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Thermally generated long-lived quantum correlations for two atoms trapped
in fiber-coupled cavities
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A theoretical model for driving a two-qubit system to a stable long-lived entanglement is discussed. The entire
system is represented by two atoms, initially in ground states and disentangled, each one coupled to a separate
cavity with the cavities connected by a fiber. The cavities and fiber exchange energy with their individual thermal
environments. Under these conditions, we apply the theory of microscopic master equation developed for the
dynamics of the open quantum system. Deriving the density operator of the two-qubit system we found that
stable long-lived quantum correlations are generated in the presence of thermal excitation of the environments.
To the best of our knowledge, there is no a similar effect observed in a quantum open system described by a
generalized microscopic master equation in the approximation of the cavity quantum electrodynamics.
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I. INTRODUCTION

Entanglement (verschränkung) introduced in physics orig-
inally by Schrödinger [1] and considered a native feature
of the quantum world, is the most outstanding and studied
phenomenon to test the fundamentals of quantum mechan-
ics, as well as an essential engineering tool for quantum
communications. However, entanglement is a property that
is hard to reach technologically and even when achieved it is
a very unstable quantum state, vulnerable under the effects
of any dissipative process as a result of the coupling to
the environment. Conventionally these effects are considered
mainly destructive for entanglement, nevertheless some recent
studies of this subject attest results different from the common
conviction, even appearing as counterintuitive at first glance
[2–4].

An alternative approach to measure the entire correlations in
a quantum system was suggested in Refs. [5,6]. For example,
by using the concepts of mutual information and quantum
discord (QD) the quantum correlations may be distinguished
from the classical ones. Further the QD could be compared to
the entanglement of formation (E) [7] in order to find if the
system is in a quantum inseparable state (entangled), or in a
separable state with quantum correlations, such as QD [8–11].
Such an analysis is considered in this paper.

The inclusion of the interaction of the system with the
environment plays an important role in physics, implying a
more realistic picture because the dissipation is always present
in the real devices. In the proposed study we deal with atoms,
cavities, and a fiber in the framework of the physical model
suggested in Ref. [12], which attracted a high interest for
quantum information applications and subsequently discussed
details from different aspects [13–16]. As a basic model, we
consider the one recently analyzed in Ref. [17] and extend
the calculations for a very special case (i.e., when the atoms
are initially disentangled and in the ground states while the
fields are in vacuum states and coupled to the reservoirs at
finite temperatures). The entire system is considered open
because of the leakage of the electromagnetic field from the
cavities and fiber into their own thermal baths. Therefore, we
ask ourselves the following question: Is it possible to generate

atomic quantum correlations by the processes of absorption
and exchanging excitations with the thermal reservoirs? In the
following we present the model and detailed analysis in search
of an answer.

II. MODEL

We present here the model schematically shown in Fig. 1
and recall the basic equations that lead us to the effect we are
looking for. Hence, one considers two qubits (two-level atoms)
interacting with two different and distant cavities, coupled by
a transmission line (e.g., fiber, waveguide). For simplicity we
consider the short fiber limit: only one (resonant) mode of the
fiber interacts with the cavity modes [15].

Now, let us define a given state of the whole system by
using the notation |i〉 = |A1〉 ⊗ |A2〉 ⊗ |C1〉 ⊗ |C2〉 ⊗ |F 〉 ≡
|A1A2C1C2F 〉, where Aj=1,2 correspond to the atomic states,
that can be e(g) for excited (ground) states, while Cj=1,2 are the
cavity states, and F corresponds to the state of the fiber. Both
Cj=1,2 and F describe a 0 or 1 photon state. The Hamiltonian of
the composite system under the rotating-wave approximation
(RWA) reads (with h̄ = 1)

Hs = ωaa
†
3a3 +

2∑
j=1

(ωaSj,z + ω0a
†
j aj )

+
2∑

j=1

(gjS
+
j aj + νa3a

†
j + H.c.), (1)

where a3 is the boson operator defining the fiber mode, a1(a2)
is the boson operator for the cavity 1(2); ω0 and ωa are the
cavity and the atomic (fiber as well) frequencies, respectively;
gj (ν) the atom-cavity (fiber-cavity) coupling constants; and
Sz, S± are the usual atomic inversion and ladder operators,
respectively.

The model is studied under the assumption of a single
excitation in the system of atoms and fields, and using
the above-mentioned notation, the state basis of the system
becomes |1〉 = |eg000〉,|2〉 = |gg100〉,|3〉 = |gg001〉,|4〉 =
|gg010〉,|5〉 = |ge000〉,|6〉 = |gg000〉, where the last vector
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FIG. 1. (Color online) Two atoms trapped in distant coupled
cavities. The cavities and transmission line exchange the energy at
the rates γ1, γ2, and γ3 with their baths having the temperatures T1,
T2, and T3, respectively.

is required by the existence of the excitation’s leakage to
the reservoirs. Hence, it is straightforward to bring the
Hamiltonian Hs in Eq. (1) to a matrix representation in the
state basis [17].

To simulate the dynamics of the given system, one considers
the approach of the microscopic master equation (MME),
developed in Refs. [18,19] in order to describe the system-
reservoir interactions by a Markovian master equation. This
description considers jumps between eigenstates of the system
Hamiltonian rather than the eigenstates of the field-free
subsystems, which is the case in many approaches employed
in quantum optics. Therefore, we assume that the system of
interest (i.e., the atoms, cavities, and fiber) are parts of a
larger system, composed by a collection of quantum harmonic
oscillators in thermal equilibrium. The external environment
represents the part of the entire closed system other than the
system of interest. Between each element of the system and
its own bath one may identify different kinds of dissipation
channels. In cavity quantum electrodynamics (CQED) the
main source of dissipation originates from the leakage of the
cavity photons due to the imperfect reflectivity of the cavity
mirrors. A second source of dissipation corresponds to the
spontaneous emission of photons by the atom, however this
kind of loss we consider small and neglect in the model.
Following the common procedures [18,19], one obtains the
MME for the system’s reduced density operator ρ(t)

∂ρ

∂t
= −i[Hs,ρ] + L(ω̄)ρ + L(−ω̄)ρ, (2)

where the dissipation terms are defined as follows (with ω̄ > 0)

L(ω̄)ρ =
3∑

j=1

γj (ω̄)

(
Aj (ω̄)ρA

†
j (ω̄) − 1

2
[A†

j (ω̄)Aj (ω̄),ρ]+

)
.

In the above equations the following definitions are consid-
ered: Aj (ω̄) = ∑

ω̄α,β
|φα〉〈φα|(aj + a

†
j )|φβ〉〈φβ | fulfilling the

properties Aj (−ω̄) = A
†
j (ω̄), where ω̄α,β = 
β − 
α with 
k

as an eigenvalue of Hamiltonian Hs and its corresponding
eigenvector |φk〉, denoting the kth dressed state. We should
point out that the eigenfrequencies of Hamiltonian Hs are
chosen in order to satisfy the following inequality 
6 <


5 < 
4 < 
3 < 
2 < 
1. Further in Eq. (2) one may use
the so-called Kubo-Martin-Schwinger (KMS) condition [19],
which gives a relation for the damping constants γj (−ω̄) =
exp(−ω̄/Tj )γj (ω̄), where Tj are the reservoir temperatures in
the corresponding unit. The KMS condition ensures that the
system tends to a thermal equilibrium for t → ∞.

In order to solve Eq. (2) one may use a kind of formal
solution, because in the most general case there is no
an analytic solution for the eigenvalue equation based on
Hamiltonian Hs . Once having the operators Aj (ω̄αβ), it is easy
to write Eq. (2) for the density operator ρ(t) decomposed in
the eigenstates basis, 〈φm|ρ(t)|φn〉 = ρmn, and we get

ρ̇mn =−iω̄n,mρmn +
5∑

k=1

γk→6

2
(2δm6δ6nρkk − δmkρkn − δknρmk)

+
5∑

k=1

γ6→k

2
(2δmkδknρ66 − δm6ρ6n − δ6nρm6). (3)

Here δmn is the Kronecker δ; the physical meaning of
the damping coefficients γk→6 and γ6→k refers to the
rates of the transitions between the eigenfrequencies 
k

downward and upward, respectively, defined as follows
γk→6 = ∑

j={1,2,3} c2
i γj [〈n(ω̄6,k)〉Tj

+ 1] (similar to Eq. (13)
in Ref. [17] redefined for finite temperature), and γ6→k

results from the KMS condition, where ci (with the integer
i varying from 1 to 25) are the elements of the matrix
for the transformation from the states {|1〉, . . . ,|6〉} to the
states {|φ1〉, . . . ,|φ6〉} (see Eq. (14) and Appendix A in Ref.
[17]). Here 〈n(ω̄α,β)〉Tj

= (e(
β−
α )/Tj − 1)−1 corresponds to
the average number of the thermal photons. The damping
coefficients play the central role in our model because
their dependence on the temperature of the reservoirs im-
plies a complex exchange mechanism between the elements
of the system and the baths. Therefore, in the presence of the
temperature we solve numerically the coupled system of the
first-order differential equations (3) and compute the evolution
of entanglement considering the atom-field system in the initial
unexcited state |gg000〉.

In the next section we present the calculations of the
quantum correlations depending on the system characteristics,
such as atom-cavity detuning, coupling constants and thermal
reservoirs. In order to compute the atomic correlations, we
need to perform a measurement of the cavities-fiber field with
a state |000〉 = |0〉C1 ⊗ |0〉C2 ⊗ |0〉F . The feasibility of such a
measurement is also discussed.

III. MEASURING THE QUANTUM CORRELATIONS

A. Entanglement

Once projected on the state |000〉 of the field subspace we
find that the reduced atomic density matrix in the two-qubit
basis {|gg〉,|ge〉,|eg〉,|ee〉} preserves during the time evolution
a X-form structure

ρ̃(t) =

⎛
⎜⎜⎝

ρ̃11 0 0 0
0 ρ̃22 ρ̃23 0
0 ρ̃32 ρ̃33 0
0 0 0 0

⎞
⎟⎟⎠, (4)

with the atoms initially in ground state [i.e. ρ̃11(0) = 1]. The
entanglement measured by the concurrence [7] could be easily
computed [17] and gives C(t) = 2|ρ̃23/(ρ̃11 + ρ̃22 + ρ̃33)|. A
more particular form of the density matrix (4) may result in
the case of interchanging of the undistinguished qubits in
equivalent cavities (i.e. for g1 = g2, γ1 = γ2 and T1 = T2).
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FIG. 2. (Color online) Evolution of the concurrence for g = ν = 5γ and different atom-cavity detunings: (a) � = 0, (b) � = 10−4ωa ,
and (c) � = 0.1ωa . The baths have the same temperature with the average number of thermal photons given by 〈n(ω̄6,5)〉T . The axis of the
dimensionless time, γ t , is in a logarithmic scale.

In the following, we are mainly interested in studying
the evolution of atomic entanglement, the concurrence (C),
as a function of the temperatures of the thermal baths. The
system under consideration refers to the atoms with long
radiative lifetimes, each coupled to its own cavity. These
two cavities are connected by a fiber with the damping rates
γ1 = γ2 = γ3 ≡ γ = 2π MHz, respectively, which are within
the current technology [15]. The transition frequency of the
atom is chosen to be midinfrared (MIR) (i.e., ωa/2π = 4 THz)
and hence, for experimental purposes the coupling between the
distant cavities can be realized by using the modern resources
of IR fiber optics (e.g. hollow glass waveguides) [20], plastic
fibers [21], etc. We choose the range of MIR frequencies in
order to limit the thermal reservoir only up to room temperature
(300 K), which corresponds to a thermal photon. The values
of the coupling constants and the atom-cavity detuning will
be varied in order to search the optimal result. We must
mention here that to satisfy the RWA we should have 2g �
γmax(ω̄) [18]. Satisfying this condition we start with the case
g1 = g2 ≡ g = ν = 5γ , considering all the reservoirs at the
same temperature, T , and study how the atomic entanglement
evolves as a function of the atom-cavity detuning, �. The
result is shown in Fig. 2 from which we conclude that the
atom-cavity detuning facilitates in this case the generation of
a quasistationary atomic entanglement and for � = 0.1ωa the
system reaches a long-lived entanglement state. Of course, in
the asymptotic limit the concurrence will vanish and the atoms
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FIG. 3. (Color online) Concurrence for � = 0.1ωa , g = 5γ and
ν = 100γ.

eventually disentangle themselves due to the damping action of
the reservoirs. The maximal value of the concurrence of ∼0.2
corresponds to the bath’s temperature about 300 K, that is about
one thermal excitation (consistent with the single-excitation
approximation in the model) for the given frequency ωa , so
that kBT /h̄ωa 
 1.5.

In order to find the optimal relation between the coupling
constants and damping rate we did the calculations for different
situations as follows: (i) g = ν = 100γ , (ii) g = 5γ and ν =
100γ , (iii) g = 10γ and ν = γ . For example, we present the
case (ii) in Fig. 3, from which we see that the concurrence gets
the same maximal value as in the previous case in Fig. 2(c),
but it takes a longer time for the quasistationary entanglement
to reach its plateau. The rest of the cases give worse results.

Now, let us analyze a more general situation, when all
the independent baths have different temperatures. After
performing the computations, we found an interesting effect
that only the thermal bath of the fiber plays an important role in
the generation of entanglement in the system, while the thermal
baths of the cavities generate very little entanglement. This
situation is represented in Fig. 4. Therefore, after analyzing
all the calculations at the given circumstances, we come to the
conclusion that the case represented in Fig. 2(c) corresponds
to the optimal one for the generation of entanglement.

B. Quantum discord

Alternatively to entanglement, the quantum correlations can
be also quantified by the quantum discord [5,6,8–11]. Since
in our case the two-qubit density matrix has a simplified X
form (4), one can easily compute the quantum and classical
correlations in the system by using a particular case for the
algorithm discussed in Ref. [9]. Even if some recent studies,
such as Ref. [10], found that the analytic approach of Ref. [9]
could not be considered as a general one, in our case the
computation of QD may follow this procedure without some
divergences of the minimization approach. In the framework
of the algorithm and notations used in Ref. [9], we have to
optimize QD just by changing the parameters (k,l) in the range
(0,1) and found easily the condition of the resultant minimum
for (k,l) = 1/2. We have also compared the calculations with
the approach proposed in Ref. [11], by using Eq. (6) of the
latter and obtained exactly the same result. Hence, we observe
in Fig. 5 the time evolution of the QD similar to that of
entanglement, but the initial growth is steeper in the discord,
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FIG. 4. (Color online) Evolution of the concurrence for arbitrary bath temperatures, (a) T1 = T2 = 0 and varying the fiber’s bath temperature,
(b) T3 = 0 and varying equally the cavities’ bath temperatures, and (c) varying differently all the temperatures. The rest of the parameters are
the same as in Fig. 2(c).

which implies the appearance of the quantum correlations
in the system prior to the entanglement [22]. For a better
illustration of the thermal effect under discussion, in the inset
is shown the temperature dependence of the steady values (flat
time plateau) of the quantum and classical correlations.

C. Experimental hint

In the following, we discuss the tasks important for an
experimental realization of the ideas discussed here. In our
opinion, the most difficult is to realize a quantum nondemo-
lition (QND) measurement of the photon states in the fiber-
coupled cavities. However, nowadays there exist technological
possibilities to realize experiments on QND photon counting,
attaining single-quantum resolution, performed with optical
or microwave photons [23] (for an exhaustive review see
Ref. [24]). In the experiment discussed in Ref. [23] the cavity
mode was coupled to Rydberg atoms or superconducting
junctions and the QND method is based on the detection of
the dispersive phase shift produced by the field on the wave
function of nonresonant atoms crossing the cavity. This shift
can be measured by atomic interferometry, using the Ramsey
separated-oscillatory-field method. The advantages of QND
experiments in radiometry and in particular applied for IR
photons are suggested in Ref. [25].
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FIG. 5. Evolution of the quantum discord (QD), entanglement
of formation (E) and classical correlations (CC) for one thermal
excitation and the parameters chosen as in Fig. 2(c). The inset
represents the same quantities as a function of the temperatures of the
reservoirs calculated for a late time, t = 1s.

In order to simulate a measurement on the fiber-cavity
subsystem one may compute the field density operator and
therefore monitor the probability of the field state. As we are
interested in preserving the field in the vacuum state (i.e.,
ρfib−cav(t) = |000〉〈000|) one tests the probability of this state
during the temporal evolution of the system. The dynamics
of this probability for different schemes of engineering of the
thermal reservoirs is shown in Fig. 6. Based on these results
we conclude that the success to find the fiber-cavity field in a
vacuum state after the measurement strongly depends on the

FIG. 6. (Color online) Probability of finding simultaneously the
fiber and the cavities in a vacuum state by engineering of the thermal
baths as follows: (a) all the baths have the same temperature T ,
(b) varying the fiber’s bath temperature T3, while T1 = T2 = 0. The
rest of the parameters are the same as in Fig. 2(c).
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managing of the thermal reservoirs. Hence, from this point of
view, a more efficient variant to drive the qubits to long-lived
quantum correlations is to increase the fiber’s bath temperature
while the baths of the cavities are maintained at the lowest
possible temperature.

IV. CONCLUSION

In this study we show a very interesting effect that the
long-lived quantum correlations between the atoms trapped
in separate cavities can be generated by the dissipative
coupling to the thermal baths. This is an example that could
give us insight into the effects of the system-environment
exchange versus the quantum correlations. From the analysis
of the obtained results, mainly Figs. 4 and 6, we conclude
that the entanglement can be optimized by engineering the
thermal bath of the fiber rather than the baths of each cavity,

hence suggesting that the quasilocal manipulations produce
little effect on the generation of entanglement. Furthermore,
we found that our system evidences quantum correlations
quantified by QD prior to the appearance of the entanglement
(Fig. 5). Summarizing, the model discussed here can be
implemented as a QND measurement on the cavity-fiber fields
with a high success probability (see Fig. 6). This is an example
of a system where quantum correlations are only driven by
thermal excitations and can be of interest as an alternative
method for protection and generation of quantum correlations.
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