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Recently, several hybrid approaches to quantum information emerged which utilize both continuous- and
discrete-variable methods and resources at the same time. In this work, we investigate the bipartite hybrid
entanglement between a finite-dimensional, discrete-variable quantum system and an infinite-dimensional,
continuous-variable quantum system. A classification scheme is presented leading to a distinction between
pure hybrid entangled states, mixed hybrid entangled states (those effectively supported by an overall
finite-dimensional Hilbert space), and so-called truly hybrid entangled states (those which cannot be described
in an overall finite-dimensional Hilbert space). Examples for states of each regime are given and entanglement
witnessing as well as quantification are discussed. In particular, using the channel map of a thermal photon
noise channel, we find that true hybrid entanglement naturally occurs in physically important settings. Finally,
extensions from bipartite to multipartite hybrid entanglement are considered.
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I. INTRODUCTION

In quantum-information science, the highly intriguing
and nonclassical phenomenon of entanglement is at the
heart of virtually all applications [1]. Being first considered
by Einstein, Podolski, and Rosen, presenting the so-called
EPR-paradox [2], entanglement has been in the focus of
much research, especially in the recent past. However, there
are still a lot of open questions remaining. When dealing
with entanglement, one normally deals either with purely
discrete-variable (DV) quantum states which live in a finite-
dimensional Hilbert space, or with fully continuous-variable
(CV), infinite-dimensional quantum systems. The toolbox for
analysis is quite different for the two settings. While in the
DV case, density matrices provide a complete and convenient
representation, the investigation of CV states, due to their
infinite dimensionality, is more subtle. However, at least in
the Gaussian case, finitely many first and second moments are
sufficient for a compact and complete representation [3–7].

Recently, so-called hybrid protocols have emerged which
utilize both CV and DV resources at once [8–12]. These
resources may include CV and DV states as well as CV and
DV quantum operations and measurement techniques. It is
worth noting that the term hybrid, which seems to be quite in
vogue at the moment, is used in different contexts in quantum
information. For example, there are proposals considering
hybrid quantum devices which combine elements from atomic
and molecular physics as well as from quantum optics and
also solid-state physics [13]. Furthermore, there is the notion
of hybrid entanglement, referring to entanglement between
different degrees of freedom, for example, the entanglement
between spatial and polarization modes [14,15]. However, in
the present work, we use hybrid in the above first-mentioned
sense and define hybrid entanglement as the entanglement
between a finite-dimensional, DV quantum system and an
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infinite-dimensional, CV quantum system. The prime example
is an entangled state between an atomic spin and an electro-
magnetic mode. As already pointed out, the description of
CV and DV states would typically differ. Hence, combining
CV and DV quantum systems has its own characterizing and
challenging subtleties. So, why would it be useful to consider
such hybrid approaches?

In CV quantum computation, Gaussian states as well as
Gaussian transformations, such as beam splitting and squeez-
ing, are used. However, to reach computational universality
just linear Gaussian elements are not sufficient [16]. At least
one non-Gaussian component is necessary. Actually, any
quantum computer utilizing only linear elements could be
efficiently simulated by a classical computer [17]. This single
non-Gaussian element is the main challenge in CV quantum
computation, as it is very difficult to efficiently realize such
non-Gaussian transformations. In DV quantum computation
with photons, the encoding of information takes place in a
finite-dimensional subspace of the infinite-dimensional Fock
space. Just as in the CV case, for deterministic processing, a
nonlinear interaction is required to realize DV universality
[18]. But when truncating the Fock space, only single or
few-photon states are left. The drawback of optical DV
quantum computation then is that nonlinear interactions on the
few-photon level are hard to achieve. Note that a well-known
efficient protocol for universal DV computation with only
linear optics is still probabilistic (or near-deterministic at the
expense of complicated states entangled between sufficiently
many photons) [19].

A way out of the problems of CV and DV quantum
computation may be provided by those hybrid approaches.
The scheme by Gottesman, Kitaev, and Preskill, which makes
use of CV Gaussian states and transformations in combination
with DV photon number measurements, can be considered
one of the first hybrid protocols for quantum computation [20].
So-called non-Gaussian phase states are created from Gaussian
two-mode squeezed states with the aid of photon counting
measurements. Additionally, the protocol can be considered
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as hybrid, as it employs the concept of encoding logical DV
qubits into CV harmonic oscillator modes (qumodes).

However, there are other situations in which one may
benefit from combining CV and DV techniques. For example,
hybrid entangled states can be exploited for the generation of
coherent-state superpositions within the framework of cavity
QED [21]. Furthermore, there are quantum key distribution
schemes which make use of hybrid entanglement [22–24]. Fi-
nally, so-called qubus, i.e., quantum-bus-based, schemes have
been developed for establishing entanglement between distant
qubits. These also involve hybrid entanglement [25–27].

We can conclude that hybrid entanglement is a key
ingredient of various recent quantum-information protocols.
In this paper, we perform a thorough classification of hybrid
entangled states with the focus on bipartite hybrid entan-
glement. Nevertheless, also multipartite hybrid entangled
states shall be briefly discussed at the end of the paper. In
addition to the derivation of a complete classification scheme,
which distinguishes between DV-like hybrid entanglement and
true hybrid entanglement, also entanglement witnessing and
quantification of hybrid entanglement will be discussed.

The paper is organized as follows. In Sec. II, we derive
the classification scheme for bipartite hybrid entangled states.
First, the non-Gaussianity of hybrid entanglement is proved.
Then we introduce an inverse Gram-Schmidt process, which
is used for the derivation of the classification scheme. In
Sec. III, examples for each class of hybrid entangled states
are presented. Section IV briefly discusses multipartite hy-
brid entanglement, before we give a conclusion in Sec. V.
Appendices A and B present auxiliary calculations.

II. CLASSIFYING BIPARTITE HYBRID ENTANGLEMENT

Let us start with a rigorous definition of bipartite hybrid
entanglement.

Definition 1. Any entangled bipartite state of the form

ρ̂AB =
N∑

n=1

pn |ψn〉AB 〈ψn| , pn > 0 ∀ n ;
N∑

n=1

pn = 1,

|ψn〉 =
d−1∑
m=0

cnm |m〉A |ψnm〉B ,

(1)

cnm ∈ C ∀ n,m ;
d−1∑
m=0

|cnm|2 = 1,

for 1 � N � ∞ with generally nonorthogonal qumode state
vectors |ψnm〉B , defined in the total Hilbert space HAB =
HA

d ⊗ HB
∞ with finite d � 2, is called hybrid entangled.

Since every bipartite hybrid entangled state can be written
in such a pure-state decomposition, this definition is complete.
Note that later, in Sec. II C, the rank parameter N will
determine one of three possible classes of hybrid entangled
states.

A. Non-Gaussianity

How can hybrid entangled states actually be described in a
convenient way? Can their entanglement be quantified? For an
overall infinite-dimensional Hilbert space HA

d ⊗ HB
∞, using

the standard finite-dimensional techniques, density matrices
can no longer be employed. So, the use of CV methods can
be attempted. However, in CV entanglement theory, the only
conveniently representable states are the Gaussian ones. In the
non-Gaussian CV regime, for instance, exact entanglement
quantification is, in general, hard to achieve. It is therefore
useful to ask whether hybrid entangled Gaussian states exist.

Lemma 1. Any single-partite d-dimensional quantum state
with finite d and d � 2 is non-Gaussian.

For the proof of Lemma 1, see Appendix A.
Theorem 1. Any bipartite hybrid entangled or classically

correlated state is non-Gaussian.1

Proof. If a multipartite quantum state is Gaussian, all its
subsystems will be Gaussian. So, we consider a state of the
form (1) and trace out the CV subsystem. What is left is a
d-dimensional single-partite system with finite d, which can
be described in its Fock basis. It is denoted by ρ̂. Due to
Lemma 1, ρ̂ is Gaussian if and only if ρ̂ = |0〉 〈0|, which is
a pure state. However, for any entangled or even classically
correlated state, the reduced state cannot be pure [28]. Hence,
for Gaussian ρ̂, the overall system cannot be entangled
or classically correlated. Therefore, every bipartite hybrid
entangled or classically correlated state is non-Gaussian. �

We have found that there are no hybrid entangled Gaussian
states. Hence, CV Gaussian tools are inappropriate for the
description of hybrid entangled states.

The proof of Theorem 1 basically relies on Lemma 1, which
states that any finite-dimensional DV state with dimension � 2
is non-Gaussian. It is straightforwardly generalized to multi-
partite systems. Arguing that for Gaussianity all subsystems
have to be Gaussian, it is sufficient for the non-Gaussianity
of any multipartite system which also possesses DV con-
stituent(s) that at least one DV subsystem is of dimension
� 2. However, if there shall be entanglement between the
DV subsystem and the rest, the state will necessarily be non-
Gaussian, since for entanglement dimension, � 2 is required.
So, any multipartite quantum state which involves entangled
DV subsystems is non-Gaussian. Even more generally, only
1- or infinite-dimensional systems can be Gaussian. This is, of
course, not surprising; however, it is worth pointing out that
Theorem 1 is not trivial. Since the overall Hilbert space of
hybrid entangled systems is indeed infinite-dimensional, it is
not a priori clear that Gaussian hybrid entangled states do not
exist.

We have shown that hybrid entangled states belong to
the non-Gaussian, infinite-dimensional Hilbert-space regime,
which is not easy to deal with, as we already know from
conventional CV entanglement theory. The states can be
neither described by proper density matrices nor by covari-
ance matrices. Phase-space representations are also not so
convenient, since one of the subsystems is DV. The only
known quasi-probability-distribution which may in some cases
make direct statements about the separability properties of
the state is the Glauber-Sudarshan P representation [29,30].
However, it can be easily shown that this function is totally

1Questions concerning the quantum discord [44] of (mixed)
bipartite hybrid states, and the Gaussian or non-Gaussian nature of
such states, are left for future research.
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irregular for these highly nonclassical hybrid entangled states.
It may still be possible to construct entanglement witnesses,
but entanglement quantification appears, in general, hard.
Actually, there is a way out of this dilemma: For some hybrid
entangled states, the unique Hilbert-space structure can be
exploited in such a way that the states can nevertheless be
described by density matrices. These states are effectively
finite-dimensional and are therefore called DV-like hybrid
entangled. This gives rise to a classification scheme of hybrid
entangled states. However, for a rigorous analysis we first
need to introduce a slightly modified version of the so-called
Gram-Schmidt process.

B. Inverse Gram-Schmidt process

Consider again a general hybrid entangled state of the
form (1). Depending on the number of mix terms N and the
dimension of the DV subsystem d, there can be maximally
N × d linearly independent CV qumode states |ψnm〉B in ρ̂AB .
The dimension d is always finite due to the definition of hybrid
entanglement. However, N may be either finite or infinite and,
hence, the number of linearly independent qumode states is
either finite or infinite. Furthermore, if N = 1, the state is
pure.

If the number N × d of linearly independent CV qumode
states is finite, they only span an (N × d)-dimensional sub-
space HN×d of the initially infinite-dimensional Hilbert space
H∞. Then, the Gram-Schmidt process can be employed to
express the qumode states in an orthonormal basis of this
finite-dimensional subspace. In this case, the state becomes
effectively DV and all the methods from DV entanglement
theory can be applied.

The Gram-Schmidt procedure is a method for orthonormal-
izing a finite, linearly independent set of vectors in an inner
product space [31]. For a linearly independent set of vectors
{|ψi〉 : i = 1, . . . ,n} (since the process is to be exploited in the
framework of Hilbert spaces, the inner product space is a priori
assumed to be a Hilbert space), a set of pairwise orthonormal
vectors {|ei〉 : i = 1, . . . ,n} spanning the same subspace as
{|ψi〉 : i = 1, . . . ,n} is given by

|e′
1〉 = |ψ1〉 , |e1〉 = |e′

1〉√〈e′
1|e′

1〉
,

|e′
2〉 = |ψ2〉 − 〈e1|ψ2〉 |e1〉 , |e2〉 = |e′

2〉√〈e′
2|e′

2〉
,

(2)
...

...

|e′
n〉 = |ψn〉 −

n−1∑
i=1

〈ei |ψn〉 |ei〉 , |en〉 = |e′
n〉√〈e′
n|e′

n〉
.

Making use of this, any finite set of linearly independent
qumode states can be expressed in an orthonormal basis
{|ei〉 : i = 1, . . . ,n}. However, more specifically, Eqs. (2) only
determine how to express the new orthonormal basis in terms
of the old nonorthonormal one. What is actually required is
the inverse expression. To express the qumode states in terms
of {|ei〉 : i = 1, . . . ,n} we try the following approach, which
can be considered an inverse Gram-Schmidt process, i.e., a
modified version of the original Gram-Schmidt process.

Theorem 2. n normalized, generally nonorthogonal, linearly
independent states {|ψi〉 : i = 1, . . . ,n ; 0 � | 〈ψi |ψj 〉 | �
1 ∀ i,j} can always be expressed as |ψi〉 = ∑i

j=1 aij |ej 〉,
where {|ei〉 : i = 1, . . . ,n} forms an orthonormal basis of the
space spanned by {|ψi〉}, and aij ∈ C.

Proof. Writing out |ψi〉 = ∑i
j=1 aij |ej 〉, Theorem 2 states

that the {|ψi〉} can be always written as

|ψ1〉 = a11 |e1〉 , |ψ2〉 = a21 |e1〉 + a22 |e2〉 ,

|ψ3〉 = a31 |e1〉 + a32 |e2〉 + a33 |e3〉 ,
(3)

...

|ψn〉 = an1 |e1〉 + · · · + ann |en〉 =
n∑

i=1

ani |ei〉 .

For the proof, it has to be shown that (1) |ψi〉 = ∑i
j=1 aij |ej 〉

corresponds to a valid basis transformation and (2) it actually
performs the right mapping.

(1) Write the transformation as

|ψi〉 =
∑

j

Tij |ej 〉 , (4)

with the transformation matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 0 · · · 0

a21 a22
...

...
. . .

...

an1 an2 · · · ann

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

Due to the normalization of the initial and the new vectors∑i
j=1 |aij |2 = 1 is known, and due to the linear independence

of the {|ψi〉} also aii 	= 0 ∀ i is necessary.
⇒ det[T ] = ∏n

i=1 aii 	= 0.
⇒ T is invertible.
⇒ T is a valid basis transformation.
(2) To show that the lower triangular structure of the basis

transformation T in combination with the orthonormal basis
{|ei〉} is sufficient to actually express the {|ψi〉} accurately
in terms of {|ei〉}, it is demonstrated that the n(n + 1)/2
parameters aij can be chosen such that all overlaps 〈ψi |ψj 〉
are preserved when the transformation is applied.

On the one hand, there are n2 such overlaps in total and
n(n + 1)/2 ones with potentially differing absolute values. On
the other hand, there are n(n + 1)/2 complex parameters aij .
From the structure of the basis transformation and the fact
that aij are complex, it is clear that if aij can be chosen such
that the [n(n + 1)/2]-element set of {〈ψi |ψj 〉 : i � j} can be
preserved, also the rest of the overlaps are preserved, since they
are only complex conjugates of the former. Hence, it already
becomes reasonable that the aij can be chosen appropriately.

However, a proper proof is performed by induction in n.
Inductive Basis: n = 1. There is only one overlap to be

preserved:

〈ψ1|ψ1〉 = 1
!= 〈e1|a∗

11a11|e1〉 = |a11|2. (6)

Hence, choose a11 = 1, which preserves the overlap 〈ψ1|ψ1〉.
Inductive Step: Assume aij have been calculated for

i � n − 1 such that all overlaps {〈ψi |ψj 〉 : i,j � n − 1} are
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preserved. We show that then also all anj can be chosen such
that the overlaps {〈ψi |ψn〉 : i = 1, . . . ,n} are preserved. The
complex conjugated overlaps follow automatically as argued
before.

Applying the basis transformation, the overlaps {〈ψi |ψn〉 :
i = 1, . . . ,n − 1} are

〈ψ1|ψn〉 = a∗
11an1 , 〈ψ2|ψn〉 = a∗

21an1 + a∗
22an2 ,

... (7)

〈ψn−1|ψn〉 = a∗
n−1,1an1 + · · · + a∗

n−1,n−1an,n−1 .

As aij have been calculated for i � n − 1 due to the inductive
hypothesis, this is just a system of linear equations, which can
be written as an augmented matrix (using a∗

11 = 1):

⎛
⎜⎜⎜⎜⎜⎜⎝

〈ψ1|ψn〉 1 0 . . . 0

〈ψ2|ψn〉 a∗
21 a∗

22

...

...
. . .

...

〈ψn−1|ψn〉 a∗
n−1,1 a∗

n−1,2 . . . a∗
n−1,n−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8)

Since aii 	= 0 ∀ i, this system of equations is exactly solvable.
Hence, {anj : j = 1, . . . ,n − 1} can be chosen such that
{〈ψi |ψn〉 : i = 1, . . . ,n − 1} are preserved. Therefore, there
are only one free parameter ann and one overlap 〈ψn|ψn〉 to be
preserved left:

〈ψn|ψn〉 = 1
!=

n∑
j=1

|anj |2 =
n−1∑
j=1

|anj |2 + |ann|2. (9)

From
∑n

j=1 |anj |2 = 1 and ann 	= 0, which is already known,∑n−1
j=1 |anj |2 < 1 follows, and hence ann can be chosen as

ann =
√√√√1 −

n−1∑
j=1

|anj |2. (10)

In the end, also 〈ψn|ψn〉 can be preserved. Therefore, the
theorem is valid for n under the assumption of validity for
n − 1. As a conclusion, with the inductive basis it is valid for
all n. �

The proof has been presented in such a great detail, because
it is constructive and hence also sets out how to actually
compute {aij } for a given set of qumode states. Recalling
Eqs. (3) and (8), aij can be calculated successively one after
another by considering successive overlaps. A parameter ai1 is
directly obtained from the overlap 〈ψ1|ψi〉. Then, ai2 follows
from 〈ψ2|ψi〉 together with the known ai1. Likewise, ai3 is
calculated from 〈ψ3|ψi〉, ai1, and ai2. For the other parameters
just go on like this. Hence, the inverse Gram-Schmidt process
can be efficiently implemented and computed.

As an example consider the normalized qumode states
{|ψi〉 : i = 1,2,3} with overlaps

〈ψ1|ψ2〉 = c1, 〈ψ1|ψ3〉 = c2, 〈ψ2|ψ3〉 = c3. (11)

They can be expressed in an orthonormal basis {|ei〉 : i =
1,2,3 , 〈ei |ej 〉 = δij } as

|ψ1〉 = |e1〉 , |ψ2〉 = c1 |e1〉 +
√

1 − |c1|2 |e2〉 ,
(12)

|ψ3〉 = c2 |e1〉 + c3 − c∗
1c2√

1 − |c1|2
|e2〉

+
√

1 − |c2|2 − |c3 − c∗
1c2|2

1 − |c1|2 |e3〉 .

C. Classification scheme

So, once again, consider a state of the form (1). For N = 1
the state is pure. Then it contains only d linearly independent
qumode states, which span a d-dimensional subspace HB

d .
Therefore, with aid of the inverse Gram-Schmidt process these
qumode states can be expressed in an orthonormal basis.
Then, density matrices can be employed for the description
of the overall state, and also a Schmidt decomposition can
be performed or pure-state measures such as the entropy of
entanglement can be calculated [28,32]. The state is then effec-
tively DV. For 1 < N < ∞, the state is mixed. Nevertheless, it
possesses a finite number of N × d qumode states, which can
be again cast in an orthonormal basis. Therefore, also states of
this kind are effectively DV and the density matrix formalism
can be exploited. However, such states are no longer pure and
neither pure-state measures nor a Schmidt decomposition can
be applied. Finally, there is the case N = ∞. Here, N = ∞
refers to those states which can be expressed with infinite N

only. These states hold an infinite number of qumode states,
which has the effect that the Gram-Schmidt process cannot be
applied anymore. Hence, they are not describable by density
matrices and therefore no longer effectively DV. Nevertheless,
one subsystem does remain DV. These are the states which we
call truly hybrid entangled.

Summing up, for bipartite hybrid entangled states in a pure-
state decomposition with N denoting the number of mix terms
in the convex combination of pure-state projectors, there is the
following classification scheme:

(1) N = 1:
Pure hybrid entangled states
supported by a finite-dimensional subspace.
⇒ DV-like entanglement.
Schmidt decomposition applicable.
DV pure-state measures applicable.

(2) 1 < N < ∞:
Mixed hybrid entangled states
supported by a finite-dimensional subspace.
⇒ DV-like entanglement.
DV mixed-state measures applicable.

(3) N = ∞:
Mixed hybrid entangled states.
No support by a finite-dimensional subspace.
⇒ True hybrid entanglement.
In general no exact measures directly applicable.
CV entanglement witnesses adaptable.

It should be pointed out that the possibility of applying DV
methods on such a wide class of hybrid entangled states is quite
remarkable. An initially non-Gaussian infinite-dimensional
quantum state, which seems rather awkward at first sight, can
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finally be conveniently described in terms of density matrices,
and in the pure-state case even a Schmidt decomposition
can be performed. Nevertheless, there is also the class of
states which stay truly hybrid entangled and cannot be
transformed using the Gram-Schmidt process. As mentioned
earlier, in this infinite-dimensional, non-Gaussian regime exact
entanglement quantification appears to be hard. However,
entanglement witnesses for detecting true hybrid entanglement
can be adapted from CV entanglement theory.

III. EXAMPLES AND APPLICATIONS

Now, we shall present an example for each class of hybrid
entanglement. We shall also point out when these examples
correspond to manifestations of entangled states encountered
in quantum-information protocols and applications.

A. Pure qutrit-qumode entanglement

As an example of pure bipartite hybrid entanglement an
entangled state of a qutrit and a qumode system is considered:

|ψ〉AB = 1√
3

(|e0〉A |vac〉B + |e1〉A |α〉B + |e2〉A |−α〉B). (13)

(1) An inverse Gram-Schmidt process with respect to
subsystem B yields

|vac〉B = |e0〉B , (14)

|α〉B = x |e0〉B +
√

1 − x2 |e1〉B , (15)

|−α〉B = x |e0〉B − x2
√

1 − x2 |e1〉B
+

√
1 − x2 − x4 + x6 |e2〉B , (16)

with x = exp(− 1
2 |α|2). This corresponds to Eq. (12). Hence

|ψ〉AB = 1√
3

(|e0〉A |e0〉B + x |e1〉A |e0〉B

+
√

1 − x2 |e1〉A |e1〉B + x |e2〉A |e0〉B
− x2

√
1 − x2 |e2〉A |e1〉B

+
√

1 − x2 − x4 + x6 |e2〉A |e2〉B), (17)

which is the effective DV form of the state.
(2) The pure-state entropy of entanglement of the state can

be calculated, which is shown in Fig. 1. For α → ∞ the state
becomes maximally entangled (α real).

(3) Finally, set x = 1
2 , which corresponds to α = √

2 ln 2 ≈
1.18, and calculate the Schmidt decomposition:

|ψ〉AB = 0.76 |e′
0〉A |e′

0〉B + 0.56 |e′
1〉A |e′

1〉B

+ 0.33 |e′
2〉A |e′

2〉B . (18)

We can also think of other examples for pure bipartite hybrid
entangled states. States of the form

|ψ〉AB = 1√
2

(|e0〉A |ψ0〉B + |e1〉A |ψ1〉B) (19)

are pure bipartite hybrid entangled and relevant for cat-state
engineering [8,21], hybrid quantum communication via qubus
approaches [25,27], and some quantum key distribution
schemes [22,23] [later, in Sec. III C, we obtain such a state

Towards Maximal Entanglement

0 1 2 3 4
AmplitudeΑ

0.5

1.0

1.5

Entropy of Entanglement

FIG. 1. (Color online) Entropy of entanglement of the state |ψ〉AB

of Eq. (13). For α → ∞ the state becomes maximally entangled.
Note that the entropy of entanglement has been calculated here in
qubit entanglement units (ebits: log ≡ log2).

in Eq. (45) as a special case of Eq. (26) with 〈nth〉 = 0 and
η = 1].

B. Mixed qubit-qumode entanglement

Now, we present an example for the class of mixed, but
effectively DV hybrid entangled states. Consider the state

ρ̂AB = p |φ+〉AB 〈φ+| + (1 − p) |φ−〉AB 〈φ−| ,
(20)

|φ±〉AB = 1√
2

(|e0〉A |vac〉B + |e1〉A |±α〉B),

which contains three qumode states |vac〉B and |±α〉B with
α ∈ R (see Fig. 2 for a visualization).

We perform a Gram-Schmidt process and obtain a qubit-
qutrit entangled state in HA

2 ⊗ HB
3 . The pure states in the

convex combination of (20), after the inverse Gram-Schmidt
process in an orthonormal basis, look like

|φ+〉AB = 1√
2

(|e0〉A |e0〉B + x |e1〉A |e0〉B

+
√

1 − x2 |e1〉A |e1〉B), (21)

|φ−〉AB = 1√
2

(|e0〉A |e0〉B + x |e1〉A |e0〉B

− x2
√

1 − x2 |e1〉A |e1〉B
+

√
1 − x2 − x4 + x6 |e1〉A |e2〉B), (22)

FIG. 2. (Color online) Visualization of the hybrid entangled state
ρ̂AB of Eq. (20) in phase space. The blue (right) region corresponds
to the first pure state in the convex combination with probability p,
while the green (left) region represents the pure state obtained with
probability 1 − p. The additional |0〉 and |1〉 vectors denote the qubit
states associated with the qumode states |vac〉 and |±α〉.
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FIG. 3. (Color online) Logarithmic negativity of the effective
qubit-qutrit hybrid entangled state ρ̂AB , Eq. (20), as a function of
probability p and amplitude α. For any given α maximal mixing
p = 1

2 yields the smallest entanglement. Furthermore, higher α also
results in greater entanglement. For p = 0 ∨ 1 and α → ∞ the state
becomes maximally entangled (α ∈ R).

with x = exp(− 1
2 |α|2). Entanglement quantification can be

performed with the logarithmic negativity EN (see Fig. 3)
[33,34]. For general bipartite mixed states with higher di-
mension than 2 × 2, it is basically the only known calculable
entanglement monotone, and it is also the most important one
for general mixed, effectively DV hybrid entangled states. It
can be seen that for any given α the smallest entanglement is
obtained for maximal mixing p = 1

2 . Furthermore, the higher
α, the more entangled the state is. Finally, for p = 0 ∨ 1 and
α → ∞ the state approaches maximal entanglement.

We may also consider other mixed bipartite hybrid en-
tangled states which are even effectively DV-like qubit-qubit
entangled. Then the concurrence [35] is a better choice for
entanglement quantification. In Sec. III C, such a state is given
in Eq. (43) as a special case of Eq. (26) for 〈nth〉 = 0. Its
concurrence is plotted in Fig. 8.

C. True hybrid entanglement

Finally, the third class of bipartite hybrid entangled states
is considered, the truly hybrid entangled states. Recall their
definition corresponding to Eq. (1) with N = ∞:

ρ̂AB =
∞∑

n=1

pn |ψn〉AB 〈ψn| , pn > 0 ∀ n ,

∞∑
n=1

pn = 1,

|ψn〉 =
d−1∑
m=0

cnm |m〉A |ψnm〉B , cnm ∈ C ,

d−1∑
m=0

|cnm|2 = 1.

(23)

As can be seen from these equations, truly hybrid entangled
states possess an infinite number of qumode states |ψnm〉B .
Therefore, the Gram-Schmidt process ceases to work and the
states stay in a Hilbert space of the form HA

d ⊗ HB
∞. Hence,

they are not effectively DV, but instead really combined DV ⊗
CV states and therefore truly hybrid. Unfortunately, this true
“hybridness” has the effect that the states live in an overall
infinite-dimensional Hilbert space in the non-Gaussian regime.
This makes exact entanglement quantification difficult. Now,

FIG. 4. (Color online) Modeling of the photon noise channel. The
environment mode is in a thermal state and coupled via a beam splitter
to the input state to be transmitted. Subsequently the environment
mode is traced out and the decohered output state is obtained.

we present an example which is relevant for some quantum-
information protocols.

Consider the state

|ψ〉AB = 1√
2

(|0〉A |α〉B + |1〉A |−α〉B), (24)

which plays a crucial role in cat-state engineering [21],
hybrid quantum communication via qubus approaches [25,27],
and some quantum key distribution schemes [22,23]. It is
transmitted through a one-sided thermal photon noise channel,
where the noise only affects subsystem B. Writing this out,

ρ̂ ′AB = (
1A ⊗ $B

thermal

) |ψ〉AB 〈ψ | (25)

is the state to be investigated. The channel is modeled by a
beam splitter coupling subsystem B to the environment, which
is in a thermal state. Afterward the environment is traced out
(see Fig. 4).

For the output,

ρ̂ ′AB = (
1A ⊗ $B

thermal

) |ψ〉AB 〈ψ |

= 1

2

∞∑
n=0

ρth
n

n∑
k,l=0

fnk(η)fnl(η)

× (
Aαα

nkl(η) |0〉A 〈0| ⊗ â†k |√ηα〉B 〈√ηα| âl

+A−α−α
nkl (η) |1〉A 〈1| ⊗ â†k |−√

ηα〉B 〈−√
ηα| âl

+Aα−α
nkl (η) |0〉A 〈1| ⊗ â†k |√ηα〉B 〈−√

ηα| âl

+A−αα
nkl (η) |1〉A 〈0| ⊗ â†k |−√

ηα〉B 〈√ηα| âl
)
(26)

is obtained, where â and â† are the mode operators of
subsystem B; ρth

n denotes the thermal photon distribution
〈nth〉n/(1 + 〈nth〉)n+1 of the environmental thermal state with
mean thermal photon number 〈nth〉, and fnk(η) and A

αβ

nkl(η) are
defined as

fnk(η) := 1√
n!

(
n

k

)√
η

n−k(−
√

1 − η)k, (27)

A
αβ

nkl(η) := 〈
√

1 − ηβ|ân−k

â†n−l |
√

1 − ηα〉 , (28)

with the beam splitter transmissivity η (for a detailed calcu-
lation of this result, see Appendix B). It can be inferred from
Eq. (26) that the state ρ̂ ′AB clearly is truly hybrid entangled, as
it contains an infinite number of qumode states {â†k |±√

ηα〉
B

:
k = 0,1, . . . ,∞}. Hence, true hybrid qubit-qumode entangle-
ment is obtained. Furthermore, the form of the output state
illustrates the effect of the thermal photon noise channel in
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a concrete way: On the one hand, the damping effect due to
the beam splitter is clearly visible in terms of

√
η in the states

â†k |±√
ηα〉. On the other hand, there is not only damping,

but also thermal photon noise, which becomes manifest in
the creation operators â†k

in the states â†k |±√
ηα〉. Thermal

photons “leak into the system” and are “created” in the damped
coherent states. Finally, it is clearly visible how each term of
ρ̂E

thermal = ∑∞
n=0 ρth

n |n〉E 〈n| results in the creation of at most
n noise photons in the coherent states. However, as descriptive
as Eq. (26) is, it is inapplicable for further calculations. For
example, for entanglement witnessing, moments may have to
be computed [37,38]. Unfortunately, in this case, making use

of the state as written in Eq. (26), intractable infinite sums
are obtained whose convergence behavior is impossible to
be worked out exactly. Of course, truncation at some value
n could be performed, which would certainly result in very
accurate outcomes provided that value is large enough [36].
However, such a procedure is opposed to the actual intention
of analyzing true hybrid entanglement, since a truncated
state is not truly hybrid entangled anymore. This is a point
which makes the investigation of true hybrid entanglement
particularly challenging. Infinite sums or integrals emerge,
which have to be calculated exactly.

However, the transmitted state can be also written as

ρ̂ ′AB = (
1A ⊗ $B

thermal

) |ψ〉AB 〈ψ | = 1

2π 〈nth〉
∫
C

d2γ e−|γ |2/〈nth〉(|0〉A 〈0| ⊗ |√ηα −
√

1 − ηγ 〉B 〈√ηα −
√

1 − ηγ |

+ |1〉A 〈1| ⊗ |−√
ηα −

√
1 − ηγ 〉B 〈−√

ηα −
√

1 − ηγ |
+ Ãα−αγ (η) |0〉A 〈1| ⊗ |√ηα −

√
1 − ηγ 〉B 〈−√

ηα −
√

1 − ηγ |
+Ã−ααγ (η) |1〉A 〈0| ⊗ |−√

ηα −
√

1 − ηγ 〉B 〈√ηα −
√

1 − ηγ |), (29)

with

Ãαβγ (η) : = 〈
√

1 − ηβ + √
ηγ |

√
1 − ηα + √

ηγ 〉
= exp

[
− 1

2
|
√

1 − ηβ + √
ηγ |2

− 1

2
|
√

1 − ηα + √
ηγ |2

+ (
√

1 − ηβ∗ + √
ηγ ∗)(

√
1 − ηα + √

ηγ )

]
,

(30)

(see Appendix B for the calculation). This form of the state
ρ̂ ′AB is not as insightful as that of Eq. (26). However, it
is mathematically much more convenient. Instead of infinite
sums, in this form integrals occur which make the calculation
of moments straightforward.

Now we want to derive entanglement witnesses for true
hybrid entanglement. For this purpose, we exploit the deter-
minant (now â and â† are the mode operators corresponding
to system A and b̂ and b̂† those of system B)

s :=

∣∣∣∣∣∣∣
1 〈â†〉 〈â†b̂〉

〈â〉 〈â†â〉 〈â†âb̂〉
〈âb̂†〉 〈â†âb̂†〉 〈â†âb̂†b̂〉

∣∣∣∣∣∣∣, (31)

which Shchukin and Vogel (SV) proposed and utilized in their
work [37,38]. However, we have to slightly adapt the SV
approach to our case, since, instead of a fully CV system,
we deal with a hybrid quantum system of a DV and a CV
subsystem. There are two ways for this adaption.

The first way is to simply interpret the DV subsystem as
living in a subspace of an infinite-dimensional Hilbert space.
The DV qudit is interpreted as a CV system supported by H∞
and being encoded in a Fock basis. However, it only makes use

of a finite number of the basis vectors. Then the SV criteria
can be applied just as usual.

The second approach is not to adapt the state, but to adapt
the criteria. Assume the system to which the operators â and â†

belong is d-dimensional. Then the orthonormal Hilbert-space
basis vectors |m〉 can be written as column vectors with a “1”
in row m with m = 0, . . . ,d − 1:

|m〉d = (0 0, . . . ,0m−1,1m,0m+1, . . . ,0d−1)T . (32)

With this notation the new qudit mode operators âd and â
†
d can

be defined as proper d × d matrices:

âd =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
√

1 · · · · · · 0

... 0
√

2
...

... 0
. . .

...

...
. . .

√
d − 1

0 · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (33)

â
†
d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · 0

√
1 0

...

...
√

2 0
...

...
. . .

. . .
...

0 · · · · · · √
d − 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (34)

They have the properties

âd |n〉 = √
n |n − 1〉 , (35)

â
†
d |n〉 = (1 − δn,d−1)

√
n + 1 |n + 1〉 , (36)

(âd )d = 0, (37)
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(â†
d )d = 0. (38)

Furthermore, the commutator becomes

[âd ,â
†
d ] =

⎛
⎜⎜⎜⎜⎝

1

. . .

1

−(d − 1)

⎞
⎟⎟⎟⎟⎠

d×d

=
(
1d−1

−(d − 1)

)
d×d

. (39)

Since any d-dimensional qudit |ψ〉d can be written as |ψ〉d =
g†(âd ) |0〉d for an appropriate operator function ĝ = g(âd ) and
also the projection operator on |0〉d 〈0| can still be expressed

as : e−â
†
d âd :, where : · · · : denotes normal ordering [37], the

SV criteria can be also derived for hybrid systems with
aid of these new operators. Structurally the same criteria
are obtained, except that for certain i1,i2,j1,j2 the moments

Mij (ρ̂) = 〈â†i2

d â
i1

d â
†j1

d â
j2

d b̂†
j4
b̂

j3
b̂†

i3
b̂

i4 〉
ρ̂

are zero. Due to the
properties (37) and (38) any combination of i1,i2,j1,j2 such
that (âd )k or (â†

d )k with k � d occurs in the moments nullifies
them. In the end, in the matrix of moments the rows and
columns corresponding to these combinations of i1,i2,j1,j2

are simply missing.
When applying the SV criteria it hardly makes a difference

whether the first or the second approach to the adaption of
the criteria is chosen. Only for moments involving terms like
(âd )k(â†

d )l with k,l ∈ N the two approaches may yield different
results. However, for the determinants used in this paper, both
lead to the same result.

For the calculation of the SV determinant s in Eq. (31) for
the state in Eq. (29),

sρ̂ ′AB (α,η, 〈nth〉) = 1 − η

4
〈nth〉

(
1 − e−4|α|2

2

)
− η|α|2

2
e−4|α|2

(40)

is obtained. A graphical illustration for η = 2
3 is shown in

Fig. 5. It can be observed that there clearly is a parameter
region in which entanglement can be detected. Also note the
trade-off behavior and the optimal αopt which corresponds to
the most robust state ρ̂ ′AB

αopt regarding entanglement witnessing
for fixed η = 2

3 and varying mean thermal photon number
〈nth〉. The origin of this trade-off is based on the trade-off
between too little initial entanglement before the channel for
low α and very fragile entanglement for too high α (α ∈ R).

Furthermore, it is worth pointing out that the witnessed
entanglement in this case is actually true hybrid entanglement.
It can be concluded that the SV determinants provide a suitable
tool for the detection of true hybrid entanglement. Note that
we exploited determinants involving moments of 4th order.
There are also other approaches for witnessing entanglement
in similar states, which involve lower-order moments [23,39].
However, often it is necessary to consider moments of higher
order to detect entanglement. For example, the detection
of entanglement in the pure state N (α)(|α,α〉 − |−α, − α〉)
requires moments of 4th order [37].

z = 0 Plane

0.0

0.5

1.0

1.5

2.0

AmplitudeΑ

0.0

0.2

0.4

0.6

Thermal Photons �n�

�0.02
0.00
0.02
0.04

Det. s �Η�2�3�

FIG. 5. (Color online) The upper graph displays the SV determi-
nant sρ̂′AB (α,η = 2

3 ,〈nth〉) for the state ρ̂ ′AB with η = 2
3 . Without loss

of generality α ∈ R has been assumed. On the lower diagram the two
regimes are plotted. There can be clearly identified a region where
the determinant is below zero. Hence, true hybrid entanglement can
be witnessed. Furthermore, there is a trade-off behavior which results
in the existence of an optimal αopt. This αopt corresponds to the most
robust state ρ̂ ′AB

αopt regarding entanglement witnessing for fixed η = 2
3

and varying mean thermal photon number 〈nth〉.

When setting sρ̂ ′AB (α,η, 〈nth〉) < 0 and solving this inequal-
ity for 〈nth〉,

〈nth〉 <
4η|α|2

(1 − η)(2e4|α|2 − 1)
(41)

is obtained.2 For parameters (α,η, 〈nth〉) satisfying this in-
equality, entanglement is detected. Furthermore, the inequality
can be used to define a surface. The parameters (α,η, 〈nth〉)ent

for which entanglement is verified lie below this surface (see
Fig. 6). However, it is rather cumbersome to read off exact
parameters in such a 3D plot. Hence, regions of successful
entanglement detection are plotted in Fig. 7 for different values
of η. As expected, the higher the transmissivity η the greater the
parameter regions of entanglement detection. Furthermore, we
can infer from Eq. (41) that the optimal αopt does not depend
on η. This is also recognizable in Fig. 7. We find αopt ≈ 0.44.
It is actually quite remarkable that the optimal amplitude αopt

2Comparing Eq. (41) with the known entanglement-breaking
condition for a thermal noise channel [45], 〈nth〉 � η/(1 − η), reveals
that our witness would indeed never wrongly detect entanglement,
while at the same time, it may not detect all entangled states if
〈nth〉 < η/(1 − η).
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FIG. 6. (Color online) Surface defined by Eq. (41) (α ∈ R).
For parameter triples (α,η, 〈nth〉) lying below it, entanglement is
witnessed. Once again, the trade-off behavior can be recognized and
an optimal αopt for which entanglement can be detected in the presence
of the strongest possible noise.

regarding entanglement witnessing with the SV determinant
s does not depend on the channel parameters at all; αopt is
determined solely by the choice of the SV determinant.

Compare this to Fig. 8, which shows the concurrence [35]
of the state when setting 〈nth〉 = 0, which is given by

C(ρ̂ ′AB) = 1

2

√
1 − e−4η|α|2

× (
√

1 + 3e−4(1−η)|α|2 −
√

1 − e−4(1−η)|α|2 ). (42)

There, the optimal α̃opt(η) does depend on the transmissivity
η: The greater the transmissivity, the higher α̃opt(η). This is
quite remarkable. It can be inferred that the ability to detect
entanglement in ρ̂ ′AB , depending only on the choice of the
SV determinant, does not behave in the same way as the en-
tanglement of ρ̂ ′AB itself, which of course depends on the
thermal channel’s parameters η and 〈nth〉.

Note that in this case, the state of Eqs. (24) and (25)
actually becomes an effectively DV hybrid entangled state,
when setting the mean thermal photon number of the channel
to zero. The state is then subject only to amplitude damping,
resulting in

ρ̂ ′AB
〈nth〉=0 = 1

2
(|0〉A 〈0| ⊗ |√ηα〉B 〈√ηα|

3 4

2 3

1 2

1 3

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Α

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Thermal Photons n

FIG. 7. (Color online) Regions of entanglement detection for
different values of transmissivity η. Note that the optimal αopt has
a fixed value (α ∈ R).
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FIG. 8. (Color online) Concurrence of the state ρ̂ ′AB for 〈nth〉 =
0, as a function of transmissivity η and amplitude α. On the one hand,
the higher α the greater the initial entanglement, but also the more
sensitive the state is to photon loss. On the other hand, for low α

there is only little initial entanglement. However, the state is more
robust against losses. Hence, there is a trade-off behavior, and an
optimal αopt

η depending on η exists for which the output entanglement
is maximal.

+ |1〉A 〈1| ⊗ |−√
ηα〉B 〈−√

ηα|
+ e−2(1−η)|α|2 |0〉A 〈1| ⊗ |√ηα〉B 〈−√

ηα|
+ e−2(1−η)|α|2 |1〉A 〈0| ⊗ |−√

ηα〉B 〈√ηα|), (43)

which is mixed but contains only two qumode states |±√
ηα〉B .

Hence, we can perform an inverse Gram-Schmidt process and
describe the state by a proper effective qubit-qubit density
matrix:

ρ̂ ′AB
〈nth〉=0 = 1

2

⎛
⎜⎜⎜⎜⎝

1 0 λκ κ
√

1 − λ2

0 0 0 0

λκ 0 λ2 λ
√

1 − λ2

κ
√

1 − λ2 0 λ
√

1 − λ2 1 − λ2

⎞
⎟⎟⎟⎟⎠,

(44)

with κ := e−2(1−η)|α|2 and λ := 〈−√
ηα|√ηα〉 = e−2η|α|2 . The

concurrence of this state is given in Eq. (42) and plotted in
Fig. 8 for α ∈ R.

If, besides setting 〈nth〉 = 0, we set the transmissivity of
the channel to one, the channel is completely canceled and we
obtain a pure bipartite hybrid entangled state:

|ψ〉AB = 1√
2

(|0〉A |α〉B + |1〉A |−α〉B). (45)

Hence, in this physical example, we can access all three classes
of bipartite hybrid entanglement and even switch between them
using the transmissivity η and the mean thermal photon number
〈nth〉.

D. Yet another truly hybrid entangled state

In order to demonstrate that we can easily construct
other quantum states featuring true hybrid entanglement, we
shall present another truly hybrid entangled state and its
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entanglement detection:

ρ̂AB =
∞∑

n=1

pn |ψn〉AB 〈ψn| ,

|ψn〉AB = 1√
2

(|0〉A |√nα〉B + |1〉A |−√
nα〉B), (46)

pn = 1 − x

x
xn , 0 < x < 1 , α ∈ R.

As this state contains an infinite set of qumode states
{|±√

nα〉B : n = 1,2, . . . ,∞}, it is clearly truly hybrid entan-

gled, exhibiting (true) hybrid entanglement between a qumode
and a qubit.

Now, we shall witness entanglement in this state with aid
of the SV determinant s of Eq. (31). For the calculation of the
moments, the identities

∞∑
n=1

xn = x

1 − x
, (47)

∞∑
n=1

n xn = x

(1 − x)2
, (48)

are exploited, and we obtain

s(x,α) = 1

8

[
2α2

1 − x
−

(
α(1 − x)

x

∞∑
n=1

√
n
(
xe−2α2)n

)2

− 2

(
e−2α2

(1 − x)

1 − xe−2α2

)(
α(1 − x)

x

∞∑
n=1

√
n
(
xe−2α2)n

)

×
(

α(1 − x)

x

∞∑
n=1

√
nxn

)
− 2

(
α(1 − x)

x

∞∑
n=1

√
nxn

)2

− α2

1 − x

(
e−2α2

(1 − x)

1 − xe−2α2

)2]
. (49)

It is clear that

∞∑
n=1

xn <

∞∑
n=1

√
n xn <

∞∑
n=1

n xn, (50)

for 0 < x < 1. Hence,

x

1 − x
<

∞∑
n=1

√
n xn <

x

(1 − x)2
, (51)

x e−2α2

1 − x e−2α2 <

∞∑
n=1

√
n (x e−2α2

)n <
x e−2α2(

1 − x e−2α2
)2 . (52)

Inserting the lower bounds into the sums of Eq. (49) yields

s ′(x,α) = α2

8

[
2x

1 − x
−

(
1 − x

1 − xe−2α2

)2

e−4α2

(
3 + 1

1 − x

)]
.

(53)

Since s ′(x,α) > s(x,α) ∀α ∈ R, x ∈]0,1[, from s ′(x,α) <

0 follows s(x,α) < 0. Therefore, s ′(x,α) < 0 is a suffi-
cient criterion for entanglement detection. It is plotted
in Fig. 9. The graphics show that entanglement can be verified
for sufficiently small x and α. This can be understood in the
following way. On the one hand, small x corresponds to little
mixing between the pure states |ψn〉AB , which themselves
are highly entangled, depending on the amplitude

√
nα. For

pure states of the form |ψn〉AB , entanglement witnessing can
be performed perfectly with the SV determinant s. On the
other hand, we have already seen in previous calculations
(see Figs. 5 and 7) that entanglement detection via s fails for
large α.

To conclude, a second example for a truly hybrid entangled
state has been presented whose entanglement can again be
verified with aid of the SV criteria.

0.0
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FIG. 9. (Color online) The upper graph shows s ′(x,α) which is
derived from the original SV determinant s(x,α). The yellow plane
denotes zero. The lower diagram presents the cutting line between
s ′(x,α) and the zero plane. It displays the witnessing region. We also
want to point out that for α = 0 the state is of course not entangled
and s ′(x,α = 0) becomes zero.
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IV. MULTIPARTITE HYBRID ENTANGLEMENT

In this section, investigations regarding multipartite hybrid
entanglement are presented. In general, N-partite hybrid
entangled quantum systems live in Hilbert spaces of the form
Hd1 ⊗ . . . ⊗ HdN

, where some di are finite and some infinite.
Considering tripartite hybrid entanglement there are two
cases: Either the Hilbert space looks like Hd1 ⊗ Hd2 ⊗ H∞
or Hd1 ⊗ H∞ ⊗ H∞, with finite d1,d2.

Consider the first case, where only one subsystem is CV. A
general hybrid entangled pure state in HA

d1
⊗ HB

d2
⊗ HC

∞ may
be defined as

|ψ〉ABC =
d1,d2∑
i,j=1

cij |ei〉A |ej 〉B |ψij 〉C ,

d1,d2∑
i,j

|cij |2 = 1, (54)

where |ψij 〉C represent some qumode states. As there are at
most d1 × d2 such qumode states, a Gram-Schmidt process
can be executed to write the state as a multipartite, effectively
DV hybrid entangled state. Therefore, if all |ψij 〉C are linearly
independent the state effectively lives in a Hilbert space of the
form HA

d1
⊗ HB

d2
⊗ HC

d1×d2
.

In the second case, where the initial Hilbert space looks like
HA

d ⊗ HB
∞ ⊗ HC

∞, a general hybrid entangled pure state is

|ψ〉ABC =
d,∞∑
i,j=1

cij |ei〉A |φij 〉B |ψij 〉C , (55)

where both |φij 〉B and |ψij 〉C represent qumode states, and
the cij are chosen such that 〈ψ |ψ〉 = 1. Obviously, in this
case an infinite number of qumode states is present for an
infinite number of cij 	= 0. No Gram-Schmidt process can be
performed. Hence, these states show multipartite true hybrid
entanglement.

To conclude, in the multipartite regime, already for pure
states there are characteristic differences between the differ-
ent possible configurations. Furthermore, in contrast to the
bipartite setting, there is also pure true hybrid entanglement.
When dealing with two parties, true hybrid entanglement only
occurs for specific types of mixed states, as described in the
previous sections. This can now be generalized. True hybrid
entanglement can be obtained in two ways: Either the system
is mixed with an infinite number of mix terms; then it is
sufficient that only one subsystem is CV. Or two or more
subsystems are CV; then the state is not even required to
be mixed. However, every hybrid entangled mixed state with
a finite number of mix terms which contains only one CV
subsystem is effectively DV. An N-partite mixed state of this
type in Hd1 ⊗ . . . ⊗ HdN−1 ⊗ H∞ can be always described in
a Hilbert space of the form Hd1 ⊗ . . . ⊗ HdN−1 ⊗ H, where

 = M

N−1∏
i=1

di, (56)

and M is the number of mix terms.
As an example, we want to discuss an explicit tripartite

hybrid entangled state, supported by a Hilbert space of the

form Hd ⊗ H∞ ⊗ H∞, with finite d = 2:

|ψ̃〉ABC = 1√
2

(|e0〉A |φ0〉B |ψ0〉C + |e1〉A |φ1〉B |ψ1〉C).

(57)

In this example, the special case occurs that there does not exist
an infinite number of cij 	= 0. In terms of Eq. (55), cij = 1√

2
for i = 1,2 and j = 1, and cij = 0 ∀ j > 1. Hence, there is
no true hybrid entanglement and the state can be described by
DV methods.

Defining Qφ := 〈φ0|φ1〉 and Qψ := 〈ψ0|ψ1〉, an inverse
Gram-Schmidt process yields

|φ0〉B = |e0〉B , (58)

|φ1〉B = Qφ |e0〉B +
√

1 − |Qφ|2 |e1〉B , (59)

|ψ0〉C = |e0〉C , (60)

|ψ1〉C = Qψ |e0〉C +
√

1 − |Qψ |2 |e1〉C , (61)

and therefore,

|ψ̃〉ABC = 1√
2

(|e0〉A |e0〉B |e0〉C + QφQψ |e1〉A |e0〉B |e0〉C

+
√

(1 − |Qφ|2)(1 − |Qψ |2) |e1〉A |e1〉B |e1〉C

+Qψ

√
1 − |Qφ|2 |e1〉A |e1〉B |e0〉C

+Qφ

√
1 − |Qψ |2 |e1〉A |e0〉B |e1〉C). (62)

The state is effectively a three-qubit state in HA
2 ⊗ HB

2 ⊗ HC
2 .

So, we can analyze the state with regard to its bipartite
entanglement and its residual, GHZ-like, genuine tripartite
entanglement τres [40]. The relevant squared concurrences are

C2(A|B) = |Qψ |2(1 − |Qφ|2)

= | 〈ψ0|ψ1〉 |2(1 − | 〈φ0|φ1〉 |2), (63)

C2(A|C) = |Qφ|2(1 − |Qψ |2)

= | 〈φ0|φ1〉 |2(1 − | 〈ψ0|ψ1〉 |2), (64)

C2(B|C) = 0, (65)

C2(A|BC) = 1 − |Qφ|2|Qψ |2
= 1 − | 〈φ0|φ1〉 |2| 〈ψ0|ψ1〉 |2. (66)

Hence,

τres = (1 − |Qφ|2)(1 − |Qψ |2)

= (1 − | 〈φ0|φ1〉 |2)(1 − | 〈ψ0|ψ1〉 |2), (67)

which is plotted in Fig. 10. Furthermore, the total entanglement
C2

total is given by

C2
total = C2(A|B) + C2(A|C) + C2(B|C) + τres

= 1 − | 〈φ0|φ1〉 |2| 〈ψ0|ψ1〉 |2. (68)

These results provide a basis for an interesting discussion.
Figure 10 looks quite unspectacular. However, it contains
very useful information in combination with the other results.

032307-11



KARSTEN KREIS AND PETER VAN LOOCK PHYSICAL REVIEW A 85, 032307 (2012)

Bip. Ent.
Bip. Ent.

Res. Ent.

Fully Sep.

0.0

0.5

1.0

�Φ0 1�Φ �

0.0

0.5

1.0

�Ψ0 �Ψ1�

0.0

0.5

1.0

Τres

FIG. 10. (Color online) The residual entanglement of the state
|ψ̃〉ABC

as a function of the overlaps 〈φ0|φ1〉 and 〈ψ0|ψ1〉, which
are assumed to be real without loss of generality. In the upper
corner, for τres = 1, the state is maximally GHZ-like entangled.
It shows no bipartite entanglement. In the left and the right
corners, the residual entanglement is zero. Nevertheless, the state
is maximally entangled, but just bipartite entangled. Finally, in the
lower corner, the state is fully separable. For either 〈φ0|φ1〉 = 0
or 〈ψ0|ψ1〉 = 0, the state is always 1-ebit entangled, while for
both 〈φ0|φ1〉 	= 0 and 〈ψ0|ψ1〉 	= 0 the state has less than 1-ebit
entanglement.

First, it can be seen that for both overlaps 〈φ0|φ1〉 and
〈ψ0|ψ1〉 being zero, the state is exactly the GHZ state,
which shows only GHZ-like tripartite entanglement but no
bipartite entanglement. In the case that only one of the
overlaps is zero, the state is always 1-ebit entangled, while it
can be tuned between GHZ-like entanglement and common
bipartite entanglement. If the overlap which is not zero
becomes one, maximal Bell-state-like entanglement occurs.
Finally, if none of the overlaps is zero the state is not 1-ebit
entangled anymore and it corresponds to a mixture of bipartite
entanglement and GHZ-like tripartite entanglement. If both
overlaps are one, the state becomes simply fully separable,
showing no entanglement at all. All this is basically illustrated
in Fig. 10. The upper corner of the graph corresponds to
a GHZ state, while the left and the right corners represent
states which are maximally bipartite entangled. Every point
in the graph which is not at the upper left or upper right
edge corresponds to a less than 1-ebit entangled state, while
states lying on these edges are 1-ebit entangled. States on the
lower edges of the graph are only bipartite entangled, while
all other states show also GHZ-like tripartite entanglement.
Finally, the lower corner corresponds to a fully separable
state.

As a result, just by tuning simple overlaps between the
involved qumode states, it is possible to gradually switch
between these different entanglement scenarios. Such tuning
of overlaps is a relatively easy task when the qumode states
are simply realized by ordinary coherent states. Then only the
amplitudes have to be adjusted. However, the experimental

preparation of the overall entangled tripartite state |ψ̃〉ABC

may cause difficulties. Nevertheless, this idea of tuning
between various entanglement configurations by modification
of the overlaps of the participating qumode states may be a
scheme which could possibly be experimentally realized in the
future.

V. SUMMARY AND CONCLUSION

In this paper, first, we proved that hybrid entanglement is
necessarily non-Gaussian. Then, utilizing an inverse Gram-
Schmidt process, we presented a classification scheme regard-
ing hybrid entanglement which distinguishes between effec-
tive DV hybrid entanglement and true hybrid entanglement.
With aid of this characterization one can always find out
whether a given hybrid entangled state can be analyzed by
means of DV methods or not. To illustrate this framework, a
few exemplary states have been discussed, and witnessing of
true hybrid entanglement has been demonstrated exploiting the
well-known SV inseparability criteria. Finally, we examined
multipartite hybrid entanglement, especially the tripartite case,
and briefly outlined some differences compared to the bipartite
regime. As an example, a typical tripartite hybrid entangled
state was investigated.

To conclude, we want to point out that although many ideas
for hybrid protocols and schemes have appeared recently, no
thorough classification of hybrid entanglement from a more
formal point of view has been proposed so far. The present
work is supposed to fill this gap. Nevertheless, there are many
open questions: For example, entanglement quantification of
true hybrid entanglement remains an unsolved problem in
general. Especially in the multipartite case, various questions
remain. For example, what can happen when we consider more
parties than just two or three?

ACKNOWLEDGMENT

Support from the Emmy Noether Program of the Deutsche
Forschungsgemeinschaft is gratefully acknowledged. In addi-
tion, we thank the BMBF in Germany for support through the
QuOReP program.

APPENDIX A: PROOF OF LEMMA 1

Lemma 1 states that any single-partite d-dimensional
quantum state with finite d and d � 2 is non-Gaussian.

Proof. Consider such a general d-dimensional state in a
pure-state decomposition and make use of the Fock basis of a
d-dimensional subspace of the Fock space:

ρ̂ =
N∑

n=1

pn |ψn〉 〈ψn| , pn > 0 ∀ n ;
N∑
n

pn = 1,

|ψn〉 =
d−1∑
m=0

cnm |m〉 , cnm ∈ C ∀ n,m ;
d−1∑
m

|cnm|2 = 1.

(A1)

Non-Gaussianity of the state corresponds to non-Gaussianity
of the characteristic function. This is equivalent to non-
Gaussianity of the Wigner function, as (non-)Gaussian
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functions stay (non-)Gaussian under Fourier transformation
[41]. Hence, consider the Wigner function of ρ̂,

W (x,p) :

= 1

π

∞∫
−∞

dy e2ipy 〈x − y|ρ̂|x + y〉

=
N∑

n=1

pn

π

∞∫
−∞

dy e2ipy

d−1∑
k,l=0

cnlc
∗
nk ψl(x − y)ψ∗

k (x + y).

(A2)

The position wave function of a Fock state |n〉 is given by

ψn(x) = 〈x|n〉 = Hn(x)√
2nn!

√
π

e−x2/2, (A3)

where Hn(x) are the Hermite polynomials [41,42]. Therefore,

W (x,p) =
N∑

n=1

pn

π

∞∫
−∞

dy e2ipy e−(x−y)2/2e−(x+y)2/2

×
d−1∑
k,l=0

cnlc
∗
nk

Hk(x + y)Hl(x − y)√
2k+lk!l!π

= 1

π

∞∫
−∞

dy e2ipy e−x2−y2
N∑

n=1

pn

×
d−1∑
k,l=0

cnlc
∗
nk

Hk(x + y)Hl(x − y)√
2k+lk!l!π

. (A4)

Now 1
π

∫ ∞
−∞ dy e2ipy is just a Fourier transform opera-

tor with respect to y, and e−x2−y2
is a Gaussian func-

tion. Hence, for W (x,p) being Gaussian, the sum P :=∑N
n=1 pn

∑d−1
k,l=0 cnlc

∗
nk

Hk (x+y)Hl (x−y)√
2k+l k!l!π

also has to be Gaussian
in both x and y. However, P is just a polynomial. Strictly
speaking, it is a polynomial of finite order. Hence, P can
never be an exponential function and therefore also not
become Gaussian. There is one exception though. P may be a
polynomial of order zero, i.e., a constant.

So, we can assume that ρ̂ is Gaussian and show that this
is the case if and only if cnl = 0 ∀ l � 1. “⇐” is trivial,
since for cnl = 0 ∀ n , ∀ l � 1, ρ̂ = |0〉 〈0|, which is obviously
Gaussian. For “⇒” we perform an induction with respect to
the dimension d:

Inductive basis. For d = 2 there is only one
term x2(d−1) = x2 in the sum P , which comes from
Hd−1(x + y)Hd−1(x − y) = H1(x + y)H1(x − y). Its coeffi-
cient is c̃1

∑N
n=1 pn|cn,1|2, where c̃1 	= 0 is a real constant

due to the Hermite polynomials. If the state is Gaussian,∑N
n=1 pn|cn,1|2 = 0. Since pn > 0 ∀ n and |cn,1| � 0 ∀ n,

from
∑N

n=1 pn|cn,1|2 = 0 follows cn,1 = 0 ∀ n. Hence, cnl =
0 ∀ l � 1 (l can be only 0 or 1 for d = 2) is proved as a
necessary condition for Gaussianity for d = 2.

Inductive step. Assume validity of the statement
for d = m and consider d = m + 1. Then, there is only
one term x2[(m+1)−1] = x2m in the sum P , which comes
from H(m+1)−1(x + y)H(m+1)−1(x − y) = Hm(x + y)Hm(x −

y). Again with c̃m 	= 0 being a real constant the co-
efficient is c̃m

∑N
n=1 pn|cn,m|2. If the state is Gaussian,∑N

n=1 pn|cn,m|2 = 0. Since pn > 0 ∀ n and |cn,m| � 0 ∀ n,
from

∑N
n=1 pn|cn,m|2 = 0 follows cn,m = 0 ∀ n. Then, from

the inductive hypothesis it is known that cnl = 0 ∀ 1 � l �
d − 2 = m − 1. Hence, cnl = 0 ∀ 1 � l � d − 1 = m, which
proves the validity of the statement for d = m + 1 and hence
for all finite m.

Concluding, a d-dimensional quantum state with finite d

and d � 2, written in the form (A1), is Gaussian if and only if
cnl = 0 ∀ l � 1, which corresponds to ρ̂ = |0〉 〈0|. Therefore,
ρ̂ is Gaussian if and only if ρ̂ = |0〉 〈0|, which is only one-
dimensional. Hence, any d-dimensional quantum state with
finite d and d � 2 is non-Gaussian. �

APPENDIX B: AUXILIARY CALCULATIONS

The derivation of Eq. (26) becomes clear, when writing the
thermal photon noise channel with aid of an ancilla Hilbert
space (the environment E), and joint unitary evolution on the
overall Hilbert space. Finally, a trace operation over the ancilla
Hilbert space has to be performed:

ρ̂ ′AB = trE
[
ÛBE

( |φ〉AB 〈φ| ⊗ ρ̂E
thermal

)
ÛBE†]

, (B1)

with
(1) beam splitter unitary ÛBE = eθ(â†

EâB−â
†
B âE ),

(2) environmental thermal state ρ̂E
thermal =∑∞

n=0
〈nth〉n

(1+〈nth〉)n+1 |n〉E 〈n| [43],
(3) mean thermal photon number 〈nth〉, and
(4) beam splitter transmissivity η = cos2 θ .

Note that for 〈nth〉 = 0, the photon loss channel is obtained,
which is therefore just a limiting case of this channel. For the
calculation, the following relations have been exploited:

ÛBE†
ÛBE = 1, (B2)

ÛBE(âE†
)nÛBE† = (

√
ηâE† −

√
1 − ηâB†

)n, (B3)

ÛBED̂B(α)ÛBE† = D̂B(
√

ηα)D̂E(
√

1 − ηα), (B4)

ÛBE |0〉B |0〉E = |0〉B |0〉E , (B5)

|α〉B = D̂B(α) |0〉B , (B6)

|n〉E = 1√
n!

(âE†
)n |0〉E . (B7)

Furthermore, the binomial identity has been utilized.
The calculation of Eq. (29) proceeds similarly. However,

instead of exploiting ρ̂E
thermal = ∑∞

n=0 ρth
n |n〉E 〈n| in the Fock

basis, we made use of the coherent state basis. The Glauber-
Sudarshan P representation of the thermal environment is
given by [43]

Pρ̂thermal (α,α∗) = 1

π 〈nth〉e
−|α|2/〈nth〉. (B8)

Therefore,

ρ̂thermal = 1

π 〈nth〉
∫
C

d2α e−|α|2/〈nth〉 |α〉 〈α| . (B9)

032307-13



KARSTEN KREIS AND PETER VAN LOOCK PHYSICAL REVIEW A 85, 032307 (2012)

Expressing the thermal state in this form, the action of the thermal channel on an element |α〉 〈β| is

$thermal(|α〉B 〈β|) = 1

π 〈nth〉
∫
C

d2γ e−|γ |2/〈nth〉trE[ÛBE (|α〉B 〈β| ⊗ |γ 〉E 〈γ |) ÛBE†
]. (B10)

With the relations (B2), (B4), (B5) and ÛBED̂E(γ )ÛBE† = D̂E(
√

ηγ )D̂B(−√
1 − ηγ ) we find

$thermal(|α〉B 〈β|) = 1

π 〈nth〉
∫
C

d2γ e−|γ |2/〈nth〉 〈
√

1 − ηβ + √
ηγ |

√
1 − ηα + √

ηγ 〉 |√ηα −
√

1 − ηγ 〉B 〈√ηβ −
√

1 − ηγ | .
(B11)

Inserting this expression in the overall state ρ̂ ′AB = (1A ⊗ $B
thermal) |ψ〉AB 〈ψ | with |ψ〉AB = (1/

√
2)(|0〉A |α〉B + |1〉A |−α〉B)

yields Eq. (29).
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