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Optimal state estimation of controllable quantum dynamical systems
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We present system-theoretic quantum state reconstruction methods that minimize estimation error by
combining optimal quantum control with asymptotically efficient estimation. Introducing the notion of optimal
observability of a quantum dynamical system—a concept that does not exist in classical control theory—we
formulate and solve the Pareto optimal control problem of maximizing state estimation accuracy while minimizing
the expenditure of available control and measurement resources. Necessary and sufficient conditions for optimal
observability, based on the quantum optimal observability Gramian, are presented. We examine the finite sample
efficiency of the estimation methodology for two- and three-level systems using ideal and noisy control fields,
and demonstrate the advantages of state reconstruction schemes based on optimal observability theory for
experimentally realistic sample sizes. These results indicate that the optimal control of quantum measurement
bases can be used to minimize state reconstruction errors by fully exploiting the information geometry of quantum
states.
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I. INTRODUCTION

Perhaps the most fundamental problem in quantum sta-
tistical inference (QSI) is the reconstruction of the density
matrix of a quantum system based on a finite number of
quantum observations [1–3]. Due to the rapidly growing
interest in quantum computation and quantum control [4–7],
the ability to retrieve the maximum amount of information
about a quantum state based on the smallest number of
measurements is a subject of paramount importance. The
accuracy of all derivative forms of QSI, including process
estimation, is ultimately determined by that of the underlying
state estimation.

Frequentist methods for quantum state estimation—which
deliver distributional results on estimator accuracy in the limit
of an infinite number of measurements—can be formally
subdivided into two categories. The first, tomographic in-
version [8–12], is the least computationally expensive, and
most popular technique. With suitable parametrizations of
the density matrix, there is no need to numerically solve
an optimization problem, and the parameter estimates can be
obtained by solving a system of linear equations. Due to their
simplicity they are commonly applied in state reconstruction
experiments [13], and are especially popular in the context of
process identification [14–16]. However, tomographic inver-
sion cannot enforce the constraints on the density matrix during
estimation, and hence the estimates produced are often not
physically meaningful. The second class consists of frequentist
techniques of inference based on a likelihood function, the
most notable of which is the maximum likelihood (ML)
estimation [17–21]. This class of methods avoids the problems
associated with tomography and is asymptotically more effi-
cient. Banaszek et al. [17] and Rehacek et al. [20] introduced
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numerical algorithms for quantum ML. Recent studies [21]
have considered the quantification of state estimation errors
within quantum ML, and experimental demonstrations of ML
quantum state estimation have also been reported [22].

Frequentist inference of the state of a quantum system
based on measurements at a fixed time requires a complete
observation level—corresponding to N2 − 1 distinguishable
measurement outcomes—in order to estimate all parame-
ters. For systems on high-dimensional Hilbert spaces (e.g.,
molecules), constructing a complete set of observables through
distinct measurements can be difficult or impossible due to
limitations on experimentally measurable physical quantities.
Bayesian estimation [23–27], which is based on updating
a prior plausibility distribution about the parameters based
on observed data, is an alternative to frequentist estimation
that is capable of state reconstruction despite incomplete
observation levels. Bayesian methods are computationally
intensive since they requires the use of numerical (e.g.,
Monte Carlo) integration techniques [27] in order to provide
parameter estimates and standard errors. The review of Buzek
et al. [12] surveys techniques for Bayesian state estimation
and compares them to frequentist methods.

While estimation methods based on prior plausibility
distributions can surmount the problem of incomplete mea-
surements, the accuracy of the resulting state estimates is
substantially compromised due to the lack of a complete
observation level. However, systems engineering theory pro-
vides methods—based on the notion of observability—for
exploiting the dynamical evolution of a system to completely
reconstruct a state despite limitations on the number of
available measurement types and in the absence of a prior
plausibility distribution. Observability [28,29] is concerned
with whether, given a set of observable operators and a dy-
namical system, the initial state of the system can be obtained
by measurements on the system at different times under the
influence of control. These systems-theoretic approaches to
state reconstruction reported thus far are direct extensions
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of classical bilinear theory [30]. The notion of optimality of
estimation or control does not enter.

Optimality of quantum state estimation, by contrast, de-
pends on the properties of quantum measurement. Due to
the noncommutativity of the quantum probability space,
there exist optimal measurement strategies [3,31,32] that
deliver more information about the state for an equal number
of measurements. There is an extensive and sophisticated
literature on optimal quantum estimation that prescribe the
choice of measurements that yield the most efficient parameter
estimates [33–36], provided that an asymptotically efficient
estimator, such as ML, is used.1 In this paper, we show
how quantum control theory [4,6,7,38] can be combined with
analytical results from optimal quantum estimation theory
to extract maximal information from quantum states using
minimal measurement and control resources. We introduce
methods for improving the accuracy of quantum state re-
construction methods by combining optimal quantum control,
quantum estimation, and observability theory. We incorporate
the properties of quantum measurement into observability
theory in order to identify necessary and sufficient conditions
for optimal observability—the ability to extract maximal
information about the state of a controlled quantum dynamical
system. We introduce the quantum optimal observability
Gramian matrix, as well as other analytical tests, as a means
of checking for optimal observability. These concepts have
no analog in classical observability theory. We thus provide
optimal system-theoretic state reconstruction schemes. Since
the required control and measurement resources are reduced
to the theoretical minimum while the information extracted
from the state is maximized, the problem is one of quantum
Pareto optimal control [39]. These methods provide pre-
scriptions for how experimentalists can reconstruct quantum
states, for systems whose Hamiltonians are known, using
measurements of easily accessible observable quantities, such
as the energy. This is achieved through the use of flexible
electromagnetic field resources, rather than by expanding the
set of experimentally observable quantities, as has been the
focus of prior art. The application of systems engineering
techniques to state reconstruction has been limited by the fact
that their efficiency is lower than that of the latest quantum state
estimation methods. The present methods display efficiencies
that exceed those of standard systems engineering schemes,
by leveraging the latest knowledge regarding optimal quantum
state estimation.

Optimal state estimation can be achieved by applying
controls (e.g., electromagnetic fields) that drive the system
dynamical propagator to measurement bases that maximize the
extracted Fisher information about the state. As will be shown
below, this requires N controlled time evolutions. If a non-
degenerate observable is measured, complete state estimation
can achieved with just one type of measurement (for example,
repeated measurements of the energy).2 The needed controlled

1The problem of optimal Hamiltonian parameter estimation [37] is
distinct from that of optimal state estimation and is not addressed
here.

2The number of measurement types required to reconstruct the
state with standard state tomography scales as O(N ) with Hilbert

evolutions can be obtained via the application of optimal
gate control theory [40,41]. We show that among nonadaptive
measurement schemes (i.e. those where measurements do
not depend on the outcome of previous measurements),
the proposed strategy is asymptotically optimal from the
perspective of state reconstruction error for a fixed set of
measurement resources.

Among frequentist estimation techniques, maximum like-
lihood is usually preferred on the basis of its asymptotic
properties, e.g., the ML estimator is asymptotically efficient in
the sense that its asymptotic variance achieves the Cramér-Rao
lower bound for consistent estimators [42]. However, like any
frequentist estimator, it delivers distributional results for the
estimators of the parameters of interest asymptotically. To
interrogate the laboratory feasibility of the proposed scheme,
it is necessary to account for the possibility of noise in
dynamical parameters as well as the finite sample performance
of asymptotically efficient estimators.

We therefore investigate optimal system-theoretic state
reconstruction from the following perspectives:

(i) Given a set of available control and measurement
resources, can one globally minimize state reconstruction
errors?

(ii) For optimally controlled state estimation, how do the
finite-sample standard errors, and hence the associated 95%
confidence intervals, compare to the corresponding asymptot-
ically predicted ones?

(iii) How robust are the optimal state estimators to noise in
the control fields?

Extensive simulation results are provided that demonstrate
that the strategy is nearly optimal and robust to noise in small
samples.

The paper is organized as follows. Section II details the
characteristics of ML estimators of the quantum density
matrix and the choice of measurements that asymptotically
maximize the information extracted from the state. In Sec. III,
we present necessary and sufficient conditions for optimal
observability of quantum dynamical systems, compare them
to the standard conditions for observability, and formulate the
control problem of minimizing state estimation error through
the generation of optimal measurement bases. In Sec. IV,
we present the estimation results for general mixed two-
and three-level density matrices, comparing asymptotic to
finite sample performance and interrogating the robustness of
optimal estimation to control field noise. In the concluding
Sec. V, we draw conclusions regarding the efficiency of
system-theoretic methods for optimal quantum estimation.

II. ESTIMATION OF THE DENSITY MATRIX

A. Quantum estimation and the likelihood function for
state reconstruction

Quantum statistical inference is based on the notion of a
quantum probability space [1,24].

space dimension N [O(2n) for n-qubit systems], compared to the
single measurement type required for such system theoretic strategies,
which exploit the dynamical evolution of the system to extract state
information.
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Definition 1. A quantum probability space is a pair
(N ,ρ(θ )), where N is an operator algebra, typically the
algebra of bounded operators B(H) on a Hilbert space H, and
ρ(θ ) is the positive, unit trace density operator (parameterized
by a vector θ of parameters). For a finite-dimensional Hilbert
space of dimension N , to which we restrict our attention,
ρ(θ ) is an N × N positive-semidefinite (hence Hermitian)
matrix. The bounded operators we are concerned with are the
Hermitian observables.

The probability distributions of measurement outcomes
for any of a set of mutually commuting observables are
determined by ρ(θ ) together with a positive operator-valued
measure. Consider a measurable space (χ,A), where χ is the
set of possible outcomes (here, eigenvalues λi of any of the
observable operators), and A is the σ algebra of subsets of χ .

Definition 2. A positive operator-valued measure (POVM)
is a map M : A → B+(H) [where B+(H) is the set of bounded
positive operators on the Hilbert space H] that is a resolution
of the identity, i.e., for a finite-dimensional Hilbert space of
dimension N ,

∑
i F (xi) = IN ,F (xi) ∈ B+(H). It defines the

probabilities of measurement outcomes xi ∈ χ according to
probability density function p(xi |θ ) = Tr[ρ(θ )F (xi)].

We consider projective measurements where the F (xi) =
Fi are orthogonal projectors [43]. Then any quantum observ-
able can be written

O =
N∑

i=1

λiFi, Fi = |i〉〈i|,

where λi denotes an eigenvalue of O and |i〉 denotes
the corresponding eigenvector. The measurement outcomes
for observable O—the eigenvalues λi—are indexed by the
integers (1, . . . ,N), and each is associated with an Fi through
the POVM map M .

For projective measurements, the POVM elements Fi =
|i〉〈i| constitute a basis for any observable that commutes with
O. The associated observables are then said to belong to the
same “measurement basis.” It is convenient to represent each
measurement basis in terms of an N × N unitary matrix of
common eigenvectors V of {F1, . . . ,FN }. Since each POVM
is a resolution of the identity, the subset of N − 1 projectors
{F1, . . . ,FN−1}, together with ρ(θ ), fully characterizes the
probability measure for observations in this basis.

A collection of POVMs is informationally complete if
specification of their associated probability density functions
(pdfs) p(xi |θ ) uniquely determines the density operator ρ(θ ).
Since the Hermitian matrix ρ is of unit trace, it is specified by
N2 − 1 parameters, and we write {Fi},i = 1, . . . ,N2 − 1 for
such an informationally complete set of POVMs. In order to
estimate the density matrix by measurements of a collection
of Hermitian observables, it must be possible to distinguish
all of the POVM elements of an informationally complete
set based on the measurement outcomes (eigenvalues). Given
that the density matrix is a function of N2 − 1 independent
parameters—and each POVM is characterized by N − 1
elements—a collection of N + 1 POVMs, with associated
measurement bases V (r),0 � r � N , is the minimum number
required for informational completeness [35]. In the current
work, the data x consist of mj measurement outcomes in
each of N + 1 measurement bases with

∑N+1
j=1 mj = m. The

measurement bases are constructed via optimal control, as
discussed in Secs. III and IV.

Asymptotically efficient estimation [42] of quantum states
can be achieved by incorporating all information in the
probability density function for measurements into the es-
timation procedure. Let x = (x1, . . . ,xm) be an independent
and identically distributed (i.i.d.) sample of size m from a
population with probability density function p(x|θ ), which
depends on the unknown parameter vector θ whose true value
is θ0. The joint density of the sample defined as a function of the
unknown parameter vector θ , L(θ |x), is called the likelihood
function.

We collect all the distinct parameters of the density matrix ρ

into the (N2 − 1)-dimensional vector θ . The most convenient
parametrization of ρ(θ ) differs based on the state estimation
method; various parametrizations are discussed in Sec. II D.
The likelihood function for quantum state estimation is then

L(θ |X) =
m∏

k=1

Tr
[
ρ(θ )Fik

]
, (1)

where Fik denotes the POVM element obtained in the kth draw
(i = 1, . . . ,N2 − 1; k = 1, . . . ,m), and X denotes the set of
all measurement outcomes. L(θ | X) may be interpreted as the
probability of obtaining the set of observed outcomes for a
given density matrix ρ(θ ). The maximum likelihood estimator
of the density matrix seeks to identify the admissible parameter
vector θ at which this likelihood is maximal.

B. Quantum maximum likelihood estimation

Without an asymptotically efficient estimator [42], a
system-theoretic state estimation scheme cannot be optimal.
The maximum likelihood estimator is asymptotically efficient.

The value of the parameter vector that maximizes the
likelihood function is called the ML estimator of θ :

θ̂m
ML = arg max

θ∈�

L(θ |x)

= arg max
θ∈�

(
m∏

i=1

p(x1|θ ) · · · p(xm|θ )

)
,

where � denotes the admissible parameter space. Typically,
the logarithm of the likelihood function, ln L(θ |x), is easier
to maximize numerically because of its separability. By
maximizing the log likelihood, the ML estimator minimizes
the Kullback-Leibler distance between the estimated and true
probability distributions.3

ML has several properties that make it an attractive
frequentist estimation procedure:

(1) Consistency: An estimator θ̂m is consistent for the
parameter θ (written as plim θ̂m = θ0) if for every ε > 0,

lim
m→∞ Pθ {|θ̂m − θ0| � ε} = 0.

The ML estimator is consistent: plim θ̂m
ML = θ0.

3The Kullback-Leibler distance is given by Ex{ln[p(x|θ0)/p(x|θ̂)]},
where p(x|θ0) is the true distribution and p(x|θ̂) is the estimated
distribution [44].
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(2) Invariance: The ML estimator of c(θ ) is c(θ̂m
ML), for a

continuous and continuously differentiable function c(·).
(3) Asymptotic Normality: For a sequence of estimators

θ̂m, if km(θ̂m − θ0)
d→ N (0,	) as m → ∞, where

d→ denotes
convergence in distribution and km is any function of m, θ̂m is
said to be km consistent for θ and has an asymptotic normal
distribution with asymptotic covariance matrix 	. The ML
estimator is asymptotically normally distributed:

√
m
[
θ̂m

ML − θ0
] → N [0,mI−1(θ0)],

where I (θ0) = −E

[
∂2 ln L(θ0|x)

∂θ∂θ ′

]
.

I (θ0) is called the expected Fisher information matrix. Note
that the asymptotic covariance matrix of the ML estimator is a
function of the unknown parameters. Alternative approaches
exist for the consistent estimation of the expected Fisher
information matrix, thereby providing feasible versions of the
observed Fisher information matrix. The most commonly used
estimator replaces the expected second derivatives matrix of
the log likelihood function with its sample mean evaluated at
the maximum likelihood estimates,

Î1
(
θ̂m

ML

) = −
[

∂2 ln L
(
θ̂m

ML

∣∣x)
∂θ∂θ ′

]
. (2)

(4) Asymptotically efficient: A sequence of consistent es-

timators θ̂m is asymptotically efficient if
√

m[θ̂m − θ0]
d→

N [0,mI−1(θ0)], where I (θ ) = −E[ ∂2 ln L(θ |x)
∂θ∂θ ′ ]; I−1(θ0) is

called the Cramér-Rao lower bound (CRB) for consistent
estimators.

Property 4 is the subject of the following classic lemma of
frequentist inference.

Lemma 1. The eigenvalues of the covariance matrix
of parameter estimates of a consistent frequentist esti-
mator are bounded from below by the eigenvalues of
I−1(θ0) = {−E[ ∂2 ln L(θ0|x)

∂θ∂θ ′ ]}−1. The maximum likelihood es-
timator asymptotically (i.e., in the limit of an infinite number
of measurements) achieves this lower bound.

Because of properties 1–4 and the fact that hypothesis
testing procedures based on ML estimators are uniformly
most powerful (UMP),4 the ML estimation methodology is
considered the most desirable among frequentist estimation
techniques.

In quantum ML estimation, we aim to identify the maxi-
mum of the likelihood function (1) over the set of admissible
density matrices, which are elements of the Bloch vector
space BN2−1 (see the Appendix). All parametrizations of
the density matrix [such as the Bloch vector parametrization
(see the Appendix)] require the imposition of constraints on
the parameter vector θ ; these constraints are necessary for
expression (1) to be a well-defined likelihood. Assuming the
constraints on the parameter vector θ are of the general form

4The power of a test is the probability of rejecting a null hypothesis
(such as θ = θ0) given that it is false [42]; it is ideally close to 1. Such
hypothesis tests based on ML estimators can be shown to be the most
powerful in their respective classes.

aj (θ ) � 0,j = 1, . . . ,N , the problem can be formulated in
terms of the Lagrangian function

L(θ,λ,γ |x) = ln

[
m∏

k=1

Tr
[
ρ(θ )Fik

]]+
N∑

j=1

ζj

[
aj (θ ) − γ 2

j

]
,

(3)

where the first term is ln L(θ |x) in the absence of constraints
[i.e., ρ(θ ) need not be an admissible density matrix and
L need not be a well-defined likelihood], the γj denote
slack variables (γj = 0 in the case of an equality constraint),
and the ζj denote Lagrange multipliers. It is convenient to
order the N constraints such that the first constraint enforces
the unit trace of ρ, and the following N − 1 constraints
enforce its positive semidefiniteness. Note that L(θ | x) is
a well-defined likelihood function only in the presence of
these constraints. For parametrizations where the unit trace
constraint is implicit in the parametrization (such as the
Bloch vector parametrization [45]), ζ1 = 0. We denote the
vector of parameters as (θ,ζ,γ ) ≡ t. Finding the optimum
corresponding to this Lagrangian entails searching for param-
eter vector t that renders the gradient vectors ∇L(θ ) and a
linear combination of ∇(aj (θ ) − γj ), j = 1, . . . ,N parallel.
There are two common approaches to solving this problem:
(1) minimization of the “sum of squares” (of the first-order
conditions) function

∑
i(

∂L
∂ti

)2; (2) finding the roots of the

system of nonlinear equations ∂L
∂t = 0 using the Newton-

Raphson (NR) method. In fact, methods (1) and (2) may be
combined to produce a globally convergent NR algorithm.

The dimension of the parameter space for quantum state
estimation increases quadratically with the Hilbert space
dimension, necessitating the use of efficient parametriza-
tions of the density matrix. Here, we employ the so-called
Bloch vector parametrization (see the Appendix), where the
probability of an observable outcome according to the Born
rule, Tr[ρ(θ )Fi], is a simple linear function of the parameter
vector θ . Moreover, the Bloch vector parametrization is
perhaps the most commonly used in the statistical physics
of finite-dimensional quantum systems (especially in quantum
information applications). In the Bloch vector parametrization,
θj = Tr(λjρ),i = 1, . . . ,N2 − 1, where the λj denote the
generators of the Lie group SU(N ) (see the Appendix).

Note that the ML estimator obtained by maximizing
the likelihood defined by the Lagrangian (3) is consistent,
asymptotically normally distributed, and has an asymptotic
covariance matrix equal to the inverse of the expected Fisher
information matrix, I−1(θ0). We estimate the expected Fisher
information using Eq. (2).

C. Asymptotically optimal measurements

The use of w ML guarantees asymptotic efficiency for
a fixed set of measurements. However, since the likelihood
function for measurements changes with time due to the
evolution of the system, additional conditions must be satisfied
by the measurement bases in order to minimize state estimation
errors. Our aim is to achieve these conditions by appropriate
choice of control inputs, rather than through modification of
the measurement apparatus itself.
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In quantum statistics, there are multiple Cramér-Rao type
inequalities, each with its own associated (quantum) Fisher
information. Work in quantum probability theory [24] has
indicated that I−1(θ0) for an arbitrary choice of measurement
bases is generally not the tightest asymptotic lower bound
achievable in quantum ML estimation. The measurements
that maximize the Fisher information depend on the true,
unknown state of the quantum system, which in present
context would require control strategies that are conditional on
the measurement data. Although the choice of measurement
bases that can achieve the tightest possible Cramér-Rao bound
depends on the true ρ, there exists an approach to optimal
measurement that is agnostic to the true value of ρ. Wootters
[35] proposed a construction of measurement bases that
maximizes the average information (over the set of all possible
density matrices) obtained via a set of m measurements. These
so-called mutually unbiased measurement bases (MUB) are
“maximally noncommutative” in the sense that a measurement
in one basis provides no information as to the outcome of a
measurement over a basis unbiased with respect to the current
one. Let I (θ̂ ,ρ(θ0)) denote the observed Fisher information
given the true state ρ(θ0). MUB aims to maximize the average
Fisher information over all possible ρ(θ0)’s:

〈I (θ̂)〉 = 1

V0

∫
BN2−1

I (θ̂ ,ρ(θ0))dρ(θ0), (4)

where �wBN2−1 again denotes the admissible parameter space
and V0 is the volume of �, by an appropriate choice of
measurement bases.5 It can be shown that this is equivalent
to maximizing the average Kullback-Leibler (KL) information
gain [44] upon updating the flat prior distribution to the
asymptotic multivariate normal distribution. Maximizing the
information gain is equivalent to minimizing the “uncertainty
volume” in the parameter space; in the absence of measure-
ments, this is equal to the volume of the Bloch vector space.
The uncertainty distance for estimation of a single parameter is
the standard deviation of the estimator; the uncertainty volume
is the product of the standard deviations of the estimators for
each of the parameters.

The total uncertainty volume is minimized when the
subspaces of BN2−1 associated with each of the measurement
bases are mutually orthogonal. Wootters showed [35] that this
condition is equivalent to requiring that∣∣〈v(r)

i ,v(r ′)
j

〉∣∣ = 1√
N

, (5)

where v(r)
i ,v(r ′)

j are column vectors in the bases V (r),V (r ′)

respectively, and |〈·,·〉| denotes the modulus of the Hermitian
inner product. Since the condition depends only on the
modulus of the inner product, it is insensitive to the phases
associated with the components of each eigenvector, a property
that will be exploited below. Whereas mutual nonorthogonality
may decrease the asymptotic uncertainty volume in particular
subspaces of BN2−1, the total asymptotic uncertainty volume is
always increased by such nonorthogonality. Explicit formulas

5The Bures volume measure on the space of N × N density matrices
is implied in Eq. (4).

for measurement bases that satisfy (5) are known in the cases
where the Hilbert space dimension N is the power of a prime,
and are discussed and employed in Sec. III.6 Since MUB
measurements maximize the average Fisher information, any
control strategy that can drive the measurement bases for a
given set of observables to be MUB will be optimal from the
perspective of the Fisher information performance measure,
as discussed below. If the estimator is asymptotically efficient,
the overall state estimation procedure will be asymptotically
optimal. These concepts are made rigorous below. In this paper
we assess both asymptotic and finite sample optimality.

III. OPTIMAL OBSERVABILITY THEORY

A. Bilinear observability on BN2−1

Consider a quantum control system with field-free Hamil-
tonian H0 and control Hamiltonian μ (e.g., molecular dipole
operator), subject to single shaped electric or magnetic field
input ε(t),t ∈ [0,T ]; generalization to multiple control inputs
is straightforward. The goal is to optimally estimate the state
at time t = 0 by proper choice of inputs and measurements
over [0,T ]. The time evolution of the state is governed by the
von Neumann equation

d

dt
ρ(t) = − i

h̄
[H0 − ε(t)μ,ρ(t)], ρ(0) = ρ0. (6)

As a control system with input function ε(·), this system is
said to be bilinear. Let the observables that can be measured
be denoted {Oi}. Note these observables need not constitute
a complete tomographic set. The time evolution of each of
these observable operators is governed by the corresponding
Heisenberg equations, with solution Oi(t) = U †(t)OiU (t),
where

d

dt
U (t) = − i

h̄
[H0 − ε(t)μ]U (t), U (0) = I. (7)

The theory of observability provides necessary and suf-
ficient conditions for the existence of a consistent estimator
for all components of the state of a quantum dynamical
system. For an observable system, any two states ρ1,ρ2 can
be distinguished by expectation values of observations in the
set {Oi} along with controlled evolutions, i.e, Tr[ρ1(t)Oi] �=
Tr[ρ2(t)Oi] for at least one Oi and t , where ρ(t) = ρε(·)(t,θ ).
Here, we will be concerned with estimation of the initial state
ρ0(θ ) ≡ ρ(0,θ ) of system (6), which we will denote by ρ(θ )
for concision. Let O ′

i = Oi − TrOi

N
IN , a traceless Hermitian

operator. The observability condition [28] is that the rank
of the direct sum of the subspaces Si of su(N ) spanned by
commutators of the form [ · · · [iHj3 ,[iHj2 ,[iHj1 ,iO

′
i]]] · · · ],

where each Hj ∈ {H0,μ}, is equal to N2 − 1, i.e.,

rank
n⊕

i=1
span{[ · · · [iHj3 ,[iHj2 ,[iHj1 ,iO

′
i]]] · · · ]} = N2 − 1,

6Another approach to optimal quantum measurement that does not
depend on the true state of the system is symmetric informationally
complete positive operator-valued measures (SIC-POVMs) [32].
These do not maximize the average Fisher information as do MUBs.
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where n denotes the number of observable operators.
Equivalently, system (6) is observable if and only if
n⊕

i=1
span{[ · · · [iHj3 ,[iHj2 ,[iHj1 ,iO

′
i]]] · · · ]} = su(N ).

Identifiability of the state, given a set of measurements, can
also be assessed using the theory of state tomography [16],
which is a form of method of moments (MM) estimation. The
tomographic inversion method estimates the parameters by
equating population moments - here, the expectation values of
the observable operators Oi - to the corresponding sample
moments: the parameter estimates θ̂j ,1 � j � N2 − 1, are
obtained by inverting a system of equations of the form

Tr[ρ(θ̂)Oi] = ci, 1 � i � N2 − 1, (8)

where ci denotes the sample mean of the observable quantity
corresponding to measurement of Oi . Introducing the notation
Aij = ∂Tr[ρ(θ)Oi ]

∂θj
, we may solve for the estimated parameter

vector as θ̂ = A−1c for any parametrization ρ(θ ) that is linear
in θ (for example, the Bloch vector parametrization; see the
Appendix). State identifiability corresponds to invertibility of
the matrix A.

Now assume there are n < N2 − 1 observables Oi , and
write Oi(t) = U †(t)OiU (t),i = 1, . . . ,n (for a continuous set
of observation times t ∈ [0,T ]), in the Heisenberg picture. We
replace the data equation (8) by the n-component vector y(t)
of sample moments (properly corrected for the trace of the
operators ρ,{Oi}) as a function of measurement time:

Tr[ρ ′(θ̂ )U †(t)O ′
iU (t)] = yi(t), 1 � i � n.

Let A(t) = [ν(O1(t)), . . . ,ν(On(t))] denote an (N2 − 1) × n-
matrix function of time, where ν(B) for any Hermitian matrix
B denotes the vector consisting of the N2 − 1 independent
parameters of the traceless Hermitian matrix B − Tr(B)

N
IN .

The observation equation can then be written concisely as
AT (t)ν(ρ(θ̂ )) = y(t). Left multiplying by A(t) and integrating
over time, we have∫ T

0
A(t)AT (t)dtν(ρ(θ̂ )) =

∫ T

0
A(t)y(t)dt

(9)

θ̂ =
[ ∫ T

0
A(t)AT (t)dt

]−1 ∫ T

0
A(t)y(t)dt,

where the second line follows if the parametrization is linear
in θ and there are no constraints on the parameter vector.
Then, identifiability is equivalent to the nonsingularity of the
observability Gramian matrix

∫ T

0 A(t)AT (t)dt under the given
evolution. Equation (9) is the continuous-time analog of the
recursive least squares estimator [46] for θ :

θ̂ = ν(ρ̂) =
[

p∑
k=1

A(tk)AT (tk)

]−1 [ p∑
k=1

A(tk)y(tk)

]
. (10)

Note that this approach requires a parametrization ρ(θ ) that
is linear in θ , in order for the Born observation law to be
linear in the state parameters. The observability Gramian
as written in (9) is a linear map M : su(N ) → su(N ), and
hence the corresponding solution for θ̂ may violate the
positive-semidefiniteness constraints on ρ(θ ). If the system
is observable, there exists at least one controlled trajectory
such that the observability Gramian is nonsingular.

Observability theory is based on expectation values of
observables, rather than the pdfs of the observations. As such,
observability conditions can assess whether the system is
identifiable (i.e., whether a consistent estimator exists) under
some controlled evolution, but cannot say anything about the
efficiency of a measurement scheme. Both tomography and the
observability Gramian approaches minimize the least squares
error between the model-predicted expectation values of the
observations and the corresponding sample means. Since the
observation law is in fact stochastic, the expectation value of
each observation can at best be estimated in finite samples.
Although dynamic methods require fewer observables to
effectively create a complete tomographic set, all inversion
approaches only use the information in a chosen set of
moments of the data. Hence, unlike the ML estimator, such
MM estimators are not asymptotically efficient for observation
distributions that are not Gaussian (which they are not in
the present case); their asymptotic variance does not attain
the Cramér-Rao lower bound in Lemma 1 [47]. Additional
conditions based on the Fisher information must be satisfied
for optimality of systems theoretic state estimation schemes.

B. Optimal quantum observability

Whereas observability theory is concerned with identifia-
bility of states of time-evolving quantum systems, the majority
of work on quantum estimation efficiency has been restricted
to measurements made at a single time. We introduce the
notion of optimal observability, which is concerned with
whether controlled observations {Oi(t)} exist such that the
Fisher information per observation of the measurement data,
averaged over all possible true states ρ0, can be maximized.

Definition 3. A quantum system {H0,μ} with observable
operators {Oi} is said to be optimally observable if there
exists a sequence of controls {εk(·)} and associated mea-
surement times tk such that max{Oi,εk (·)(tk )}〈||I (ρ0(θ̂))||〉/m =
max{Fi }〈||I (ρ0(θ̂ ))||〉/m, where m denotes the number of
measurements, || · || denotes the Hilbert-Schmidt matrix norm,
Fi are the elements of any informationally complete POVM
set, and the averaging is in the sense of Eq. (4).

Let Uk denote the unitary propagator of the quantum system
at a specified measurement time, evolving under the influence
of a control field εk(·) according to the Schrödinger equation.
The measurement time may change with k, but without loss of
generality we will assume it remains fixed at the value T , and
that each control field is applied on the time interval [0,T ].

While observability theory generally assumes that only the
expectation values of the operators Oi can be estimated, the
MM formulation upon which it is based can be extended
to accommodate the ability to distinguish among distinct
measurement outcomes. Let us diagonalize the operators Oi

as YiÕiY
†
i , where

Õi = diag(λ1, . . . ,λ1︸ ︷︷ ︸
l1

, . . . , λqi
, . . . ,λqi︸ ︷︷ ︸

lqi

),

and let Oij = Yidiag(0, . . . ,0,λj , . . . λj ,0, . . . ,0)Y †
i . Out-

comes in different degenerate subblocks j can be distinguished
by measuring Oi . A necessary and sufficient condition for
optimal observability is then that the following discrete-time
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observability Gramian

N+1∑
k=1

Ak
i

(
Ak

i

)T
, (11)

where Ak
i = [ν(U †

k Oi1Uk), . . . ,ν(U †
k Oiqi

Uk)], is nonsingular
for some control sequence {εk(·)} producing measurement
bases {Y †

ik
Uk} that satisfy the MUB conditions (5). Ak

i

represents the measurement of observable Oi under controlled
evolution k. Note that in order to satisfy the rank condition, it is
necessary to measure a nondegenerate observable operator Oi

(i.e., with qi = N ) for each controlled evolution. If multiple
observables are required for nonsingularity, the system is
said to display weakly optimal observability. This result
accommodates the non-Gaussian distribution of measurement
outcomes corresponding to the fact that N + 1 multinomials
specify the probability distribution for quantum observations.
Note, however, that the inverse Gramian should not be used to
solve algebraically for parameter estimates, as this estimator is
not asymptotically efficient. Moreover, in order to solve for ρ0

algebraically while enforcing positive semidefiniteness, it is
necessary to introduce a Riemannian metric [48] on the Bloch
vector space, methods for which will be reported in a separate
work.

A time-independent sufficient condition for optimal observ-
ability is that (i) the system is density matrix controllable [5],
i.e., rank L{H0,μ} = N2 − 1, where L denotes the dynamical
Lie algebra generated by H0 and μ (i.e., the span of their nested
commutators), and (ii) {Oi} = OND, any fully nondegener-
ate observable. Condition (i) guarantees that the necessary
measurement bases {Y †

ik
Uk} can be generated by control.

Controllability is not a necessary condition; it is not possible
to specify a time-independent necessary condition based on
linear algebraic rank, since the space of optimal measurement
bases cannot be generated via a (linearly parameterized)
vector space. Practically, the test for full density matrix
controllability:

span{[· · · [iHj3 ,[iHj2 ,iHj1 ]] · · · ]} = su(N ),

can be applied to verify (i).

C. Optimal control theory for unitary measurement bases

The problem of steering the time evolution of the system to
maximize the average Fisher information of the measurement
data while minimizing control and measurement costs is
one of multiobjective optimal control theory [49]. Increasing
available measurement resources decreases the required
control resources, and vice versa. In such problems the notion
of optimality must be replaced by that of Pareto optimality:
a control field ε∗(t) is said to be Pareto optimal if all other
fields ε(t) have a greater value for at least one of the objective
functions, or else have the same value for all objectives [39].
The set of Pareto optimal solutions is called the Pareto
frontier. Here, the objectives are

J1 = − 1

m
〈||I (ρ0(θ̂ ))||〉, J2 =

N∑
k=1

1

2

∫ T

0
ε2
k (t)dt.

This is a high dimensional optimization problem, possibly
replete with local traps, which is greatly simplified by the

optimal observability theory. Replacing −〈||I (ρ0(θ̂))||〉 with
the distances between the controlled measurement bases
Ũk = {Y †

ik
Uk} and the optimal bases V (k), there are then N

new objectives. The Hilbert-Schmidt (Frobenius) distances
between the true [Ũk(T )] and target [V (k)] bases at time T :

F (Ũk(T )) = ||V (k) − Ũk(T )||2
= Tr{[V (k) − Ũk(T )]†[V (k) − Ũk(T )]}
= 2N − 2ReTr[(V (k))†Ũk(T )], (12)

are used as the Mayer costs [46] that are to be minimized over
the space of admissible controls, subject to the dynamical
equation of motion (7). The unitary propagators corresponding
to the MUB measurement bases jointly maximize the average
Fisher information (FI); the first basis need not be generated
since it is the identity at time t = 0. Prior work [40,50]
has established regularity conditions under which search
algorithms solving this control optimization problem will not
encounter local traps. Control fields at which traps may exist
are called singular extremals. Although it is always possible to
find singular extremals [51], they are rarely encountered in the
course of optimal control theory (OCT) calculations. Recent
works have carefully assessed the frequency with which
traps are encountered in unitary control landscapes [40,52].
These studies executed thousands of OCT runs with
physically motivated Hamiltonians, including those of the
type considered in the present work, and no traps were found.

The total fluence J2 of the optimal control fields is the
Lagrange cost L(�ε(t)) [4,40] that is to be minimized. The
optimal control problem is then

min
�ε(·)

{
F (Ũk(T )),

N∑
k=1

1

2

∫ T

0
ε2
k (t)dt

}
,

where min is understood to denote a nondominated Pareto
optimum. This is the simplest formulation of the problem,
in terms of N separately controlled evolutions Uk(T ). For a
single controlled evolution, the problem is

min
ε(·)

{
F (Ũ (tk)),

1

2

∫ T

0
ε(t)dt

}
.

If the system is fully controllable, a solution with just one
controlled evolution is guaranteed to exist if the measurement
times are chosen to be separated by at least the minimal
controllability time [53]. For fully controllable systems
the kinematic Pareto frontier [i.e., that on U(N ) [39]]
consists of all (N + 1)-tuples of Ũk that satisfy the MUB
condition. If the system is observable but not controllable,
it is generally not possible to analytically characterize
the Pareto frontier, but the discrete-time Gramian (11)
can be applied to facilitate numerical sampling of the
frontier using one or both of the following methods:7

7In single-control formulations, if the system is uncontrollable,
given a control input function ε(t) obtained from the MUB basis
control problem, one can generally increase the Fisher information per
measurement by searching numerically for N -tuples of measurement
times t1, . . . ,tk that minimize one or both of these objectives.
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(i) minimization of the condition number [54] of the discrete-
time Gramian (11); (ii) minimization of the biasedness func-
tion

∑
j>i

∑
r ′>r |〈v(r)

i ,v(r ′)
j 〉|, where the v are the measurement

basis vectors. While the biasedness objective function is a
more accurate indicator of the total Fisher information than the
Gramian condition number, its minimization is not sufficient
since it does not guarantee identifiability, unlike the latter’s.

The associated optimal control problems can be solved
using so-called homotopy tracking algorithms [49,55].8 These
algorithms follow a specified track Fs of objective function
values, where s denotes algorithmic time, toward the global
minimum of each objective (12). The following differential
equation specifies the evolution of each control field εk in
continuous algorithmic time:

∂ε(s,t)

∂s
= f (s,t) + a(s,t)

γ (s)

(
dFs

ds
−
∫ T

0
a(s,t ′)f (s,t)dt

)
.

Here a(s,t) denotes the functional derivative (gradient) of
the Hilbert-Schmidt distance with respect to the control ε(t),
γ (s) = ∫ T

0 a2(s,t)dt is the norm square of the gradient, and
f (s,t) is a “free” function that arises due to the fact that
the control problem is underdetermined in the absence of a
Lagrange cost [49]. Once εk(t) are found that maximize the
Fisher information per measurement, all other control fields
corresponding to maximal information can be reached by
applying the homotopy tracking algorithm above with dFs

ds
= 0.

Then, each free function specifies a path parameterized by
s through the space of control fields producing maximum
Fisher information per measurement. In particular, the choice
f (s,t) = − ∂L(ε(t))

∂εk
|ε(s,t) minimizes the resource cost for the

kth control, subject to the constraint F (Ũk) = 0, thus enabling
convergence to the Pareto frontier. For uncontrollable systems,
this constraint can be replaced by F (Ũk) = χ , for some χ > 0.

Since any Uk(T ) within the coset SU(N )/T N−1—where
T N−1 denotes the maximal torus subgroup of SU(N ) [57]—
produces an identical probability distribution of observations,
each measurement basis control problem requires fewer
resources and search effort than does the control of quantum
gates on either U(N ) or SU(N ).9 For systems displaying
weakly optimal observability (i.e., the observables Oi have
degenerate spectra), control on lower-dimensional coset man-
ifolds is required; for example, if each Oi is a pure state
projector, only control onCPN−1 is necessary. More generally,
for a system where the observable Oi is of the form

Yidiag(λ1, . . . ,λ1︸ ︷︷ ︸
l1

, . . . , λqi
, . . . ,λqi︸ ︷︷ ︸

lqi

)Y †
i ,

only control on U(N )/U(l1) × · · · × U(lqi
) is required. How-

ever, for systems that display only weakly optimal observabil-

8Dynamic optimization (optimal control) problems typically require
specialized algorithms since the dynamical constraint is a differential
equation that must be satisfied for each feasible control; homotopy
tracking algorithms are ideal for multiobjective control problems [56].

9Detailed studies of the search complexity and resource scaling of
gradient-based algorithms for gate control, including properties of
the matrices H0,μ that facilitate the search for optimal controls, are
reported in [40].

ity, J1 will be n-fold greater than its value for an optimally
observable system, and J2 will also be strictly greater due to
the need for more controlled evolutions.

For N = 2 systems, the mutually unbiased measurements
we use in our simulations would correspond to measurements
of the x,y, and z components of the spin of a single qubit
if the measurements were all made at time t = 0, i.e., the
V (r),0 � r � N , can be written

V (0) =
(

1 0

0 1

)
, V (1) = 1√

2

(
1 1

1 −1

)
,

(13)

V (2) = 1√
2

(
1 1

i −i

)
.

In the present approach, if one measures a single nondegener-
ate observable operator O1 that commutes with the field-free
Hamiltonian, the system would be optimally observable if it is
possible to generate the following operators in the Heisenberg
picture through controlled time evolutions:

O1 =
(

λ1

0 λ2

)
, O1,ε2(·)(t1) = 1

2

(
λ1 + λ2 λ1 − λ2

λ1 − λ2 λ1 + λ2

)
,

O1,ε3(·)(t2) = 1
2

(
λ1 + λ2 i(λ2 − λ1)

i(λ1 − λ2) λ1 + λ2

)
,

where we have used the notation for controlled Heisen-
berg picture operators in Definition 3 and assumed ε1(·)
is the zero field with t1 = 0. As a second example, con-
sider the case of n = 2 (two-qubit) systems that are fully
controllable. For any Hilbert space of dimension N =
2n—which encompasses all multiqubit systems—the MUB
bases can be expressed in terms of the eigenvectors of the
Pauli operators (tensor product of Pauli matrices σx,y,z).
Then measurements of any pair of Pauli operators from
the set {(σ 1

z ,σ 2
z ),(σ 1

x ,σ 2
y ),(σ 1

y ,σ 2
x ),(σ 1

y σ 2
y ,σ 1

z σ 2
x ),(σ 1

x σ 2
x ,σ 1

y σ 2
z )}

[58], in the Heisenberg picture at appropriate times under
controlled evolutions, would permit state reconstruction with
minimum uncertainty. Such a system would display weakly
optimal observability.

To apply the treatment to state estimation of molecular
systems, the Hilbert space dimension N may be approximated
as any power of 2 or an odd prime such that N � N ′, where N ′
denotes the effective dynamical dimension for modeling the
system away from the dissociative limit. For N = 3, or more
generally when N is the power of an odd prime, a canonical
construction of the bases V (r) is [35]

V (r)
pq =

{
δpq, r = 0

1√
N

exp
[

2πi
N

(rp2 + pq)
]
, 1 � r � N.

(14)

N ′ is determined by defining a fraction σ of the population of
the most populated molecular eigenstate; eigenstates with an
initial population smaller than this are considered unpopulated
for the purposes of the density matrix estimation. Two
problems where state estimation of molecules is useful are
(a) simultaneous excitation of multiple eigenstate populations
[49], and (b) laser cooling of molecular internal degrees of
freedom [59]. In the former case, the Boltzmann distribution
provides an approximate lower bound on N ′, whereas in the
latter case it provides an upper bound on N ′. An example is
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the control of rotational transitions in diatomic molecules. The
field-free Hamiltonian H0 is

H0 = h̄2

2I

N−1∑
J=0

J (J + 1)|J 〉〈J |, (15)

where J denotes the total angular momentum quantum
number and I = mr2 is the molecular moment of inertia.
We assume ε(t) is oriented along the z axis and the Stark
effect is negligible; the |J 〉 states are (2J + 1)-fold degenerate.
The selection rules for the system are �J = ±1, �M = 0
(with transition dipole matrix elements 〈JM|μ|(J + 1)M〉 =
μperm

√
(J+M+1)(J−M+1)

(2J+1)(2J+3) , where μperm is the permanent molec-

ular dipole moment [60]). In this example, setting σ = 10−3,
N ′ ≈ 10 for rotational states of the HCl molecule in the
Boltzmann distribution at 300 K, whereas for CO, N ′ ≈ 30.

For a more realistic rovibrational model for diatomics, the
overall Hilbert space dimension of the system is N = NJ Nν ,
where NJ and Nν denote the numbers of rotational and
vibrational states included in the model, respectively. The
rotational and vibrational degrees of freedom are separable,
and a Morse oscillator model can be used to represent the
vibrational degrees of freedom. The dipole operator μ will
contain more nonzero elements due to the fact that there are no
formally forbidden vibrational transitions, but an upper bound
on N ′

ν is imposed by the finite number of bound vibrational
states.

In either case, if these systems are controllable on the
N -dimensional Hilbert space, they are optimally observable
using measurements of the energy alone. The corresponding
controlled POVM for a single observable OND that commutes
with H0 is then

Fr(N−1)+i = V (r)F̃i(V
(r))†,

F̃i = |i〉〈i| = diag(0, . . . ,1, . . . 0),

1 � i � N − 1.

IV. SIMULATION RESULTS

In this Section we simulate optimal state estimators for
two- and three-level quantum dynamical systems. For the

Hamiltonian operators in the control system (6), we choose the
following two sets, which are controllable on U(N ) and allow
only nearest neighbor transitions between energy eigenstates
(all matrix elements are in atomic units):

H0 = k

(
0 0

0 1

)
, μ =

(
1 0.3736

0.3736 1

)
, (16)

H0 =

⎛⎜⎝0 0 0

0 0.0088 0

0 0 0.0263

⎞⎟⎠ ,

(17)

μ =

⎛⎜⎝ 1 0.3736 0

0.3736 1 0.3736

0 0.3736 1

⎞⎟⎠ .

Although the optimal bases listed in Sec. III C belong to
the unitary group U(N ), any bases within the corresponding
unitary cosets SU(N )/T N−1 are physically equivalent since
they produce identical probability distributions for measure-
ments [57]. In particular, spin systems controllable on SU(N )
are optimally observable. However, such systems typically
require multiple control fields to generate SU(N ). In order
to enable a study of the scaling of the estimation accuracy
and efficiency with Hilbert space dimension, both systems
were designed to be controllable on U(N ) rather than SU(N )
through the use of operators with a nonzero trace, and with
only one control.

Parameters for the N = 2 system were aligned to the typical
field strengths and evolution times for NMR systems, by
setting k = BzM in (16), with appropriate choice of static
field strength Bz and magnetic moment M (Fig. 1). The
optimal measurements are computed according to (13), which
is applicable to spin systems of Hilbert space dimension
2n. The N = 3 system, for which optimal measurements
are computed according to (14), was chosen to represent
molecular systems of arbitrary Hilbert space dimension. If the
observable measured is the field-free Hamiltonian operator H0,
the observations can be made after the field is turned off, since
only the populations and not the relative phases matter. Thus
for both N = 2 and N = 3, the nondegenerate observable is
OND = H0.
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FIG. 1. (Color online) Optimal control fields ε(t) [see Eq. (6)] for driving the two-level system (16) to MUB measurement bases (13), for
the choice k = BzM , with Bz on the order of 10 T and M set to the proton magnetic moment. (Left) Field for basis V (1); (Right) Field for basis
V (2). The Frobenius distance (12) between controlled and target bases is < 0.03 in both cases.
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TABLE I. Asymptotic and finite sample distribution statistics (1000 repeated samples) for optimally controlled state estimation of two-level
quantum systems: MUB measurement bases. The row labeled “asymptotic” in each panel reports the point estimates of the parameters and
diagonal elements, along with the asymptotic standard errors in parentheses and asymptotic 95% confidence intervals in square brackets. (Since
estimates for the off-diagonal coherences follow directly from those for θ , they are omitted for brevity.)

Panel A: Sample size 100

θ1 θ2 θ3 ρ11 ρ22

True value −0.44 −0.02 0.19 0.59 0.41
Asymptotic −0.27

(0.15)
[−0.56 −0.019]

−0.39
(0.12)

[−0.64 −0.15]

0.39
(0.12)

[0.15 0.64]

0.70
(0.06)

[0.58 0.82]

0.30
(0.06)

[0.18 0.42]

Bias −0.40 × 102 −0.14 × 102 −0.55 × 102 −0.27 × 102 0.27 × 102

Standard error 0.16 0.19 0.17 0.09 0.09
RMSE 0.16 0.19 0.17 0.09 0.09
95% CE [−0.76 − 0.09] [−0.39 0.33] [−0.15 0.52] [0.42 0.77] [0.23 0.58]

Panel B: Sample size 1000

θ1 θ2 θ3 ρ11 ρ22

Asymptotic −0.35
(0.03)

[−0.40 −0.30]

0.01
(0.05)

[−0.10 −0.12]

0.20
(0.05)

[0.10 0.29]

0.60
(0.023)

[0.55 0.64]

0.40
(0.02)

[0.36 0.45]

Bias −0.46 × 102 0.00 0.36 × 102 0.18 × 102 −0.18 × 102

Standard error 0.06 0.07 0.07 0.04 0.04
RMSE 0.06 0.07 0.07 0.04 0.04
95% CE [−0.56 − 0.35] [−0.14 0.09] [0.09 0.32] [0.54 0.77] [0.22 0.46]

We consider several Monte Carlo simulation environments
in order to assess the asymptotic and finite-sample properties
of the ML estimators of the density matrix and test statistics
for various physical quantities of interest. For both two-
and three-level systems, we report results for full rank,
nondegenerate mixed states. The true ρ’s (see Row 1 of
Tables I and II) are randomly chosen and, hence, the results
may be considered representative for any true underlying
density matrix.10 For each ρ, 1000 hypothetical samples of
i.i.d. quantum observations each of size11 m = 100,400,1000
are simulated with the observations evenly distributed between
the N + 1 controlled measurement bases. For simulating
quantum observations from a given basis V (r), the multino-
mial distribution probabilities (pr

1, . . . ,p
r
N ) are computed as

pr
i = Tr[ρ(θ )F r

ik
] where F r

ik
denotes the POVM element

associated with the multinomial outcome i (hence eigenvalue
λi of OND) obtained in draw k from basis r . The parameters of
ρ are then estimated using the ML approach for each sample.

A. Optimally controlled MUB measurements

The primary goals in this Section are to (i) interrogate the
efficiency of the optimal system-theoretic state reconstruction
scheme; and (ii) determine whether the asymptotic normal

10The uniform probability measure on the θ parameter vector space
was used to generate random density matrices, by acceptance-
rejection sampling. We also considered choices of the true density
matrix other than the ones reported in this section, and the results are
not sensitive to the choice of the true ρ.
11These choices of sample sizes enable us to assess the impact of

the sample size on the properties of the parameter estimates for
experimentally realistic scenarios.

distribution of the parameter estimates provides a good
approximation to the finite-sample distribution when optimal
measurements are generated by controlled evolutions ρε(·)(t),
and how the approximation improves with increase in the
sample size.

1. Two-level systems

Figure 1 depicts the optimal control fields for driving the
two-level system (16) to each of the MUB measurement
bases (13). These fields were obtained via optimal control
theory methods (Sec. III C) that produce shaped pulses. While
bang-bang control solutions [43,61] that apply only one group
generator at a time are well- known for some two-level
propagators, such as V (1) (which is the Hadamard gate), for
higher N such control strategies (also called uniform finite
generation) must be solved numerically, and also require more
control pulse energy and overall evolution time.

Table I reports statistics from the asymptotic and finite-
sample distributions of the ML estimators of the parameters
and diagonal elements of the density matrix for the mixed
two-level system.12 Panels A and B report results for m = 100
and 1000, respectively. In particular, we report the following
statistics from the finite-sample distribution: bias, standard
deviation (std), root mean square error (RMSE), and 95%
confidence intervals.

Note that the diagonal elements of the density matrix are
smooth real functions of the parameter vector θ . Let ρii(θ )
denote the ith diagonal element of the density matrix. Given
the invariance property of the ML estimator (see Sec. II),

12Since estimates for the off-diagonal coherences follow directly
from those for θ , they are omitted for brevity.
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the ML estimator of ρii(θ ) is ρii(θ̂ ). Also, the asymptotic
distribution of the estimators of the diagonal elements of ρ

can be obtained using the continuous mapping theorem [42]:
ρii(θ̂) has an asymptotic normal distribution with asymptotic
variance given by

var(ρii(θ̂)) =
(

∂ρii(θ0)

∂θ0

)T

	

(
∂ρii(θ0)

∂θ0

)
, (18)

where 	 is the asymptotic covariance matrix of θ̂ .
Row 1 of Panel A reports the true values of the parameters

and the diagonal elements of the density matrix. The row
labeled “Asymptotic” in each panel reports the point estimates
of the parameters and diagonal elements, along with the
asymptotic standard errors in parentheses and asymptotic
95% confidence intervals in square brackets. We estimate the
asymptotic covariance matrix consistently using the observed
Fisher information given by Eq. (2). As mentioned above,
the asymptotic distribution of the estimators of the diagonal
elements of ρ are obtained using the continuous mapping
theorem. For the computation of the asymptotic distribution,
1 out of the 1000 hypothetical samples is selected randomly.

Due to the nonlinearity of the likelihood function (1),
it is essential to interrogate the accuracy of the asymptotic
ML predictions. For several of the parameters and diagonal
elements, the asymptotic confidence intervals contain the true
values of the parameters. The asymptotic standard errors
decrease with the increase in sample size from m = 100
to m = 1000 in Panels A–C. Consequently, as predicted by
asymptotic theory, the distributions get narrower with increase
in the sample size.

The subsequent rows of each panel report statistics from
the finite-sample distributions of the parameter estimates.
The Table reveals that the finite-sample biases are negligible,
even for small sample sizes, such as m = 100 in Panel A.
The finite-sample standard errors closely track the asymptotic
standard errors for most of the parameters. Consequently, the
finite-sample confidence intervals display similar coverage
to the asymptotic ones. Inference based on the asymptotic
distribution of the parameters can be reliable for as small as
100 total measurements (25 per controlled evolution).

Panels (a)–(c) in Fig. 2 plot asymptotic and finite-sample
distributions of

√
m[ρ11(θ̂) − ρ11(θ0)] (the upper diagonal

element of the density matrix), for m = 100,400, and 1000,
respectively. Here, the asymptotic distribution is nondegen-
erate. Note again that the finite sample distributions closely
mirror the asymptotic distributions for all three sample sizes.
The quality of the normal approximation to the finite sample
distribution increases with sample size.

2. Three-level systems

The analysis so far has been restricted to two-level quantum
systems. Most proposed applications of state estimation,
including coupled spin states and molecular electronic, ro-
tational, and vibrational states, involve higher dimensional
density matrices. In order to assess the impact of the Hilbert
space dimension on the performance of optimally controlled
state estimation, we investigate the state estimation of three-
level (N = 3) systems. Figure 3 depicts the optimal control
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FIG. 2. (Color online) Finite sample distributions of√
m[ρ11(θ̂) − ρ11(θ0)], for mixed two-level state, MUB bases.

(a) m = 100; (b) m = 400; (c) m = 1000. In each panel, finite
sample distributions (1000 simulations) are shown alongside the
corresponding asymptotic distribution.

fields, along with their power spectra, for driving the three-
level system (17) to each of the MUB measurement bases (14).

Table II reports the asymptotic and finite-sample behavior
of the ML estimators of the parameters and diagonal elements
of the density matrix for a three-level quantum system. As
in Table I, Panels A and B report results for m = 100 and
1000, respectively. Note that the divergence between the
asymptotic and finite-sample performance of the estimators
is slightly more pronounced for some parameters in the
three-level system, potentially because of the increase in the
number of parameters and nonlinearity of the model. Note
that the asymptotic standard errors decrease somewhat faster
than the finite sample errors, providing an indication of how
finite sample simulation is required to determine the rate of
improvement of estimator accuracy with sample size. Still,
the finite sample standard errors are close to their asymptotic
counterparts. The small sample standard errors decrease with
increase in the sample size—the standard errors in Panel B are
about 1/3 of those in Panel A. This is also shown in Fig. 4,
where each panel plots the finite sample distribution of the ML
estimator of one parameter for sample sizes m = 100, 400, and
1000 in the same graph.

In addition to the asymptotic and finite-sample standard
errors decreasing with sample size and, consequently, the
confidence intervals becoming shorter, the quantity

√
m times

the standard error is of similar magnitude across sample
sizes—indicating that these sample sizes are close to the
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FIG. 3. (Color online) Optimal fields ε(t) [see Eq. (6)] and power spectra (black, solid) for driving the three-level system (17) to MUB
measurement bases (14). Noisy fields and spectra are superimposed (red, dashed). (a) Field for basis V (1); (b) power spectrum for basis V (1);
(c) field for basis V (2); and (d) power spectrum for basis V (2). The Frobenius distance (12) between controlled and target bases is <0.03 for
both optimal fields in the absence of noise.

asymptotic regime wherein the predictions of frequentist
estimation theory—including the rate of convergence to the
asymptotic limit—are most accurate. This is revealed in Fig. 5,
which plots the finite-sample and asymptotic distributions of√

m[ρii(θ̂ ) − ρii(θ0)]. Panels (a)–(c) plot the distributions for
ρ11 for m = 100,400, and 1000, respectively, while panels
(d)–(f) report the same for ρ22. Again, the quality of the
normal approximation to the parameter estimate distributions
improves considerably with sample size.

B. Robustness of optimal state estimation to control field noise

In order for all the parameters of the density matrix to be
identifiable by frequentist inference, measurements in at least
N + 1 bases are required. In system-theoretic reconstruction
strategies, proper choice of measurement times is essential to
ensure identifiability. Completely random bases corresponding
to N + 1 random measurement times during a single evolution
were found to render the state unidentifiable, since they did
not produce a full rank discrete time observability Gramian in
Eq. (9) [which is equivalent to the set of POVM elements
Fr(N−1)+i ,1 � i � N − 1,1 � r � N + 1 spanning the Lie
algebra su(N )]. However, the observability Gramian’s rank
cannot be used to distinguish between optimal and suboptimal
measurement times or control strategies.

The results in the previous subsection were all obtained
for simulated samples employing noise-free controls that
precisely produced the MUB measurement bases maximizing
the average Fisher information, or, equivalently, minimizing
the asymptotic covariance matrix of the estimators, over the
set of all possible density matrices. To undertake an analysis
of the effect of suboptimal control on estimator efficiency, we
simulated noise in the fields. It is crucial to undertake a sensi-
tivity analysis to determine whether controlled measurement
bases generated using noisy fields achieve similar estimation
accuracies in finite samples, and to interrogate the advantages
of optimal estimation. The primary goal of this subsection is
therefore to compare the asymptotic and finite sample relative
efficiencies of estimation strategies employing perfect and
noisy controls. We assume here that the dynamical parameters
are well known and that control errors are completely measur-
able, since only classical measurements of the field amplitude
are required for the latter; analogous simulations could be
carried out for the Hamiltonian parameter uncertainty.

The use of suboptimal noisy control induces the MUB
bases to rotate away from their ideal unbiased configurations,
causing the average Fisher information to decrease. After such
an effective rotation, the new bases can be written

Ṽ (r) = U (s)V (r), (19)
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FIG. 4. (Color online) Finite sample distributions of parameter estimates, three-level system, MUB bases. Each panel reports results for
one parameter of the density matrix and superimposes results from estimations using sample sizes 100, 400, and 1000. The finite sample
distributions were computed from 1000 simulations.

where U (s) = eiA(r)s , A being a Hermitian matrix specifying
a random axis of rotation in the N -dimensional Hilbert
space, induced by the noise; s is a scalar parameter speci-
fying the extent of rotation (magnitude of the solid angle).
It can be shown [54] that for control system (7), iAs =
− i

h̄
V
∫ T

0 μ(t)δε(t)dtV †, where μ(t) is the time-evolved con-
trol Hamiltonian in the Heisenberg picture and δε(t) is the
noisy control increment. In the present case, for basis r , the
amplitude of the field noise was chosen such that the inner
product in (5) satisfied∣∣〈v(r)

i ,v(r ′)
j

〉∣∣ � α
1√
N

, (20)

where r ′ runs over all the other bases, and α is a chosen
scalar that is greater than unity (α = 1.2 in the present work,
for at least one pair of eigenvectors i,j from bases r and
r ′, respectively). (For generality in these simulations, optimal
basis V (0) = I was also assumed to be generated by controlled
evolution at time T , and the associated control field was

subjected to noise as well.) These systems were identifiable, as
verified by the observability Gramian rank condition in Sec. III,
but did not produce a valid optimal observability Gramian
(11). The noisy fields are superimposed on the optimal fields
in Fig. 3.

Table III reports the asymptotic and finite-sample per-
formance of the ML estimators using the suboptimal bases
for N = 3. Panels A and B report results for m = 100, and
1000, respectively. We begin with a comparison of the bias of
the estimators for the optimal and suboptimal measurements.
Comparing the results in Table III to those in Table II for
optimal measurements, we find that the bias of the ML
estimators for the suboptimal measurements are between one
and two orders of magnitude larger than the corresponding
values for the optimal measurements, for all sample sizes. Next

we compare the asymptotic relative efficiencies (RE1:2 = σ 2
2

σ 2
1

)
of perfect and noisy control. Comparing with the results
obtained with perfect control in Table II reveals that the
asymptotic standard errors for the suboptimal measurement
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FIG. 5. (Color online) Finite sample distributions of
√

m[ρii(θ̂ ) − ρii(θ0)], for mixed three-level state, MUB bases. Panels (a)–(c), ρ11.
(a) m = 100; (b) m = 400; and (c) m = 1000. Panels (d)–(f), ρ22. (d) m = 100; (e) m = 400; and (f) m = 1000. In each panel, finite sample
distributions (1000 simulations) are shown alongside the corresponding asymptotic distribution.

strategy are (considerably) bigger than those for the optimal
strategy for most parameters, as expected based on the
asymptotic theory. We next turn to a comparison of the relative
finite-sample efficiencies of estimators using these mea-
surement strategies. Table III reveals that the finite-sample
standard errors for the parameters and diagonal elements
of the density matrix are generally bigger for suboptimal
controls. The divergence between finite sample standard errors
of the suboptimal and optimal strategies increases for larger
sample sizes. Thus, although the optimal state reconstruction
schemes using perfect controls also have superior finite-sample
properties than those using noisy controls, the difference
can be marginal for small sample sizes and typical control
field noise amplitudes. While the rate of convergence to the
asymptotic limit is smaller than the theoretically predicted√

m in both cases, it is greater for the perfect controls.
Figure 6 compares asymptotic and finite-sample properties of
the optimal MUB and the suboptimal bases for m = 1000.
The normal approximation is less accurate for suboptimal
measurements (but improves with increasing sample size).

To summarize, the results in this Section demonstrate that
optimal measurements display superior asymptotic and finite
sample properties for all sample sizes. The advantage increases
for larger sample sizes, consistent with the asymptotic result

that optimal measurements achieve the maximal average
Fisher information. We have interrogated the impact of control
field noise, which can arise in laboratory applications, on
the performance of optimal measurement strategies. The
results indicate that the efficiency of optimally controlled state
estimation is sufficiently robust to control field noise for small
sample sizes.

V. CONCLUSION AND OUTLOOK

In this paper, we have shown how to make optimal
quantum inferences based on a combination of control and
measurement. We have developed a theoretical framework,
called optimal observability theory, for assessment of the
ability to reconstruct a quantum state with maximum accuracy
despite restrictions on the measurement types available to
the experimentalist, given a specification of available control
resources. Methods have been presented for achieving these
bounds in the case that they are achievable. Control and
measurement resource requirements for optimal estimation
have been quantified and minimized through the use of these
methods. We have shown, through examples motivated by
both NMR systems and model molecular systems, that with
this technique it is possible to achieve reconstruction errors
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FIG. 6. (Color online) Distributions of
√

m(θ̂i − θi,0) for a three-level system, sample size 1000: comparison of perfect and noisy controls.
(a)

√
m(θ̂7 − θ7,0); (b)

√
m(θ̂8 − θ8,0); and (c), (d) Asymptotic distributions obtained for (a) and (b), respectively, are isolated for clarity.

that are comparable to those of state-of-the-art quantum
state reconstruction methods, but with significantly fewer
measurement resources, even in the presence of noise in the
electromagnetic fields used to manipulate system dynamics.

We have also demonstrated that these techniques provide
more accurate state estimates than previously reported systems
engineering schemes for state reconstruction. The finite sample
performance of the optimal estimation strategy closely mirrors
its asymptotic performance for sample sizes �25 measure-
ments per controlled evolution time, and asymptotic errors are
minimized due to the use of asymptotically efficient ML (rather
than tomographic) methods. Optimal estimation efficiency is
robust to field noise for smaller sample sizes. For larger sample
sizes, further improvements in efficiency can be achieved by
optimal estimation if control errors are reduced. Feedforward
control techniques for doing so have been described [54].

Recent work [40] has considered the search complexity and
resource scaling with respect to Hilbert space dimension for the
optimal control of quantum unitary propagators. Those results
can be used together with the present findings on the scaling
of estimator efficiency in finite samples and the robustness of
efficiency to control field noise, in order to assess the laboratory
feasibility of the proposed estimation procedure for state
reconstruction of particular atomic and molecular systems.

Regarding the outlook for the future development of
optimal observability theory, first, even though the proposed
scheme has been shown to be asymptotically optimal, and

the asymptotic standard errors closely mirror those in finite
samples, the standard errors are often large. This feature is
inherent to frequentist estimation schemes (since ML is the
most efficient frequentist estimator). Further improvement of
finite sample performance of quantum state estimation can be
achieved through the use of Bayesian methods [10,62].

Second, while the MUB measurement bases applied in this
work maximize the Fisher information of the measurement
data averaged over all possible states ρ0, more efficient
measurement strategies exist for any given state, due to the fact
that the quantum Fisher information [1,3,23] of a measurement
depends on the true state. In the context of stationary state
estimation, the measurement resources required to implement
such optimal strategies are highly restrictive due to the need to
tailor the measurement strategy to every new state [3]. How-
ever, it is straightforward to generalize the system-theoretic
optimal state reconstruction schemes introduced herein to such
measurements. Since control resources are flexible and easily
updated, one can adapt the applied control fields conditional
on the outcomes of prior measurements, while keeping the
measurements and the measurement times fixed. Moreover,
the Pareto optimal control problem formulations presented in
Sec. III C can be generalized to include systems wherein there
are inequality constraints on the control (constrained optimal
control [46,63]) or where the total evolution time rather than
the control field fluence is to be minimized (time-optimal
control [61]).
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Finally, if the system Hamiltonian is unknown or impre-
cisely known, the present estimation strategy can be applied to
simultaneously estimate those parameters as well as state pa-
rameters optimally, through an adaptive scheme [64] wherein
(i) controls are computed based on the current Hamiltonian
estimate; (ii) the resulting state estimates are used to update the
Hamiltonian parameters, and (iii) the new Hamiltonian param-
eters are used to refine the choice of controls that maximize the
extracted Fisher information. The resulting underdetermined
(ill-posed) Hamiltonian estimation problem in (ii) can be
rendered identifiable using Bayesian methods [10,62].

APPENDIX: BLOCH VECTOR PARAMETRIZATION

In the Bloch vector parametrization [45], the Hermitian
operator ρ is parameterized in terms of an orthogonal basis
{λj },1 � j � N2 − 1, for the vector space of traceless Her-
mitian operators on an N -dimensional Hilbert space. In two
dimensions, these are the familiar Pauli spin matrices, whereas
in three dimensions they are the so-called Gell-Mann matrices.
ρ can then be written

ρ ≡ ρ(θ ) = 1

N
IN + 1

2

N2−1∑
j=1

θjλj ,

(θ1, . . . ,θN2−1) ≡ θ ∈ BN2−1 ⊂ RN2−1,

where the N2 − 1 matrices λj satisfy the conditions (a)
λj = λ

†
j , (b) Tr(λj ) = 0, and (c) Tr(λiλj ) = 2δij . These are

the defining conditions of the generators of the Lie group
SU(N ) that generalize the Pauli spin matrices. The θj are
given by θj (ρ) = Tr(λjρ) (i.e., are expectation values of the
observable generators). The vector θjλj is called the Bloch
vector.

BN2−1 is a compact convex subset of RN2−1. Let ai(θ )
denote the coefficients of the characteristic polynomial of
ρ, det(yIN − ρ), where ρ takes the form above. The unit
trace constraint is automatically satisfied in the Bloch vector
parametrization It can be shown that the conditions of
Hermiticity and positive semidefiniteness of ρ correspond to
the following definition of the “Bloch vector set” BN2−1 of
admissible values of θ :

BN2−1 ≡ {θ ∈ RN2−1|ai(θ ) � 0, i = 1, . . . ,N}.

This follows from the standard result that the roots of a
characteristic equation are positive semidefinite if and only
if the coefficients of the polynomial are positive semidefinite
[45]. The ai in the above definition of B are themselves
polynomials in θ whose coefficients can be expressed in terms
of the structure constants of the Lie algebra su(N ) of traceless
skew-Hermitian matrices.
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