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Majorana representation of quantum states by a constellation of n “stars” (points on the sphere) can be used
to describe any pure state of a simple system of dimension n + 1 or a permutation symmetric pure state of a
composite system consisting of n qubits. We analyze the variance of the distribution of the stars, which can
serve as a measure of the degree of noncoherence for simple systems or an entanglement measure for composed
systems. Dynamics of the Majorana points induced by a unitary dynamics of a pure state is investigated.
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I. INTRODUCTION

Nonclassical correlations between composite quantum sys-
tems have become a subject of intense current research. A
particular type of such correlations, called quantum entangle-
ment, attracts special attention of theoretical and experimental
physicists; see Ref. [1] and references therein. Entangle-
ment in quantum systems consisting of two subsystems
is nowdays relatively well understood, but several signifi-
cant questions concerning multiparticle systems remain still
open.

One of the key issues is to workout a practical entanglement
measure, used to quantify the quantum resources of a given
state. Although various measures of quantum entanglement
are known [1–4], they are usually difficult to compute. An
important class of entanglement measures can be formulated
within the geometric approach to the problem [3,5]. For a given
quantum state, one can study its minimal distance to the set
of separable states. Various distances [3] can be used for this
purpose and the minimization can be performed with respect
to the mixed [6] or pure [7,8] separable states.

Working with pure quantum states of a n-qubit system it is
possible to distinguish a class of states symmetric with respect
to permutations of all subsystems. This class of symmetric
pure quantum states can be identified with the set of all states
of a single system described in an N = n + 1 dimensional
Hilbert space.

When analyzing the space of pure states belonging to the
N -dimensional Hilbert space, it is useful to distinguish the
class of spin-coherent states. These states, |θ,φ〉, labeled
by a point on the sphere, can be obtained by action of
the Wigner rotation matrix Rθ,φ on the maximal weight state
|j,j 〉, so they are also called SU(2)-coherent states. Here
j = n/2 is the maximal eigenvalue of the component Jz of
the angular-momentum operator. Making use of the stereo-
graphic projection, one can map the sphere into the plane. The
coherent states are then labeled by a complex number α and
their expansion in the eigenbasis of Jz reads [9,10]

|α〉 = 1

(1 + |α|2)n/2

n∑
k=0

(
n

k

)
αk|k〉. (1)

Consider now an arbitrary state of an N -level system,
|ψ〉 = ∑n

k=0 ck|k〉. It can be expanded in the coherent-states

representation,

Qψ (α) = |〈ψ |α〉|2 = |cn|2
(1 + |α|2)n

n∏
i=1

|α − zi |2. (2)

The function Qψ (α) is called the Husimi function (or Q

function) of the state |ψ〉 and it can be interpreted as a
probability density on the plane. As it can be associated with
a polynomial of order n of a complex argument, it is uniquely
represented by the set if its n roots zi , i = 1, . . . n, which
may be degenerated. With help of the inverse stereographic
projection, one can map these points back on the sphere.
The collection of these n points on the sphere, corresponding
to the zeros of the Husimi function (2), represents uniquely
the state |ψ〉 ∈ Hn+1. This approach of Majorana [11] and
Penrose [12] leads to the so-called stellar representation of a
state, as each Majorana point on the sphere corresponding to
zi can be interpreted as a star on the sky.

For any coherent state |α〉 = |θ,φ〉 all n stars sit in a
single point antipodal to the vector pointing in the direction
(θ,φ). If the Majorana points are located in a neighborhood
of a single point, the corresponding state is close to be
coherent. In contrast, a generic random state, for which the
distribution of stars is uniform on the sphere [13,14] is far
from being coherent. The degree of noncoherence of |ψ〉 can be
characterized, e.g., by its Fubini-Study distance to the closest
coherent state or by the Monge distance equal to the total
geodesic distance on the sphere all stars have to travel to meet
in a single point [15].

The stellar representation, originally used for states of a
simple system of n + 1 levels, can be also used to analyze com-
posite systems consisting of n qubits, under the assumption
that the states are symmetric with respect to permutations of
all subsystems [16–21]. Due to this symmetry the investigation
of such states becomes easier and estimation of their geometric
measure of entanglement can be simplified [22].

Note that any separable state of the n-qubit system can be
considered as a coherent state with respect to the composed
group [SU(2)]n. Thus, entangled states of a composite system
correspond to noncoherent states of the simple system with
n + 1 levels [23], while the degree of entanglement can be
identified with the degree of noncoherence.

In this work we propose to characterize pure quantum states
by the position of the barycenter of its Majorana representation.
We will then describe nonclassical properties of a state by the
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average and the variance of the corresponding distribution
of the Majorana points. The latter quantity has a simple
geometric interpretation as a function of the radius of the
barycenter of the stars, which is situated inside the Bloch ball.
The same quantity can, thus, be applied to characterize the
degree of noncoherence of a pure state of an (n + 1)-level
system or, simultaneously, as a degree of entanglement for the
corresponding permutation symmetric pure state of an n-qubit
system.

In a similar way, the measure of quantumness of a state of
n + 1-dimensional system introduced by Giraud et al. [24] can
be used to characterize the entanglement of permutationally
symmetric pure states of n qubits. We are also going to study
time evolution of quantum states and an associated dynamics of
stars. In particular, we investigate how the barycentric measure
of entanglement varies with time.

This work is organized as follows. In Sec. II, we review
the Majorana representation used for symmetric pure states
of a multiqubit quantum system. In Sec. III the position
of the barycenter of Majorana points and their variance is
investigated, as it may serve as a characterization of quantum
entanglement. A family of n-qubit states maximally entangled
with respect to this measure is studied in Sec. IV. Unitary
dynamics of quantum states and the associated dynamics of
Majorana points on the sphere is analyzed in Sec. V.

II. MAJORANA REPRESENTATION OF MULTI–QUBIT
STATES

Consider an n-qubit pure state |ψ〉 symmetric with respect
to permutation of subsystems:

|ψ〉 = 1√
K

∑
π

|φπ(1)〉|φπ(2)〉 · · · |φπ(n)〉. (3)

The sum is taken over all permutations π , while the normal-
ization constant reads

K = n!
∑
π

n∏
i=1

|〈φi |φπ(i)〉|.

Any one-qubit pure state can be represented as |φi〉 =
cos θi

2 |0〉 + ei�i sin θi

2 |1〉. Making use of the the Dicke states
|Sn,k〉 with k = 0,1, . . . ,n [25],

|Sn,k〉 =
(

n

k

)− 1
2 ∑

ρ

Pρ |0〉⊗n−k|1〉⊗k, (4)

we can represent the state |ψ〉 as their superposition,

|ψ〉 =
n∑

k=0

dk|Sn,k〉 =
n∑

k=0

dk

(
n

k

)− 1
2 ∑

ρ

Pρ |0〉⊗n−k|1〉⊗k,

(5)
where dk denote complex coefficients, ( n

k ) is the binomial

coefficient, and the sum
∑

ρ Pρ goes over all states of n-qubits
with exactly k qubits in the state |1〉 and n − k qubits in the state

|0〉. It comes out that quotients of the coefficients
cos θi

2

ei�i sin θi
2

=
e−i�i cot(θi/2) determining the one-qubit state |φi〉 can be

obtained as roots zi of the polynomial

P (z) =
n∑

k=1

dk(−1)k
(

n

k

) 1
2

zk. (6)

The polynomial defined above has degree D � n and, con-
sequently, as many roots. In the case of D < n, the remaining
(n − D) coefficients cos θi

2 were set to unity [16]. In this way,
we can represent any n-qubit state symmetric with respect to
permutations as n points on the Bloch sphere related to spin- 1

2

(one-qubit) states |φi〉 = cos θi

2 |0〉 + ei�i sin θi

2 |1〉. These n

points on the Bloch sphere define a stellar representation of
a state and are called stars or Majorana points (MP), while
polynomial (6) is called the Majorana polynomial [11].

Note that the same constellation of n stars determines, on
the one hand, a pure state of the simple system described in the
N = n + 1 dimensional Hilbert space [3,9,12]. On the other
hand, it describes also a permutationally symmetric pure state
of an n-qubit system [17,20,21] and belongs to the Hilbert
space of dimension 2n.

To establish a one-to-one link between both problems it
is sufficient to identify bases in both spaces. In the case of
a simple system described in the Hilbert space of size n + 1
we select the standard eigenbasis of the angular-momentum
operator Jz,

|j,m〉, m = −j, . . . ,j, (7)

with j = n/2. A state from this basis is represented by a
constellation of n/2 + m stars at the north pole and the
remaining n/2 − m stars at the south pole, as shown in Fig. 1.
Thus, the state |j,m〉 ∈ HN can be identified with the Dicke
state |Sn,k〉 ∈ H⊗n

2 defined in Eq. (4) with k = n/2 − m. In
this way, any constellation of stars can be used to describe
the pure quantum state of two different physical systems: an
(n + 1)-level system and a symmetric state of n qubits. In
following sections we show that this link can be extended also
for quantum dynamics. Any discrete unitary dynamics of an

FIG. 1. Stellar representation of the orthogonal basis in the
(n + 1)-dimensional Hilbert space describing a simple system (states
|j,m〉 with j = n/2) with the corresponding basis in the subspace of
permutation symmetric states of n-qubit systems plotted for n = 2
and n = 3.
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n-qubit system, which preserves the permutation symmetry,
can be represented by an unitary matrix of size 2n with a block
structure in the computational basis. The diagonal block of size
n + 1 is unitary and it defines the corresponding dynamics of
a simple quantum system with n + 1 levels.

III. BARYCENTER AS AN ENTANGLEMENT MEASURE

We propose a quantity designed to characterize entan-
glement for permutation symmetric states. It is based on
the distance between the barycenter of the Majorana points
representing a permutation-symmetric state and the center of
the Bloch ball. We will show that this quantity vanishes on
separable states and it does not increase under local operations
which preserve the symmetry.

A. Entanglement measure for permutation symmetric states

For any permutation symmetric state [Eq. (3)] with |φi〉 =
cos θi

2 |0〉 + ei�i sin θi

2 |1〉, let us define,

EB = 1 − d2, (8)

where d is the distance between the barycenter of the Majorana
points representing the state and the center of the Bloch ball,

d =
∣∣∣∣∣1

n

n∑
i=1

(sin θi cos �i, sin θi sin �i, cos θi)

∣∣∣∣∣ , (9)

where |x| denotes the length of a vector x.
Let us call EB the barycentric measure of entanglement.

This quantity can be interpreted as the variance of all Majorana
points representing the state. Indeed, since a vector directed
toward any point at the unit sphere has the unit length, we
have EB = D2X = 〈X2〉 − 〈X〉2 = 1 − 〈X〉2 = 1 − d2. It is
easy to see that EB ∈ [0,1].

Note that the quantity EB can be used to characterize the
symmetric states of the n-qubit system or the states of a single
system of size N = n + 1. For a separable state |ψ〉 = |φ〉⊗n

[or an SU(2)-coherent state of a single qunit] all stars are
located in a single point, so d = 1 and EB = 0. Moreover,
a generic random state is likely to be highly entangled (or
highly noncoherent) as the Majorana points are distributed
almost uniformly at the Bloch sphere [13,14], which implies
d ≈ 0 and EB ≈ 1.

A useful entanglement measure should not increase under
local operations. The barycentric measure EB is defined only
for symmetric states so monotonicity can be checked only
for local unitary operations which preserve the permutation
symmetry. Consider two n-qubit permutation symmetric states
|ψ〉, |φ〉 connected by a local operation. This means that there
exist unitary operators Ai such that |ψ〉 = A1 ⊗ · · · ⊗ An|φ〉.
Mathonet et al. proved in Ref. [26] that in fact we may
find a single invertible operator A for which |ψ〉 = A⊗n|φ〉.
Geometrically such an operation corresponds to a rotation
of each Majorana points around the same axis by the same
angle or, equivalently, a rigid rotation of the whole Bloch
sphere. Obviously, thus, the radius of the barycenter d, and,
consequently, the barycentric measure EB , do not change. This
concludes a proof of Proposition 1.

FIG. 2. (Color online) Majorana representation of a symmetric
two-qubit state of the form |φ1〉 = |0〉 and |φ2〉 = cos θ

2 |0〉 + sin θ

2 |1〉
with θ = 2

3 π . Majorana points are shown as two balls. The cube
denotes the barycenter of MP located inside the Bloch ball and its
distance to the center of the Bloch ball is equal to d .

Proposition 1. The barycentric measure EB is invariant
under local operations preserving the permutation symmetry.

B. Examples

We shall calculate the barycentric measure EB for certain
exemplary quantum states and make a comparison with the
geometric measure of entanglement EG defined as a function
of the distance from the analyzed state φ and the set of
separable statesHSEP. Such a quantity, first proposed by Brody
and Hughston [7] and later used in Ref. [8], can be defined by

EG(|φ〉) = min
|λ〉∈HSEP

log2

(
1

|〈λ|φ〉|2
)

, (10)

Let us start with the two-qubit case. Without loss of gen-
erality we may set |φ1〉 = |0〉 and |φ2〉 = cos θ

2 |0〉 + sin θ
2 |1〉.

The special case θ = 2
3π is shown in Fig. 2. Direct calculation

gives for this family of states EB = 1 − cos2 θ
2 . Figure 3 shows

how EB and EG change with the angle θ . We see that in this
case EB � EG, but for a product state (θ = 0) and for the
maximally entangled state (θ = π ) both quantities coincide.

Analysis of three-qubit states exhibits a more interesting sit-
uation. Consider a one-parameter family of three-qubit states,
|φ1〉 = |0〉, |φ2〉 = cos θ

2 |0〉 − sin θ
2 |1〉 and |φ3〉 = cos θ

2 |0〉 +
sin θ

2 |1〉. The case θ = 5
6π is shown in Fig. 4. Using simple

geometry we obtain that for such states the barycentric measure
reads EB = 1 − | 2 cos θ+1

3 |2. Figure 5 shows how EB and EG

change with the angle θ . Note a significant difference between
EB and EG. The barycentric measure EB reaches its maximum
at θ = 2

3π , which corresponds to the GHZ state and we have
EB(|GHZ3〉) = EG(|GHZ3〉) = 1. However, for θ > 2

3πEG

increases and reaches its maximal value at θ = π , at the state
|W3〉 = 1√

3
(|001〉 + |010〉 + |100〉). Moreover, it is easy to see
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FIG. 3. (Color online) Dependence of entanglement measures for
a symmetric two-qubit state determined by |φ1〉 = |0〉 and |φ2〉 =
cos θ

2 |0〉 + sin θ

2 |1〉. The solid curve denotes the barycentric measure
EB , while the geometric measure EG is represented by the dashed
curve.

that the state |GHZ3〉 is maximally entangled with respect to
the barycentric measure EB : For three points at the sphere their
barycenter could be in the center of the sphere if and only if they
form an equilateral triangle. As a third example, we consider
the Dicke states |Sn,k〉 [Eq. (4)]. They are characterized by k

stars at the south pole and the remaining n − k Majorana point
occupying the north pole of the Bloch sphere.

The length of the radius of the barycenter is, thus,
easily calculated as d = | n−2k

n
|. We would like to make the

comparison with EG in a slightly different way, employing
results of Hayashi et al. [20], who showed that the product
state closest to |Sn,k〉 reads

|
〉 =
(√

n − k

n
|0〉 +

√
k

n
|1〉

)⊗n

, (11)

FIG. 4. (Color online) Majorana representation of a symmetric
three-qubit state |φ1〉 = |0〉, |φ2〉 = cos θ

2 |0〉 − sin θ

2 |1〉, and |φ3〉 =
cos θ

2 |0〉 + sin θ

2 |1〉 with θ = 5
6 π . Majorana points are shown as three

balls. The black cube denotes the barycenter of MP.

FIG. 5. (Color online) Entanglement measures of symmetric
three-qubit state of the form such that |φ1〉 = 0, |φ2〉 = cos θ

2 |0〉 −
sin θ

2 |1〉, and |φ3〉 = cos θ

2 |0〉 + sin θ

2 |1〉. (Solid line) EB ; (dashed
line) EG. Result for EG from Ref. [17].

hence,

EG(Sn,k) = log2

((
n
k

)k( n
n−k

)n−k(
n

k

)
)

. (12)

The projection on the z axis of 
 has the length equal | n−2k
n

|,
just like the length of the radius d (see above). For an even
n, the state |Sn,n/2〉 is maximally entangled with respect to the
measure EG among all Dicke states; for odd n there are two
such states, |Sn,(n−1)/2〉 and |Sn,(n+1)/2〉. The same states are
extremal with respect to the barycentric measure.

Moreover, for an even n, the state |Sn,n/2〉 belongs to
the class of the maximally entangled n-qubit states as its
barycentric measure EB is equal to unity. A comparison
between the measures EB and EG is shown in Fig. 6 for Dicke
states with n = 10 and n = 11. The same results hold for the
states of the standard |j,m〉 basis in the space of N = n + 1
level systems, with j = n/2 and m = k − n/2.

IV. FAMILY OF MAXIMALLY ENTANGLED STATES

It is interesting to look for states which are maximally
entangled with respect to the barycentric measure EB . The
answer is simple for a small number of qubits. For n = 2 a
constellation of two stars on the sphere has its barycenter in
the center of the sphere if and only if it consists two antipodal
points on the sphere. Therefore, the class of maximally
entangled two-qubit states with EB = 1 coincides with all
states equivalent to the Bell state up to a local unitary
transformation.

A. Two and three qubits

For the two-qubit problem, one can establish the following
property.

Proposition 2. There is no universal unitary operator U (θ )
which transforms any separable state with both MP at θ0 into
a state with MP at θ0 ± θ for a given angle θ .

Indeed, assume that A is such an operator. Then, in
particular, it would transform the states |00〉 and |11〉 into the
Bell state |�+〉 = 1√

2
(|01〉 + |10〉), which is impossible since

a unitary operator cannot transform two orthogonal states into
the same state.
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FIG. 6. (Color online) Dependence of entanglement of Dicke
states |Sn,k〉, as a function of k for (a) n = 10 and (b) n = 11.
Red squares denote the barycentric measure EB , and blue circles
denote the geometric measure EG normalized to unity for maximally
entangled states; lines are plotted to guide the eye.

The three-qubit case was discussed in the preceding section
(Sec. III B) with the conclusion that the class of maximally
entangled three-qubit states consist of the GHZ state and the
states unitarily equivalent. The case of four-qubit states reduces
to a geometric problem of placing four points on the sphere in
such a way that their barycenter is located in the center of the
sphere. Consider a rectangle inscribed into a sphere, belonging
to the XZ plane so ts barycenter is the center of the sphere.
Without changing the position of the barycenter we can vary
the lengths of its sides by changing the angle θ between one
side of the rectangle and its diagonal (see Fig. 7). We can also
rotate one of its sides (the bottom side in Fig. 7) varying the
angle � ∈ [0,π ].

B. Four qubits

Assume now that these four points represent a certain four-
qubit permutation symmetric state |ψrec〉. It means that |ψrec〉
is the symmetrization [Eq. (3)] of the tensor product of

|φ1〉 = cos
θ

2
|0〉 + ei� sin

θ

2
|1〉,

|φ2〉 = cos
θ

2
|0〉 − ei� sin

θ

2
|1〉,

(13)
|φ3〉 = cos

π − θ

2
|0〉 + sin

π − θ

2
|1〉,

|φ4〉 = cos
π − θ

2
|0〉 − sin

π − θ

2
|1〉,

FIG. 7. (Color online) Parameterization of the family of the max-
imally entangled four-qubit states. The dashed lines are the three axes
of the coordinate system. The full lines are the four sides of the rec-
tangle. The upper side is parallel to the X axis, and the bottom side is
rotated by an angle �. The dotted lines are used to mark the angles:
the bottom dotted line is parallel to the X axis, i.e., at the position of
the bottom side of rectangle without rotation.

where θ ∈ [0,π/2], � ∈ [0,π ]. Consequently,

|ψrec〉 = ei�

√
K

(
6e−i� sin2 θ |0000〉 + 6ei� sin2 θ |1111〉

+ [4i cos θ sin � − 2(cos2 θ + 1) cos �]

×
∑
π

|0011〉
)

, (14)

where K is the normalization factor. The state |ψrec〉 defined
above and all locally equivalent states form a class of four-qubit
states maximally entangled with respect to the barycentric
measure EB . This class contains the |W4〉 state (which we
identify with |S4,2〉), obtained for θ = � = 0, such that all four
Majorana points belong to a single line: two stars are localized
at the north pole and two other at the south pole. The choice θ =
π/2 and � = π

2 produces |GHZ4〉 = 1√
2
[|0000〉 + |1111〉]

represented by stars in four corners of a square at the equator.
Setting θ = π/4 and � = 0 we obtain a state locally equivalent
to |GHZ4〉 with stars situated on a plane perpendicular to the
equatiorial one. The tetrahedron state |ψtetr〉 corresponds to
θ = arccos(1/

√
3) and � = π

2 .
To compare both measures of entanglement, following

Ref. [17] we computed numerically the geometric measure of
entanglement EG for the entire family [Eq. (14)] of extremal
states, for which EB = 1 (see Fig. 8). All states from this class
are characterized by EG � 1, and the minimum is attained for
a |GHZ4〉 state, for which EG = 1. For a |W4〉 state one has
EG(|W4〉) = log2(8/3) ≈ 1.415 [20], while the maximum is
obtained for the tetrahedron state and EG(|ψtetr〉) = log2 3 ≈
1.585 [17]. This observation suggests that both measures are
well correlated, so the barycentric measure of entanglement,
simple to evaluate, could be used to characterize the state in
parallel to the geometric measure.
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FIG. 8. (Color online) Geometric measure of entanglement for
the family [Eq. (14)] of four-qubit states for which EB = 1 parame-
terized by angles (θ,�) is not smaller than 1. The cylinder represents
the state |W4〉, the ball denotes the tetrahedron state for which EG

is maximal, while two cubes represent two equivalent |GHZ4〉 states
(empty cube, |GHZ4〉 with stars situated on the equatorial plane;
full cube, rotated |GHZ4〉, situated on a plane perpendicular to the
equatiorial one).

Note that the states called “Queens of Quantum” by the
authors of [24], ie., the most distant from the set of product
states with respect to the Hilbert-Schmidt [24] or Bures [21]
distance, are, for small values of N , described by symmetric
constellations of the Majorana points, so they are maximally
entangled with respect to the barycentric measure EB .

C. Composition of states

Consider two pure states of a simple, N -level system, |ψ1〉
and |ψ2〉 in HN . A composition of these states, |ψ1〉 � |ψ2〉,
defined in Ref. [3], forms a pure state belonging to a 2N − 1
symmetric subspace of the tensored Hilbert space, HN ⊗ HN .
Both initial states are described by n = N − 1 stars, and
their composition, represented by 2n stars, is defined by
adding the stars together. In the similar way one can compose
the states from two Hilbert spaces of different dimensions.
More formally, one can define the composition by its Husimi
distribution Q(α), which is given by the product of two Husimi
distributions representing individual states,

Q|ψ1〉�|ψ2〉 ∝ Q|ψ1〉Q|ψ2〉. (15)

The same idea of composition of two pure states of a
simple system described by the stellar representation now
can be used for the symmetric states of several qubits.
Consider a permutation symmetric n-qubit state |ψ〉 ∈ H⊗n

2
and another m-qubit state |φ〉 ∈ H⊗m

2 . Their composition,
written |ψ〉 � |φ〉 ∈ H⊗n+m

2 , represents a state of n + m qubits
and is defined by the entire sum of n + m Majorana points on
the sphere.

Observe that this notion allows us to write the symmet-
ric Bell state, |�+〉 = 1√

2
(|01〉 + |10〉) = |1〉 � |0〉. Introduc-

ing two, one-qubit superposition states, |±〉 = 1√
2
(|0〉 ± |1〉)

we see that another Bell state |�−〉 = 1√
2
(|00〉 − |11〉) is

equivalent to the composition |+〉 � |−〉. On the other
hand, any symmetric separable state of n-qubit system can
be represented by the composition performed n − 1 times,
|φ, . . . ,φ〉 = |φ〉 � · · · � |φ〉, as in this case all the stars do
coincide.

Take any two figures with the same barycenter. Superposing
them, one obtains another figure with the same barycenter. This
fact implies a useful proposition.

Proposition 3. Consider two permutation symmetric states
of any number of qubits, maximally entangled with respect to
the barycentric measure, EB(φ) = EB(ψ) = 1. Their compo-
sition then is also maximally entangled, EB(φ � ψ) = 1.

To watch this proposition in action, consider the com-
position of two maximally entangled Bell states, |�+〉 and
|�−〉. Their composition, |�+〉 � |�−〉 = |0〉 � |1〉 � |+〉 �
|−〉, represents the state formed by a square belonging to
the plane containing the meridian of the sphere. It is then
locally equivalent to the state |GHZ4〉, represented by a square
inscribed into the equator, also maximally entangled with
respect to the barycentric measure.

The notion of a composition allows us two write down a
generic random state of an n-qubits system,

|ψrand〉 := |φ1〉 � |φ2〉 � · · · � |φn〉, (16)

where φi , i = 1, . . . n, denotes a one-qubit state, generated by a
vector taken randomly with respect to the uniform measure on
the sphere. For large n, such a generic state is highly entangled
with respect to EB , as the barycenter of the points will be
located close to the center of the sphere.

Making use of proposition 3, one may also design a random
state for which the barycentric measure is equal to unity. It is
sufficient to compose several maximally entangled Bell states
represented by a random collection of pairs of antipodal points,

|ψ ′
rand〉 := |φ1〉 � |φ̄1〉 � · · · � |φn/2〉 � |φ̄n/2〉. (17)

The number n of qubits is assumed to be even and the directions
labeled by φi and φ̄i are antipodal, so the state |φi〉 � |φ̄i〉
is maximally entangled and locally equivalent to the Bell
state. Their composition produces the state |ψ ′

rand〉, which is
characterized by the maximal possible value of the barycentric
measure, EB = 1.

V. DYNAMICS OF MAJORANA POINTS

A. Interpolation between states

In this section we analyze the parametric dynamics of the
Majorana points when a state changes with some parameter β.
A related problem was analyzed by Prosen [27], who analyzed
the parametric dynamics of stars on the complex plane
representing a quantum state under a change of paremeters
of the system. We will allow the pure state to evolve in time,
so the parameter β can be interpreted as time.

As a first example, consider the state |ψ1〉 = cos β|00〉 +
sin β√

2
(|01〉 + |10〉) with β ∈ [0,π ]. It can be written in the form

of Eq. (3) with the help of the one-qubit states,

|φ1〉 = |0〉
(18)

|φ2〉 =
√

K(β)

2
cos β|0〉 +

√
K(β)

2
sin β|1〉,
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FIG. 9. (Color online) Dependence of the velocity V = ∂βθ of
the star traveling across the sphere defined as a function of the phase
β for the state |ψ1〉 = cos β|00〉 + sin β√

2
(|01〉 + |10〉). The minimal V

is achieved for a Bell state, β = π/2, while the maximal velocity is
obtained for product states, β = 0 and β = π .

where K(β) = 4
2−cos2 β

. A unitary operator U which generates
such a dynamics is not uniquely determined. If we assume
that the operator U transforming |00〉 into |ψ1〉 has the form
U = I ⊗ M1 + M2 ⊗ I, we arrive at two possibilities,

U1 = cos β I ⊗ σz − i
sin β√

2
σy ⊗ I + sin β√

2
I ⊗ σx,

(19)
U2 = cos β σz ⊗ I − i

sin β√
2

I ⊗ σy + sin β√
2

σx ⊗ I.

The operators U1 and U2 are similar: The only difference is
the order of the operators in the tensor product. Operating on
a permutation symmetric state, we can act either on the first or
on the second subsystem to obtain the same outcome.

Equation (18) shows that the dynamics of the Majorana
points for such a family is relatively simple. A single star
representing |φ1〉 stays at the north pole all the time, while
the second star makes a loop around the Bloch sphere. In
particular, for β = 0 or π , we have both points at the north
pole and for β = π/2 we have the Bell state 1√

2
(|01〉 + |10〉)

with one point at the north and the second at the south pole.
As shown in Fig. 9 the velocity of this second Majorana
point is highly nonlinear. In the case considered the velocity
is anticorrelated with the amount of entanglement. For the
maximally entangled Bell state which emerges at β = π/2, the
velocity reaches its minimum while the maximum is attained
for the separable state |00〉.

In general, the dynamics of the stars defining the stellar
representation of a state is not as simple. For instance, for a
family 1√

K(β)
(cos β|000〉 + sin β|GHZ〉), with K(β) a suitable

normalization factor, one obtains the motion of three points,
shown in Fig. 10.

B. Permutation-invariant Hamiltonians

Consider a more general dynamics defined by a one-
parameter subgroup of the unitary group,

U = e−iβH , (20)

where H is a Hermitian Hamiltonian. Of interest are only
transformations preserving the permutation symmetry of

FIG. 10. (Color online) Trajectories of Majorana points for the
state 1√

K
(cos β|000〉 + sin β|GHZ〉). Regular green, dashed blue, and

dot-dashed red lines (with arrows) represent trajectories of three MP
for β ∈ [0,π ]; the thin black dashed line represents the equator.
Three stars travel from the north pole to the south pole and, at
the equator, for β = π/2, they form a |GHZ〉 state. Arrows at
the red dot-dashed trajectory show the movement direction of the
corresponding Majorana point.

states. We are going to study an exemplary family of two-qubit
Hamiltonians, parametrized by indices i,j = 0, . . . 3 with
i �= j ,

Hij = 1
2 (σi ⊗ σj + σj ⊗ σi), (21)

where σi represents the Pauli matrix and σ0 = I. Using σiσj =
iεijkσk + Iδij , we obtain

U = − 1
2 [cos β(I ⊗ I + σk ⊗ σk)

+ i sin β(σi ⊗ σj + σj ⊗ σi) + (I ⊗ I − σk ⊗ σk)].

(22)

Clearly U preserves the permutation symmetry as it acts on
both particles in the same way. This is also true for any linear
combination of generators Hij of the form (21). Taking, thus,

H = H23 + H03√
2

= − 1

2
√

2
[σ2 ⊗ (σ0 + σ3) + (σ0 + σ3) ⊗ σ2],

we obtain,

U =

⎡
⎢⎢⎢⎢⎣

cos β − sin β√
2

− sin β√
2

0
sin β√

2
1
2 (1 + cos β) 1

2 (−1 + cos β) 0
sin β√

2
1
2 (−1 + cos β) 1

2 (1 + cos β) 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ , (23)

which transforms the state |00〉 into |ψ1〉 = cos β|00〉 +
sin β√

2
(|01〉 + |10〉), as in the example considered previously.

Note that the operator U which generates the same dynamics of
stars differs from the operators U1 and U2 defined in Eq. (19).
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C. Unitary dynamics of symmetric states of (N − 1) qubits and
corresponding dynamics of a single qunit

As discussed in previous sections, any symmetric pure
state of an n-qubit system can be associated with a state of a
simple system of size N = n + 1. Thus, any unitary dynamics
of the composite system, which preserves the permutations
symmetry, induces a certain dynamics in HN . To make
such a link explicit, consider a permutation symmetric state
ψ ∈ H⊗n

2 which can be represented in the standard basis,
{|0〉⊗k ⊗ |1〉⊗(n−k)}0�k�n. Define a a unitary transition matrix
T that transforms this basis into an orthonormal basis with
first n + 1 permutation symmetric vectors and remaining
2n − (n + 1) vectors, which span a basis in the orthogonal
subspace. Denote |ψ ′〉 = T −1|ψ〉 = ( φ

0 ), where |φ〉 ∈ Hn+1,
|0〉 ∈ H2n−n−1 and take any unitary operator U , acting on
H⊗n

2 , which preserves the permutational symmetry. We then
have

|ψ̃〉 = U |ψ〉,
T −1|ψ̃〉 = T −1UT T −1|ψ〉, (24)

|ψ̃ ′〉 = U ′|ψ ′〉,
where U ′ = T −1UT and |ψ̃ ′〉 = T −1|ψ̃〉. As U preserves
the permutation symmetry condition, Eq. (25) implies the
following block structure of the matrix U ′:

U ′ =
(

V 0
0 W

)
. (25)

Here V and W denote unitary matrices of size n + 1 and
2n − (n + 1), respectively. The matrix V acts on the (n +
1)–dimensional subspace of permutation symmetric vectors.
These vectors are in one-to-one correspondence with vectors

spanning an orthonormal basis in Hn+1; see, e.g., Ref. [28].
In other words, the matrix U representing a permutation sym-
metry preserving dynamics has to be reducible. The unitary
block V of the rotated matrix, U ′ = T −1UT , defines, thus,
a unitary dynamics of the one qunit system, associated with
the n-qubit dynamics U , which preserves the permutational
symmetry.

D. A three-qubit example

To illustrate the above reasoning, let us analyze
a three-qubit example. We use the natural basis,
(|000〉,|001〉,|010〉,|011〉,|100〉,|101〉,|110〉,|111〉), and the
unitary transition matrix T reads,

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1√
3

0 0 1√
2

1√
6

0 0

0 1√
3

0 0 − 1√
2

1√
6

0 0

0 0 1√
3

0 0 0 1√
2

1√
6

0 1√
3

0 0 0 −
√

2
3 0 0

0 0 1√
3

0 0 0 − 1√
2

1√
6

0 0 1√
3

0 0 0 0 −
√

2
3

0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(26)
Using formula (20) we construct permutation symmetry
preserve operator U , taking H = ∑

π σ1 ⊗ σ3 ⊗ ( 1 0
0 0 ), where∑

π stands for the sum over all permutations. The matrix U

obtained in this way has no special structure. However, the
transformation T brings it to the matrix U ′ = T −1UT which
enjoys the block structure as in Eq. (25),

V =

⎡
⎢⎢⎢⎣

1
4 (1 + 3cos(4β)) − 1

2 i
√

3sin(4β) 2
√

3cos(β)2sin(β)2 0

− 1
2 i

√
3sin(4β) cos(4β) 1

2 isin(4β) 0

2
√

3cos(β)2sin(β)2 1
2 isin(4β) 1

4 (3 + cos(4β)) 0

0 0 0 1

⎤
⎥⎥⎥⎦.

The matrix V determines, thus, the corresponding dynamics of a simple system of size n + 1 = 4, while the remaining part,

W =

⎡
⎢⎢⎢⎢⎣

cos(β) 0 − 1
2 isin(β) 1

2 i
√

3sin(β)

0 cos(β) 1
2 i

√
3sin(β) 1

2 isin(β)

− 1
2 isin(β) 1

2 i
√

3sin(β) cos(β) 0
1
2 i

√
3sin(β) 1

2 isin(β) 0 cos(β)

⎤
⎥⎥⎥⎥⎦.

is irrelevant for the corresponding dynamics in Hn+1.

E. Dynamics for two qubit case

From Eq. (20) we obtain a differential equations for the
dynamics,

i∂β |ψ〉 = H |ψ〉, (27)

which can be also written in terms of the angles θi and
the phases �i , i = 1,2 characterizing the positions of the

Majorana points. In the general case such equations are not
easy to solve. Therefore, we will restrict here our attention to
the special case of n = 2 qubits.

Let us take H = −σ1 ⊗ σ2 − σ2 ⊗ σ1. Using Eq. (20),
we obtain the operator U which generates dynamics of the
MP of state |ψ2〉 = cos β|00〉 − sin β|11〉. The corresponding
dynamics of the stars on the sphere with respect to the time β

is shown in Fig. 11. For simplicity, we restrict our analysis to
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FIG. 11. (Color online) Trajectories of MP for the state |ψ2〉 =
cos β|00〉 − sin β|11〉. Red dashed and green solid lines denote
trajectories of two points for β ∈ [0,π ], and the thin black dashed
line represents the equator. Both stars travel from the north to the
south pole, where they meet at β = π/2. They later return to the
north pole.

β ∈ [0,π/2], where θ1 = θ2, �1 = �2 + π and the phases �1

and �2 do not change. Using Eq. (27), we obtain a differential
equation for the polar angle θ = θ1 = θ2,

V = θ̇ = 3 + cos 3θ

2 sin θ
. (28)

As shown in Fig. 12 the velocity diverges when θ approaches
zero or π and both stars are located in a single point. The
velocity V reaches its minimum for a Bell state obtained for
θ = π/2.

It is instructive to compare the velocity of stars during the
unitary dynamics of a state parametrized by the the phase
β with changes of the barycentric measure EB ; see Fig. 13.
Observe an anticorrelation between entanglement measure and
V —the maximal velocity occurs for the minimal entanglement
and vice versa. This observation implies that product states

0.0 0.5 1.0 1.5
0

1

2

3

4

β rad

V

FIG. 12. (Color online) Velocity V = ∂βθ for the state |ψ2〉 =
cos β|00〉 − sin β|11〉. Full line is V in the function of β, dashed line
is θ (β).

0.0 0.5 1.0 1.5
0.0

0.2

0.4
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0.8

1.0

rad

E
B

FIG. 13. (Color online) Dependence of the barycentric entangle-
ment measure EB on the phase β for the state |ψ2〉 = cos β|00〉 −
sin β|11〉.

tend to gain entanglement during a relatively small interaction
time.

VI. CONCLUSIONS

In this work we presented a homogeneous approach to study
the structure of pure quantum states describing two physical
problems: a simple system consisting of n + 1 levels and the
class of states of an n-qubit system, symmetric with respect to
permutations of all subsystems. Making use of the Majorana-
Penrose representation, one can find a direct link between these
two cases as any constellation of n stars on the sphere deter-
mines a quantum state in both setups. In particular, product
states of the multiqubit system, for which all Majorana points
coalesce in a single point, correspond to spin-coherent states of
the simple system. To find a direct relation between two prob-
lems one can identify the orthogonal basis of the eigenstates
of the angular-momentum operator Jz acting on Hn+1 with the
set of (n + 1) Dicke states which span the complete basis in
the subspace of symmetric states of the composite system.

Physical properties of a given pure state can be, thus,
related to the distribution of the corresponding collection of n

points on the sphere. The variance of this distribution, related
to the radius of the barycenter inside the ball, can be, thus,
used to characterize the degree of non spin coherence of the
states of a simple system or the degree of entanglement for
the composite systems. The proposed barycentric measure of
quantum entanglement achieves its maximum for these states,
for which the barycenter of the corresponding Majorana
points is located at the center of the ball. This class of states
includes the Bell state of a two-qubit system, the GHZ state of
a three-qubit system, and several states distinguished by being
most distant from the set of separable states and are the most
nonclassical quantum states [24]. In the case of four-qubit
states we have explicitly described a two-parameter class of
extremal symmetric states for which the barycentric measure
achieves the maximal value, EB = 1. All these states are also
highly entangled with respect to the geometric measure EG,
which, for them, belongs to the interval [1, log2 3].

It is convenient to define the composition of two per-
mutation symmetric states of an arbitrary number n and
m qubits, each of them described by n and m Majorana
points, respectively. The composition is characterized by
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the collection of n + m stars on the sphere and represents
a symmetric state of m + n qubits. Making use of these
notions we show that the state |GHZ4〉 can be interpreted as a
composition of two two-qubit Bell states and construct a family
of maximally entangled multiqubit pure states with EB = 1.

Any unitary dynamics acting on the n-qubit system is
described by a matrix U of order 2n. Assuming that the
dynamics does not break the permutation symmetry, the matrix
U is reducible and can be written as a direct sum of two
unitary matrices, U = V ⊕ W . The matrix V or order n + 1
describes the unitary dynamics in the subspace of symmetric
states of the composed system or the corresponding unitary
dynamics in the space of all states of the (n + 1)-level system.
A unitary dynamics of a quantum pure state leads to a

nonlinear dynamics of the corresponding stars of its Majorana
representation. In a simple model evolution investigated for a
two-qubit system the velocity of stars is small if they are far
apart, which corresponds to the highly entangled states, and
it increases as the stars get together and the state is close to
being separable.
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