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Completeness of classical φ4 theory on two-dimensional lattices
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We formulate a quantum formalism for the statistical mechanical models of discretized field theories on lattices
and then show that the discrete version of φ4 theory on 2D square lattice is complete in the sense that the partition
function of any other discretized scalar field theory on an arbitrary lattice with arbitrary interactions can be
realized as a special case of the partition function of this model. To achieve this, we extend the recently proposed
quantum formalism for the Ising model [M. Van den Nest, W. Dur, and H. J. Briegel, Phys. Rev. Lett. 98, 117207
(2007)] and its completeness property [M. Van den Nest, W. Dur, and H. J. Briegel, Phys. Rev. Lett. 100, 110501
(2008)] to the continuous variable case.
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I. INTRODUCTION

The understanding that a single partition function can de-
scribe different phases of matter is rather recent and, indeed, as
late as the 1930s, there was not a consensus among physicists
that a partition function can give a sharp phase transition.
The works of Kramers, Wannier, Onsager [1–3], and others
gradually established beyond doubt that in the thermodynamic
limit, singular behavior and phase transition can arise from a
single partition function based on a single model Hamiltonian.
For example, the Ising Hamiltonian can describe both the
ordered phase of a ferromagnet and the disordered phase of a
paramagnet. Near the point of second-order phase transition,
even the details of the model Hamiltonian do not matter and
only some general properties like symmetries are important.

Decades of works on statistical mechanics models, in-
spired by the above general understanding, has revealed even
further fruitful relations between different models. Besides
the well-known duality relations between the low- and high-
temperature phases of the Ising model, one can also mention
the so-called vertex models, which reduce to other models in
different limits.

One can ask if there are certain statistical mechanical
models that are complete, in the sense that their partition
function reduce to the partition function of any other model
in a suitable limit? If this turns out to be the case, then we
can imagine a very large space of coupling constants and one
single Hamiltonian, i.e., the Ising model with inhomogeneous
couplings, so that when we move through this space, we meet
new phases and new models that at present are thought to be
completely unrelated. This will then be another forward in the
unification program mentioned above.

It seems that the answer to the above question may be
positive. Recent results [4–13] brought about by merging of
ideas from statistical mechanics and quantum information
theory give positive clues in favor of the above idea. These
investigations [4,5] have been made possible by establishing
a link between statistical mechanics and quantum information
on the one hand and the new paradigm of measurement-based
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quantum computation (MQC) and the universality of cluster
states for MQC on the other [14–23].

In a series of recent works, it has been shown that the
Ising model on two-dimensional square lattices with complex
inhomogeneous nearest-neighbor interactions is complete in
the sense that the partition function of all other discrete models
with general k-body interactions on arbitrary lattices can be
realized as special cases of the partition function of Ising model
on a square lattice, which is polynomially or exponentially
larger than the original lattice. The starting point of these
developments was the observation in Ref. [4] that the partition
function of any given discrete model can be written as a scalar
product,

ZG(J ) = 〈α|�G〉, (1)

where 〈α| is a product state encoding all the coupling constants
J and |�G〉 is an entangled graph state, defined on the vertices
and edges of a graph, and encoding the geometry of the lattice.
The core concept of completeness is the fact that the 2D cluster
state is universal. More concretely, we know that the graph
state |�G〉 corresponding to a graph G can be obtained from an
appropriate cluster state |��〉 corresponding to a rectangular
lattice (denoted by �), through a set of adaptive single-qubit
measurements M. The measurements being single-qubit can
be formally written as |αM〉〈αM |, where |αM〉 is a product state
encoding the qubits the bases and the results which have been
measured. Thus the totality of measurements M transforms
the cluster state as follows

|��〉 −→ |αM〉〈aM |��〉 = |αM〉 ⊗ |�G〉, (2)

which shows that after disregarding the states of the measured
qubits |αM〉, what is left is an appropriate graph state

|�G〉 = 〈αM |��〉. (3)

Combination of this relation with Eq. (1) leads to the
completeness result mentioned above. That is, one writes

ZG(J ) ≡ 〈α|�G〉 = 〈α,αM |��〉 (4)

and notes that 〈α,αM | now encodes a set of generally
inhomogeneous pattern of interactions on the cluster state.
Therefore, one has

ZG(J ) ≡ Z�(J,J ′). (5)
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In this way it has been shown that the 2D Ising model with
complex inhomogeneous couplings is complete [5].

Like any completeness result, an interesting question is
whether there are other complete models. The situation is
reminiscent of results on NP completeness of certain problems
in computer science [24]. In this direction it has been shown in
Refs. [6,7] that the four-dimensional Z2 lattice gauge theory,
with real couplings, is complete for producing any spin model
in any dimension. This result was extended in Ref. [8] to show
that the four-dimensional U(1) lattice gauge theory with real
couplings can produce, to arbitrary precision, a large number
of continuous models (those whose Hamiltonian allow a finite
Fourier series). Certainly there may be many other complete
models that can be converted to each other. Exploration of the
set of complete models certainly will add to our insight and to
our power in connecting different models with each other.

In this paper, we show that the discrete form of φ4

field theory, on a two-dimensional rectangular lattice is also
complete in the sense that the partition function of any
continuous model on any graph with any type of interaction
can be obtained, to arbitrary precision, from a φ4 model with
inhomogeneous complex couplings on an enlarged 2D lattice.

The structure of this paper is as follows: First we gather
the necessary ingredients for our analysis in Sec. II, i.e., ele-
mentary facts about continuous variable (CV) states, operators,
and measurements. We then reconsider in a new language three
types of continuous variable stabilizer states, namely the CV
Kitaev states, the CV extended Kitaev states, and the ordinary
graph states and the relations between them. In Sec. IV we
introduce the quantum formalism for scalar field models on
arbitrary graphs and investigate properties of these models,
properties that are made transparent by using the quantum
formalism and are otherwise not easy to unravel. Then, in
Sec. VI, we show that the free field theory on two-dimensional
rectangular lattice is complete for free theories in the sense
that from its partition function, every other free field theory on
any graph can be obtained as a special case. Finally, we show
that the φ4 field theory on 2D rectangular lattice is complete,
in the sense that its partition function reduces to the partition
function of any interacting model on any graph. As in the Ising
case, the price that one pays is that the coupling constants of
the complete model should be inhomogeneous and complex.

II. PRELIMINARIES

In this section, we collect the preliminary materials
necessary for generalization of the quantum formalism to
the continuous variable case [25–28]. First we review the
definition of Heisenberg-Weyl group and the way a unitary
operator can be performed on CV state (a qumode) by
measurements of an appropriate graph state. We end this
section with a note on decomposition of CV unitary operators.

A. The Heisenberg-Weyl Group

The definition of CV stabilizer states starts with generaliza-
tion of the Pauli group to the continuous setting [29–33]. For
one qumode (a term which replaces qubit in the continuous
setting) the resulting group is called Heisenberg-Weyl group
W , whose algebra of generators is spanned by the coordinate

and momentum operators satisfying [Q̂,P̂ ] = iI . Thus mod-
ulo U(1) phases, the group W is the group of unitary operators
of the form w(t,s) = eitQ̂+isP̂ . Since the two unitary operators

X̂(s) = e−isP̂ and Ẑ(t) = eitQ̂ (6)

have the simple relation

Ẑ(t)X̂(s) = eist X̂(s)Ẑ(t), (7)

multiplication of any two elements of W can be recast in the
form X(t)Z(s) modulo a phase. The Heisenbergy-Weyl group
can be represented on the Hilbert space of one particle, spanned
by the basis states |y〉q (eigenstates of Q̂) or |y〉p (eigenstates
of P̂ ). On these states, the operators X and Z act as follows:

Ẑ(t)|y〉q = eity |y〉q, X̂(s)|y〉p = e−isy |y〉p,
(8)

Ẑ(t)|y〉p = |y + t〉p, X̂(s)|y〉q = |y + s〉q .
Remark. Hereafter we denote the states |y〉q simply as |y〉 and
use |y〉p for eigenstates of P̂ as above.

The CV Hadamard operator is a unitary non-Hermitian
operator defined as

Ĥ :=
∫

|y〉p〈y|qdy ≡ 1√
2π

∫
eixy |x〉〈y|dxdy, (9)

from which we obtain

Ĥ Q̂Ĥ−1 = P̂ , Ĥ−1P̂ Ĥ = Q̂. (10)

Moreover, from Eq. (9) we find

Ĥ 2 :=
∫

dx|−x〉〈x|, (11)

which leads to Ĥ 4 = I . Therefore, the square Hadamard
operator acts as the parity operator. This means that

Ĥ 2Q̂Ĥ−2 = −Q̂, Ĥ−2P̂ Ĥ 2 = −P̂ . (12)

The n-mode Heisenberg-Weyl group is the tensor product of
n copies of W ; i.e., Wn := W⊗n and all the above properties
are naturally and straightforwardly extended to n modes. Of
particular interest is the continuous variable ĈZ operator,
which is defined as ĈZ|x,y〉 = eixy |x,y〉, with the operator
expression

ĈZ := eiQ̂⊗Q̂, (13)

and satisfying the relation

[X̂(t) ⊗ I ]ĈZ = ĈZ[X̂(t) ⊗ Ẑ(t)]. (14)

We will also need a more general operator ĈZ, namely
ĈZ(s) = eisQ̂⊗Q̂, which has the following relation:

[X̂(t) ⊗ I ]ĈZ(s) = ĈZ(s)[X̂(t) ⊗ Ẑ(st)]. (15)

1. Single mode unitary operators induced by measurements

In this subsection, we review how a CV unitary operator
can be induced on a mode by measuring a suitable graph
state. Here we restrict ourselves to operators diagonal in the
coordinate basis, since this is the only type of operator that we
encounter in our analysis. We also use the basic result of MQC
that certain states are complete, in the sense that by a suitable
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FIG. 1. (Color online) Projection of the left mode on the zero
momentum state is equivalent to the action of the Hadamard operator
on the right mode. Projection on the state 〈g| is equivalent to the
action of the operator Ĥg(Q̂) on the right mode. A downward arrow
means projection on a state; an upward arrow means the resulting
state.

sequence of adaptive single-site measurements on them, any
other state can be reached.

Consider a very simple two-mode graph state as shown
in Fig. 1. The first mode is in an arbitrary state |φ〉 =∫

dxφ(x)|x〉, the second mode is in the state |0〉p :=
1√
2π

∫
dy|y〉, the two modes have been joined by a CZ operator

(shown by a line in Fig. 1) and so the two mode state is

|�〉12 = (CZ)12|φ〉1|0p〉2 =
∫

dxdyeixyφ(x)|x,y〉1,2, (16)

where the indices 1 and 2 refer to the modes from left to right
in Fig. 1. Now we project the first mode on the zero momentum
state 〈0|p [33–39]. The state of the second mode will be

|φ′〉2 =1 〈0p|�〉12 = 1√
2π

∫
dyeixyφ(x)|y〉2 = H |φ〉. (17)

Thus, projection of the first mode onto a zero momentum state
is equivalent to the action of the Hadamard operator on the
state |φ〉 and putting it on the second mode. This is shown in
Fig. 1, where projection is depicted by a downward arrow and
the result is depicted by an upward arrow.

Suppose now that we project mode 1 onto the state 〈g| :=
1√
2π

∫
dyg(y)〈y|. If we note that

〈g| = 1√
2π

∫
dyg(y)〈y| = 〈0p|g(Q̂), (18)

and note that g(Q̂1) commutes with (CZ)12, we find that
projecting the first mode on the state 〈g| is equivalent to the
action of the operator Hg(Q̂) on the state |φ〉 and putting it on
the second mode. This is shown in Fig. 1. We can write this
symbolically as

P0 −→ H, Pg −→ Hg(Q̂), (19)

where in the left-hand side we show the projections and in the
right-hand side we show the resulting action on the state. In
order to enact the operator g(Q̂), i.e., remove H from Hg(Q̂),
we need to enact the operator H three times. Thus, using the
symbols in Eq. (19), we have

P0P0P0Pg −→ H 3(Hg(Q̂)) = g(Q̂), (20)

which is shown in Fig. 2.
We are now in a position to state a basic theorem [40–43]

in this section.

g g(Q)0
p

0
p

0
p

FIG. 2. (Color online) The measurement pattern that enacts the
operator g(Q̂) on the right-most mode.

Theorem. Let V (Q̂) be a polynomial of Q̂ with real
coefficients and |φ〉 be an arbitrary state of an appropriate
chain of a cluster state. Then, by projecting the modes of this
cluster state on the following three types of states,

〈β1(t)| : =
∫

dye−ity〈y|, 〈β2(t)| :=
∫

dye−ity2〈y|,
(21)

〈β4(t)| : =
∫

dye−ity4〈y|,

we can enact any operator of the form e−iV (Q̂) on the state |φ〉 to
any desired precision. The state will appear on the unprojected
modes of the chain.

Proof. First, we note that enacting the operator H comes for
free by projecting on the zero momentum state 〈0|p. Second,
we use the operator identity

etAetBe−tAe−tB ≈ et2[A,B]+o(t2). (22)

From projection on the states 〈βi(t)| we find that the operators
e−itQ̂, e−itQ̂2

, and e−itQ̂4
can be obtained. In view of the

existence of the Hadamard operator, the algebra of anti-
Hermitian operators in the exponential is generated by the
set {iQ,iQ2,iQ4,iP ,iP 2,iP 4}. It is now easy to see that this
algebra contains all monomials of Q. To show this we first
note that

[iP ,iQ4] ∼ iQ3, (23)

where ∼ means that we have ignored numerical factors. We
then note that

[iP ,[iP 2,iQ4]] ∼ i(PQ2 + Q2P ). (24)

The latter operator now acts as a raising operator for powers
of monomials, since

[i(PQ2 + Q2P ),iQn]] ∼ iQn+1, (25)

which completes the proof. In this way, we can generate
any unitary operator of the form e−iV (Q), where V is a real
polynomial of Q.

III. THREE CLASSES OF CONTINUOUS
VARIABLE STATES

Let G = (V,E) be a graph, where V and E, respectively,
denote the set of vertices and edges. The graph is supposed to
admit an orientation. In other words, G is the triangulation of
an orientable manifold. This means that all the simplexes of G

inherit the orientation of the original manifold in a consistent
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way. The number of vertices and edges are given by |V | and
|E|, respectively.

In this section we define three closely related continuous
variable states pertaining to a given graph G, which we call the
Kitaev state |KG〉 [44], the extended Kitaev state |KG〉, and the
graph state |�G〉 [45,46]. We will then determine the mutual
relationships of these states, which will play an important role
in our proof of completeness. These are the generalizations of
known states in the qubit case, where they have been possibly
named differently in other works. For example, in the qubit
case, extended Kitaev states have been called pseudo graph
states [5]; however, in view of their explicit construction and
stabilizers, we think that the name Kitaev or extended Kitaev
states are more appropriate for them.

The crucial difference between the continuous and qubit
case is the fact that the operators X̂(t), Ẑ(t), CZ, and Ĥ

are not equal to their inverses. Therefore, a consistent and
unambiguous description of these states on a graph requires
that the graphs be decorated with weights and/or orientations.
We emphasize the difference between orientation, which is a
Z2 variable and weight, which is a real variable. We will meet
the necessity of each as we go along in our definitions.

A. Kitaev states

Consider an oriented graph G = (V,E,σ ), where σ means
that arbitrary orientations have been assigned to the edges.
Any collection of arbitrary orientations on the edges is called
a decoration of the graph. We assume that modes live only on
the edges E and there are no modes on the vertices V of this
graph. The CV Kitaev state is then defined

|KG〉 =
∫

dφ1dφ2...dφN

⊗
eij

|φi − φj 〉, (26)

where eij is the edge which goes from the vertex i to the
vertex j .

It is easily verified that this state is stabilized by the
following set of operators: for each vertex i ∈ V , we have

Av(t) :=
∏
e∈Ev

X±
e (t), (27)

where Ev denotes the set of edges incident on the vertex v and
the − and + signs are used for edges going into and out of
a vertex, respectively. The reason that Av stabilizes the state
of Eq. (26) is that it simply shifts the variable φv , which will
be neutralized under the integration. Also for each face of the
graph, we have

Bf (s) :=
∏
e∈∂f

Z±
e (s), (28)

where ∂f denotes the set of edges in the boundary of f and the
+ and − signs are used, respectively, when the orientation of
a link is equal or opposite to us when we traverse a face in the
counter-clockwise sense. Note that traversing all the plaquettes
in this sense is meaningful for an orientable traingulation. Here
also the effect of Bp(s) on the state inside the integral is to
multiply it by a unit factor since the phases acquired by all the
edges add up to zero for a closed loop.

1 2

34

a

C

bd e

II

I

FIG. 3. (Color online) The graph for which the Kitaev state is
given in Eq. (29).

As an example, we have for the graph G in Fig. 3,

|KG〉 =
∫

Dx|φ1 − φ2,φ2 − φ3,φ4 − φ3,φ4 − φ1,

φ4 − φ2〉a,b,c,d,e, (29)

where the subscripts a to e determine the position of modes in
the state. The stabilizers of this state are then given by Eqs. (27)
and (28) as follows:

A1 : = X−1
d Xa, A2 := X−1

a X−1
e Xb,

(30)
A3 : = X−1

b X−1
c , A4 := XcXdXe

and

BI := ZeZ
−1
a Z−1

d , BII := ZcZ
−1
b Z−1

e . (31)

Finally, we note that all Kitaev states on a given graph,
corresponding to different decorations are related to each
other by local unitary actions. In fact, if we switch the
arbitrary orientation on a link eij , it means that the term
| . . . φi − φj , . . .〉 in Eq. (26) changes to | . . . φj − φi, . . .〉,
where the remaining parts of the state will remain intact. In
view of Eq. (11), this switching is achieved by a local action
of the square Hadamard operator H 2 on the edge e. We can
thus write

|KGσ ′ 〉 =
⎛⎝ ⊗

e:σ (e)�=σ ′(e)

H 2
e

⎞⎠ |KGσ 〉. (32)

Therefore, all the Kitaev states with different decorations
belong to the same class of states modulo local actions of
square Hadamard operations.

In view of the shift invariance φi −→ φi + η, the Kitaev
state has a hidden multiplicative factor that is, in fact, infinite.
This symmetry can be removed by fixing a gauge (in the
discrete case this is a finite factor that causes no problem).
Therefore, we will define the gauge-fixed Kitaev state, denoted
by |K0

G〉 as follows:∣∣K0
G

〉 =
∫

dφ1dφ2...dφNδ(φ1 + φ2 + · · · φN )
⊗
eij

|φi − φj 〉.

(33)
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FIG. 4. (Color online) The graph G0 for which the extended
Kitaev state is as in Eq. (35).

This gauge-fixed Kitaev state still has the same set of
stabilizers. The same reasoning for the Kitaev state |KG〉 also
works here.

B. Extended Kitaev states

Let G = (V,E,σ ) be defined as in the previous subsection.
Now, in addition to the modes on the edges, there are also
modes on vertices, as in Fig. 4. On such a graph, there are thus
two different sets of vertices, which we denote by V (the ones
on the nodes) and VE (the ones on the edges). Then the state
|KG〉 is given by

|KG〉 =
∫

dφ1dφ2...dφN

⊗
eij ∈E

|φi − φj 〉
⊗
i∈V

|φi〉, (34)

where eij is the edge that goes from vertex i to j . As an
example for the graph in Fig. 4, we have

|KG〉 =
∫

Dφ|φ1 − φ2,φ2 − φ3,φ4 − φ3,φ4 − φ1,

φ4 − φ2〉a,b,c,d,e ⊗ |φ1,φ2,φ3,φ4〉1,2,3,4. (35)

The stabilizers of this extended Kitaev state are completely
different from the simple Kitaev state. In fact, they are: For
each vertex v ∈ V ,

Cv := Xv

∏
e∈Ev

X±
e , (36)

where the convention for the ± signs is the same as in Kitaev
state, and for each edge e ∈ E that goes from v1 to v2,

De := Z−1
e Zv1Z

−1
v2

, (37)

where again we have suppressed the continuous arguments of
these stabilizers for ease of notation. For the example given in
Fig. 4, some of the stabilizers are:

C1 = X1XaX
−1
d , C2 = X2X

−1
a X−1

e Xb,
(38)

Da = Z1Z
−1
a Z−1

2 , Db = Z2Z
−1
b Z3, . . .

C. Weighted graph states

Finally, we come to the definition of continuous variable
weighted graph states. Here as in the qubit case we start with

an initial product state of the form |�〉 = |0〉⊗V
p . However,

there is an important difference in that on each edge, instead
of the simple CZ operator, we can act by the CZ(J ) operator,
where the real parameter J may depend on the edge. Therefore,
we obtain what we call a weighted graph state. Denoting the
collection of all weights by J , we have

|�G(J )〉 =
⊗
e∈E

[CZ(Je)]|�〉, (39)

where |�〉 = |0〉⊗V
p . The explicit form of the state will then be

given by

|�G(J )〉 =
∫

Dφe
∑

〈i,j〉 Jij φiφj |φ1, . . . φN 〉, (40)

where N is the number of vertices and 〈i,j 〉 denotes the edge
connecting the vertices i and j carrying weight Jij . Note that
in contrast to a decorated edge, which is denoted by eij (going
from i to j ), a weighted edge is denoted by the symmetric
symbol 〈i,j 〉. According to Eq. (15), the stabilizers of this
state will be of the form

Ki(t) := Xi(t)
∏
j∈Ni

Zj (Jij t), ∀ i ∈ V, (41)

where in the left-hand side we have suppressed the dependence
on the weights for simplicity.

We emphasize that definition of the Kitaev states and
extended Kitaev states require the underlying graph to be
decorated, while a graph state needs only a weighted graph for
its unambiguous definition. We are now left with an important
question of whether there is a simple relation between the
above three kinds of states or not. The answer turns out to be
positive and is explained in the next subsection.

D. Relations between Kitaev, extended Kitaev, and weighted
graph states

Consider the extended Kitaev state corresponding to a
decorated graph G = (V,E,σ ). The explicit form of the state
is shown in Eq. (34). From Eq. (34) it is clear that if we project
all the vertices in V on the zero-momentum basis, we will
arrive at the Kitaev state for the same graph. More explicitly
we have

〈�|KGσ 〉 = 1√
(2π )|V | |KGσ 〉, (42)

where |�〉 = |0〉⊗V
p , and we have explicitly indicated the

decoration σ .
It is instructive to understand this in an alternative way,

that is by showing that measurement in the momentum
basis actually transforms the stabilizer set of the extended
Kitaev state, i.e., S(|Kσ

G〉) to the stabilizer set of the Kitaev
state, S(|Kσ

G〉). From the stabilizer formalism, we know that
measurement of a state |�〉 in the basis of an operator M

removes all the operators that do not commute with M from
the set S(|�〉) and leaves us with a smaller subset. This
subset is generated by all the original generators, or their
products thereof, that commute with M . With this in mind, it
is straightforward to see that measurement in the momentum
(the X basis) leaves all the vertex stabilizers Cv intact (except
of course removing the vertex Xv from it), hence changing it to
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Av as in Eq. (27). However, since Xv does not commute with
Zv , measurements of all the vertices remove all the generators
De. The only combinations that survive this elimination will
be their product around any faces. These are nothing but the
operators Bf for all faces, which are just the right stabilizers
of |KGσ 〉.

Let us now study the relation between the extended Kitaev
states and graph states. It turns out that there is a simple relation
between the two only if the weights of the edges incident on
each vertex add up to zero, that is, if∑

j

Jij = 0, ∀i. (43)

Since Jij = Jji , this means also that
∑

i Jij = 0. In such a
case, we can convert an extended Kitaev state to a weighted
graph state on the same graph by suitable measurements on
the edges. To this end we proceed as follows: Let us project
each edge eij of the extended Kitaev state on the state 〈β2(tij )|
defined in Eq. (21).

Let 〈β2(t)| := ∏
eij

〈β2(tij )|, then we have

〈β2(t)|KG〉 =
∫

Dφe
∑

eij
−itij (φi−φj )2 |φ1, · · · φN 〉. (44)

If we choose the parameters tij of quadratures so that
∑

i tij =∑
j tij = 0, we find

〈β2(t)|KG〉 =
∫

Dφe
∑

〈i,j〉 itij φiφj |φ1, . . . φN 〉 =: |�G(it)〉,
(45)

which is a weighted graph state with weights itij assigned to
each edge 〈i,j 〉.

Note that from the Kitaev state for the rectangular lattice
|K�〉, the Kitaev state for any other graph |KG〉 can be obtained
simply by measurement of the edge modes in the momentum
or coordinate bases. In fact, projecting an edge mode on the
zero-momentum state |0〉p removes that link from the graph,
while projecting it on the zero coordinate state |0〉q merges the
two endpoints of that edge. These are shown in Fig. 5 and are

p

q

FIG. 5. (Color online) The effect of measurements of an edge in
an extended Kitaev state. Measuring in the momentum (X) basis (i.e.,
projecting onto the p〈0|) removes the edge, while measurements in
the coordinate (Z) basis (i.e., projecting onto the p〈0|), merges the
two end points of that edge.

proved as follows: Let

|ψ〉 =
∫

dφ1dφ2D
′φ|φ1 − φ2〉

∏
i∈L

|φ1 − φi〉
∏
j∈R

|φ2 − φj 〉 . . . ,

where · · · denotes all the edges that involve neither vertex 1
nor 2. Projecting this state on the state p〈0| on the edge 〈1,2〉
leaves us with

|ψp〉 =
∫

dφ1dφ2D
′φ

∏
i∈L

|φ1 − φi〉
∏
j∈R

|φ2 − φj 〉 . . . ,

(46)

which is nothing but the same Kitaev state with the edge 〈1,2〉
totally removed. On the other hand, projecting |ψ〉 on the state
q〈0| on the edge 〈1,2〉, leaves us with

|ψq〉 =
∫

dφ1dφ2D
′φδ(φ1 − φ2)

∏
i∈L

|φ1 − φi〉
∏
j∈R

|φ2 − φj 〉 . . .

=
∫

dφ1D
′φ

∏
i∈L

|φ1 − φi〉
∏
j∈R

|φ1 − φj 〉 . . . , (47)

which means that the two endpoints of the edge 〈1,2〉 have
been merged together. With these two simple rules of deleting
and merging, one can obtain the Kitaev state of any graph
starting from the one on the rectangular lattice. Figure 6 shows
an important example in which measurements of some of the
edges in the momentum basis (and hence removing them),
transforms |K�〉 to the Kitaev state on the hexagonal lattice
|KH 〉. Measurement of the same edges in the coordinate basis
(and hence merging the two endpoints) produces a uniform
lattice whose faces are triangles, hence a triangular lattice.
This is in accord with the fact that the hexagonal and triangular
lattice are dual to each other, a subject which will be explored
further in the sequel.

Finally, we use the well-known universality of cluster
states proved in the context of measurement-based quantum

X X

X X X

X X

X X X

X

ZZ

Z ZZ

ZZ

ZZ Z

FIG. 6. (Color online) The Kitaev state on the rectangular lattice,
when specific edges are measured in the X or Z bases, will turn into
the Kitaev state on the hexagonal or triangular lattices.
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computation [33–39] to state that both the Kitaev state |KG〉
and the extended Kitaev state |KG〉 can be obtained by
Gaussian measurements from a sufficiently large cluster state
|��〉. The fact that the measurements need only be Gaussian
is due to the fact that all these kinds of states are stabilized
by subgroups of Wn and hence they can be converted to each
other by unitary operators belonging to the Clifford group.
Using the well-known fact from MQC, that Clifford operators
can be implemented by Gaussian measurements, we arrive at
the proof of the above statement.

IV. QUANTUM FORMALISM FOR THE PARTITION
FUNCTIONS

In this section, we show how the partition function of a
classical model defined by a Hamiltonian with continuous
variables on an arbitrary graph can be expressed in the quantum
formalism. First, consider the case where there is no local term
or onsite interaction, that is the Hamiltonian is of the form

H =
∑
〈i,j〉

Vij (φi − φj ), (48)

where Vij (x) is an arbitrary function. We allow for the function
Vij to depend on the edge eij in order to cover also the
inhomogeneous cases. The partition function of this model is

Z(G,{V }) =
∫

DφNe−i
∑

〈i,j〉 Vij (φi−φj ), (49)

where N is the number of vertices and we have absorbed the
parameter β ≡ 1

kbT
in the Hamiltonian. We will do this in all

expressions of partition functions that follow.
Remark. We have defined the partition function in the

form of Eq. (49), in order to be able to deal with unitary
operators in the measurement-based quantum computation.
Dealing with nonunitary operators does not pose any problem
in the Ising model [5], since states like |α〉 = e−βJ |0〉 + eβJ |1〉
are normalizable states. In the continuous case, the analog
of the above state may be non-normalizable, rendering the
projection to such states problematic. Instead, we resort to
partition functions of the type Eq. (70), with the understanding
that the final results, like dualities, and completeness can be
analytically continued to the whole complex plane.

Due to the shift invariance of the Hamiltonian φi −→ φi +
ξ , the above partition function is infinite, so we have to modify
the partition function by fixing a gauge, which we will do later
on. For the present, we deal with the above partition function
as it is. Defining the product state

|α〉 =
⊗
eij

|αij 〉, (50)

where

|αij 〉 =
∫

dxe−iVij (x)|x〉

is defined on the edge eij , one can then write the partition
function [Eq. (49)] in the quantum formalism as

Z ′(G,{V }) = 〈α|KG〉, (51)

where |KG〉 is the Kitaev state on the graph G [Eq. (26)]. In this
way, as in the qubit case, the pattern of interactions is encoded

in the entangled Kitaev state and the strength of interactions
(including the temperature) are encoded into the product state
〈α|. To fix the shift invariance, we define a gauge-fixed partition
function as

Z(G,{V }) =
∫

Dφδ

(∑
i

φi

)
e−i

∑
〈i,j〉 Vij (φi−φj ). (52)

Note that other forms of gauge-fixing terms are possible, but
we will deal with this simple one. Also, note that the shift
invariance is also present in discrete models; however, in those
cases the multiplicative factor is finite and not divergent, hence
gauge fixing is not necessary. Using the gauge-fixed Kitaev
state, we can write this in the quantum formalism as

Z(G,{V }) = 〈
α
∣∣K0

G

〉
. (53)

Let us now consider an edge e and insert the operator Q̂e

inside the inner product [Eq. (53)]. In view of Eqs. (50) and
(53), we will have

〈α|Q̂e

∣∣K0
G

〉
〈α|K0

G

〉 = 〈φi − φj 〉, (54)

where 〈 〉 means the statistical thermal average. Similarly, by
acting the momentum operator on the state 〈α|, we find

〈α|P̂e

∣∣K0
G

〉
〈α|K0

G

〉 = −i〈V ′
ij (φi − φj )〉, (55)

where ′ means derivative with respect to the argument. We
will later see an important application of these equations when
they are combined with the topological properties of the Kitaev
states.

Consider now the case where there are onsite interactions,
then the Hamiltonian will be

H =
∑
〈i,j〉

Vij (φi − φj ) +
∑

i

Wi(φi), (56)

and the above formalism will be extended as follows:

Z(G,{V },{W }) = 〈α|KG〉, (57)

where

|α〉 =
⊗
eij

|αij 〉
⊗
i∈V

|αi〉, (58)

in which

|αi〉 =
∫

dxe−iWi (x)|x〉.

V. APPLICATIONS OF THE QUANTUM FORMALISM

Let us now try to understand some of the properties of
a continuous variable statistical model through the quantum
formalism. Certainly the results that we will find, like duality,
can also be derived by other means, without resorting to
the quantum formalism; however, this scheme makes these
properties and their derivation much more transparent.
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ije

i j

FIG. 7. (Color online) For any closed loop, which is the boundary
of a region, equation holds for the correlation functions.

A. Correlation functions

Consider a graph G = (V,E) and a Hamiltonian H0 defined
on it without local potentials, Wi(φ) = 0. Let Wx

C̃
be a closed

loop on the dual graph, which is homologically trivial (Fig. 7);
i.e., it is the boundary of an area. Since Wx

C̃
can be written as

a product of operators As , for s inside the loop C̃, we have

Wx

C̃

∣∣K0
G

〉 = ∣∣K0
G

〉
, (59)

or, equivalently, ∑
e∈C̃

P̂e

∣∣K0
G

〉 = 0. (60)

Then, in view of Eq. (55), this means that∑
ei,j ∈C̃

〈V ′
ij (φi − φj )〉 = 0. (61)

This is a general nontrivial relation that is valid for any kind
of interaction V , and without using the quantum formalism, it
would have been difficult to obtain it. Note that the other kind
of loop operator, Wz

C defined as Wz
C := ∏

i∈C Zi , where C is
a loop in the graph, doesn’t lead to a nontrivial relation since
in view of Eq. (54), insertion of this operator into the inner
product leads to the quantity

∑
eij

(φi − φj ), which identically
vanishes.

B. Duality

Denote the dual graph by G̃. The vertices, edges, and faces
of G are in one-to-one correspondence with the faces, edges,
and vertices of G̃, respectively. For an oriented graph, we
should also choose a convention for choosing the orientations.
We choose the convention that for each edge e the dual ẽ be
such that the pair (e,̃e ) form a right-handed frame, as shown
in Fig. 8. In view of the form of stabilizers of the Kitaev
states [Eqs. (27) and (28)] and the relations [Eq. (10)], and the
normalization of the state |KG〉, we see that

|KG̃〉 = (2π )
|E|
2 H⊗E|KG〉. (62)

Note that contrary to the qubit case the duality relation is not
an involution, that is, as shown in Fig. 8, the dual of the dual
of an oriented graph is not the original graph but the original
graph with all the orientations reversed. This is in accord with
the fact that H 2 �= I and, indeed, the action of H 2 on all edges

G

*G
* *( )G

*G

FIG. 8. (Color online) The dual of the dual of a graph is the same
graph with all the orientations reversed.

reverses their orientations. Consider now the partition function
on G, with βH as in Eq. (48). We have

Z(G,{V }) = 〈α|KG〉 = 1

(2π )
|E|
2

〈α|H †⊗E|KG̃〉

= 1

(2π )
|E|
2

〈̃α|KG̃〉, (63)

where

|̃α〉 = H |α〉=H

∫
dxe−iV (x)|x〉= 1√

2π

∫
dxdyeixy−iV (x)|y〉

=
∫

dye−iṼ (y)|y〉, (64)

where

e−iṼ (y) = 1√
2π

∫
dxeixy−iV (x). (65)

This gives the following duality relation

Z(G,{V }) = 1

(2π )
|E|
2

Z(G̃,{Ṽ }), (66)

where e−iṼ is the Fourier transform of e−iV , as given in
Eq. (65). An example of interest is when

Vij (x) = 1
2kij x

2, (67)

which leads to the following duality relation

Z(G,{kij }) = 1

(2π )
|E|
2

1√∏
ij kij

Z

(
G̃,

{
1

kij

})
. (68)

VI. COMPLETENESS OF TWO-DIMENSIONAL φ4 MODEL
FOR ALL DISCRETE SCALAR FIELD THEORIES

In this section, we use quantum formalism to show that the
discrete form of two-dimensional φ4 field theory is complete.
Before proceeding, we should make precise the meaning of the
above statement. By the two-dimensional discrete φ4 theory,
we mean the following Hamiltonian on a two-dimensional
square lattice with periodic boundary conditions

Hc =
∑
〈r,s〉

Kr,s(φr − φs)
2 +

∑
r

hrφr + mrφ
2
r + qrφ

4
r , (69)

where Kr,s ∈ {i,−i}, i = √−1, and the real parameters hr , mr ,
and qr denote, respectively, the inhomogeneous external field,
the quadratic (mass term), and quartic coupling strengths. The
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linear terms {hr} are also necessary for completeness. Denote
the partition function of this model by

Z(�,{h},{m},{q}) :=
∫

Dφe−iHc , (70)

where � is a 2D square lattice of size N , and {h}, {m}, and
{q} denote the totality of all the inhomogeneous coupling
strengths. By completeness, we mean that the partition
function of any other model

H =
∑
r,s

Vr,s(φr − φs) +
∑

r

Wr (φr ) (71)

on any graph G = (V,E) is equal to the partition function
for the Hamiltonian Hc on the 2D square lattice, for some
specifically chosen sets {h}, {m}, and {q}.

Note that the interaction terms in the Hamiltonian H are
not necessarily of nearest neighbor type. In fact, as we will
show in the proof, H can even contain k-body interactions, as
long as k is bounded above by a finite constant independent
of |V |.

Consider a general Hamiltonian of the form of Eq. (71). The
partition function of this model can be written in the quantum
formalism as

Z(G,{V },{W }) = 〈α|KG〉, (72)

where

〈α| =
⊗
ei,j

〈αij |
⊗

i

〈αi | (73)

and

〈αij | =
∫

dye−iVij (y)〈y|, 〈αi | =
∫

dye−iWi (y)〈y|. (74)

Note that 〈αij | lives on the edge vertex v(eij ) and 〈αi | lives on
the vertex i. Rewriting the above states in the form

〈αij | =
∫

dy〈y|e−iVij (Q̂) = 〈0
p
|e−iVij (Q̂),

(75)
〈αi | =

∫
dy〈y|e−iWi (Q̂) = 〈0

p
|e−iWi (Q̂),

where 〈0
p
| is the zero momentum eigenstate, we find an

equivalent form for the partition function, namely

Z(G,{V },{W }) = 〈0p |
⊗
eij

e−iVij (Q̂)
⊗

i

e−iWi (Q̂)|KG〉, (76)

where 〈0p | = ⊗
eij ∈E〈0p| ⊗i∈V 〈0

p
| is the product of all zero-

momentum states on the edge vertices and ordinary vertices
of the graph G. We now note that according to Eq. (21), we
can approximate the unitary operators e−iVij (Q̂) and e−iWi (Q̂)

to any degree of precision by a product of the operators H

(the Hadamard), e−itQ̂, e−itQ̂2
, and e−itQ̂4

. As explained in
(Sec. II A 1), implementation of these operators on a state is
effected by suitable possibly non-Gaussian measurements [i.e.,
projections of vertex modes on the states 〈βi(t)|(i = 1,2,4)] of
an appropriate enlargement of that state; i.e., one simply adds
necessary nodes, glues them by CZ operators, and measures
the additional nodes as exemplified in Fig. 2 to affect a desired
unitary gate on the original qumode of the lattice. Let us denote
this intermediate graph by G′, its associated state by |�G′ 〉, and

the collection of all necessary measurements on it by 〈β1,2,4|,
then we will have⊗

eij

e−iVij (Q̂)
⊗

i

e−iWi (Q̂)|KG〉 = 〈β1,2,4|�G′ 〉. (77)

The configuration of the graph G′ may be complicated, but
the important point is that |�G′ 〉 is nothing but a stabilizer
state and hence, in principle, it can be obtained from a cluster
state by Gaussian measurements 〈βi(t)|(i = 1,2). Therefore,
we have

|�G′ 〉 = 〈β1,2|��〉. (78)

Note that up to now all the projections have been performed on
the vertices of the cluster state. The cluster state |��〉 can be
a weighted cluster state where the weights of all edges are ±1
and for each vertex the weights of all edges add up to 0. Such
a cluster state can be obtained from an extended Kitaev state
on the rectangular lattice by projecting all the edge-vertices on
the states 〈β2(±1)| = ∫

dye∓iy2〈y| according to whether the
weights of the edges are +1 or −1.

This is the only place where projections are made on the
edge vertices and in fixed directions (i.e., eigenstates of XZ±1).
We write this symbolically in the form

|��〉 = 〈±|K�〉. (79)

Combining Eqs. (77)–(79), we finally arrive at

Z(G,{V },{W }) = 〈0p |〈β1,2,4, ±e |K�〉, (80)

where ±e encapsulates all the measurements XZ± that are
performed on the edges of the extended Kitaev state, and
〈β1,2,4| represents all the projections 〈βi | for i = 1,2,4 on
the vertices. Putting all this together, we finally arrive at the
result that

Z(G,{V },{W }) = Z(�,{h},{m},{q}). (81)

It is important to note that since the edge vertices are measured
in the ZX± bases and the resulting edge is projected on
the eigenstates |±〉| ∝ ∫

e±iy2 |y〉dy, the interactions between
neighboring vertices in the complete model is restricted to be
of the type ±i(φi − φj )2. In this way, all the couplings in the
original model have been transferred to the mass and potential
terms on the vertices.

As a byproduct, this argument shows that when the original
model has only quadratic couplings (i.e., it is free field), then
there is no linear or quartic coupling in the model on the
rectangular lattice, which reduces to this model by Gaussian
measurements. This means that the free field theory on the 2D
rectangular lattice is complete and can produce any other field
theory on any lattice.

It is a simple matter to show that the φ4 theory can also
reproduce models with k-body interactions. We know from
Ref. [8] that the 4D U(1) lattice gauge theory is complete.
Therefore, it is enough to show that φ4 theory can reduce to
4D U(1) lattice gauge theory. The Hamiltonian of the latter
model is given by

H = −
∑

p

Jp cos(φ1 − φ2 − φ3 + φ4), (82)

032316-9



VAHID KARIMIPOUR AND MOHAMMAD HOSSEIN ZAREI PHYSICAL REVIEW A 85, 032316 (2012)

where p denotes a plaquette, Jp denotes the coupling constant
on p, and φi’s are the continuous variables around p. The
indices 1,2,3, and 4 denotes the edges of p when traversed
in clockwise direction. The point is that the partition function
of such a model can again be written as a scalar product Z =
〈α|G〉 =, with 〈α| a product state over all plaquettes,

〈α| = ⊗p〈α|p, 〈α|p :=
∫

dye−iJp cos y〈y| (83)

and |G〉 a new stabilizer state,

|G〉 =
∫

Dx| . . . ,(x1 − x2 − x3 + x4)p, . . .〉. (84)

If we now note that 〈α|p can be written as 〈α|p = 〈0|pe−iJp cos Q̂

and the latter operator can indeed be expanded to any desired
accuracy in terms of e−itQ̂2

and e−itQ̂4
, the assertion will be

proved along the same line as indicated above.
Efficiency: It is shown in Ref. [4] that simulating the

partition function of any Ising or Potts type model on an
arbitrary graph can be done on the Ising model on a square
lattice with only a polynomial overhead in the number of spins.
For more general models, however, an exponential overhead
may be needed. A similar statement is true also in our case,
namely for simulating the partition function of a model with
nearest neighbor interactions on a graph with N vertices, we
need a φ4 model on a cluster state with P (N ) vertices, where
P (N ) is a polynomial of N . This result is a combination
of the universality result of cluster states which by only a
polynomial overhead can produce any other quantum state and
the fact that any quantum unitary eiV (q̂) can be decomposed
to a product of polynomial number of unitaries of the form
eitq̂n

, with n = 1,2,4 to any degree of precision. This result
is also true when each site interacts with a finite number k of
its neighbors, where k is independent of N . For more general

models, an exponential overhead in the number of sites will
be necessary, like the case of Ising model.

VII. DISCUSSION

The concept of completeness of certain statistical models
is fascinating. The idea that in principle a single complete
model, like the 2D Ising model in its rich phase structure,
various phases of all the other models, regardless of their
lattice structure, type of order statistical variables and order
parameter, and the interactions, is an idea that needs much
exploration in the future. One of the basic questions is that
what other types of models are complete. In this paper we
have shown that the φ4 field theory is a complete model.
Like the case of Ising model [5] or the U(1) lattice gauge
theory [8], our proof is an existence proof at present. The next
step in such a program will be to show how other specific
models can be obtained from these complete models and what
insight about them can be obtained. Like the existence proof
itself, this step relies heavily on techniques from quantum
information theory, notably the measurement-based quantum
computation. In particular, it will be desirable to formulate an
algorithmic approach for deriving any specific model (its graph
structure and coupling strengths) from a complete model. In
this way apparently unrelated models will be linked to each
other and the insight gained from this approach will have
far-reaching consequences in statistical mechanics, exactly
solvable models, and critical phenomena.
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