ministically prepared in a sequential manner. This works
as follows: Consider and initial state of the form |�0〉 =
|e〉|DM

0 〉 ≡ |e〉|g1g2 . . . gN 〉. Then, if the system evolves during
a time t1 = τM,0, we will have |�t1〉 = |DM+1

1 〉. Now, we
consider an additional qubit initially in the excited state, that
is, |�t1〉 → |e〉|DM+1

1 〉. If this system evolves under the action
of Hamiltonian (16) during a time t2 = τM+1,1, the system will
be in the state |�t2〉 = |DM+2

2 〉. In this manner, following this
procedure we can sequentially prepare after q steps the Dicke
state |DM+q

q 〉.
It is worth mentioning that different proposals to prepare

Dicke states have been presented for homogeneously coupled
systems [22–26] and in inhomogeneous systems in a nonde-
terministic procedure [27].

IV. ENTANGLED DICKE STATES

In the following we show that this quantum dynamics can be
used to prepare a different class of entangled Dicke states. Let
us consider the situation described in Fig. 2 for N = M . In such
case we look for the conditions required to achieve an effective
two-level dynamics in a subspace {|DN

k 〉|DN
q 〉,|DN

k±1〉|DN
q∓1〉}.

It is clear that under these conditions we should be able to
generate entanglement between Dicke states. A particular state
we are able to prepare using the procedures described above
is a NOON-like state of the form

|�〉 = 1√
2

(∣∣DN
N

〉∣∣DN
0

〉 + ∣∣DN
0

〉∣∣DN
N

〉)
. (26)

This can be done as follows. First, we consider the initial
state |�0〉 = |DN

N 〉|DN
0 〉. Then, we set into resonance the

transition in subspace {|DN
N 〉|DN

0 〉,|DN
N−1〉|DN

1 〉}. Setting the
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TABLE I. Parameters for the preparation of the state |�〉 =
(1/

√
2)(|DN

3 〉|DN
0 〉 + |DN

0 〉|DN
3 〉). The values for 	1, 	2, and g1 are

given in units of the coupling g2.

Step δ 	2 	1 g1

I 2(λ1 + λ2) 1000 999.01 18.148
II 0 1000 998 44.688
III −2(λ1 + λ2) 1000 1001.01 31.749

interaction time such as t = π/(4�efffN−1,1), the state will
evolve to

|�1〉 = 1√
2

(∣∣DN
N

〉∣∣DN
0

〉 + i
∣∣DN

N−1

〉∣∣DN
1

〉)
. (27)

By setting parameters such that the subspace
{|DN

N−1〉|DN
1 〉,|DN

N−2〉|DN
2 〉} is resonant, the state |DN

N 〉|DN
0 〉

does not evolve since its associated transition is far from
resonance. We lead the system to evolve during a time
t = π/(2�efffN−2,2), obtaining

|�2〉 = 1√
2

(∣∣DN
N

〉∣∣DN
0

〉 + i2
∣∣DN

N−2

〉∣∣DN
2

〉)
. (28)

Along the evolution we transfer the excitations from the first
set of qubits to the second set of qubits in the following way:∣∣DN

N−2

〉∣∣DN
2

〉 → ∣∣DN
N−3

〉∣∣DN
3

〉 → · · · → ∣∣DN
0

〉∣∣DN
N

〉
. (29)

In this manner, after N steps the state (26) can be prepared.
As an example, we consider the case of each system having
N = 3 qubits. The required values for the parameters to set
into resonance the needed transitions—to prepare an entangled
state of the form (26)—are listed in Table I.

The scheme for finding the exact values to select a given
transition is as follows: First, as pointed out, we must fulfill the
following requirement, 	1,	2 � g1,g2. To tune the selected
transition we must set the parameters g1,g2,	1, and 	2 in such
way that the relation δ̃ = 0 for this transition. To achieve this,
we may choose either g1 as a function of 	1,	2, and g2, or g2 as
a function of 	1,	2, and g1. For instance, in step I in Fig. 4, we
fixed g2 to be the unit and 	2 is fixed to be 	2 = 1000g2. Then,
we set the detuning δ such that δ = 2(λ1 + λ2). This leads to an
equation for the coupling g1 as a function of the free parameter
	1 and the fixed parameters g2 and 	2. The expression for
g1 is given by g2

1 = 	1(	2 − 	1 − g2
2/	2)/3. As shown in

Table I, the difference between the free parameter 	1 and the
detuning 	2 is of the order of 10−3	2. This small difference
is forced in order to ensure that conditions 	1,	2 � g1,g2

and δ̃ � �eff for other subspaces, are satisfied. Small changes
in either 	1 or 	2 lead to resonance conditions that do not
fulfill the transitions requirements. A direct consequence of
such requirements is that g1 �= g2, that is, qubits cannot be
homogeneously coupled.

In Fig. 4, we show the process to prepare a multipartite
entangled state |�〉 = (1/

√
2)(|DN

3 〉|DN
0 〉 + |DN

0 〉|DN
3 〉) for

N = 3. The first step—as shown in Fig. 4—is to prepare a
superposition

|�〉 = (1/
√

2)
(∣∣DN

3

〉∣∣DN
0

〉 + ∣∣DN
2

〉∣∣DN
1

〉)
. (30)

FIG. 4. (Color online) Schematic of sequential preparation of
NOON-like state |�〉 = (1/

√
2)(|DN

3 〉|DN
0 〉 + |DN

0 〉|DN
3 〉) and τ =

2f0,2�eff t/π .

The following two steps allow the transitions

∣∣DN
2

〉∣∣DN
1

〉 stepII−→ ∣∣DN
1

〉∣∣DN
2

〉 stepIII−→ ∣∣DN
0

〉∣∣DN
3

〉
,

without changing the population of the state |DN
3 〉|DN

0 〉.

V. CONCLUSION

We have described the role of the inhomogeneous coupling
between a single quantized mode and a set of two-level
systems. In particular, we have shown that combining resonant
interactions and engineering of coupling strengths allows a
fast mechanism to produce multipartite entanglement. Further-
more, in the dispersive regime of light-matter interaction, the
versatility in the engineering of coupling strengths provides a
mechanism for controlling the access to the symmetric Hilbert
space of qubits. At the same time, it allows the access to
special classes of entangled states, both probabilistically and
deterministically.
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