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Most entanglement verification is examined in either the completely characterized or the totally device-
independent scenario. The assumptions imposed by these extreme cases are often either too weak or too strong
for real experiments. Here we investigate this detection task in the intermediate regime where there is partial
knowledge of the measured observables, considering cases like orthogonal, sharp, or only dimension-bounded
measurements. We show that for all these assumptions it is not necessary to violate a corresponding Bell inequality
in order to detect entanglement. We derive strong detection criteria that can be directly evaluated for experimental
data and which are robust against large classes of calibration errors. The conditions are even capable of detecting
bound entanglement under the sole assumption of dimension-bounded measurements.
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I. INTRODUCTION

Entanglement is the most striking phenomenon in the
quantum world. It provides the resource for fascinating
new applications such as quantum computing, teleportation,
or unconditional secure communiction. These possibilities
sparked great interest in this resource, and many current
experiments strive to realize strong and robust entanglement.
Consequently many different detection methods have been
developed in recent years; for reviews, see Refs. [1,2].

Reliable entanglement verification must fulfill certain
criteria [3]. Most importantly it should not depend on the
preparation procedure, and the only available information
about the presence of entanglement should be obtained via
measurements of the underlying system. However there is
still one open choice left: Usually each classical outcome
is associated with an operator describing the measurement
apparatus, say, outcome k corresponds to the measurement
operator Mk . Equipped with this quantum-mechanical mean-
ing, one can employ for instance the tool of entanglement
witnesses [4–6] to decide on the presence of entanglement.
This standard scenario might be too optimistic for applications
because it crucially relies on the correctness of the employed
operator description of the measuring device, and clearly if
the true measurement apparatus functions are different then
anything can go wrong. For mere entanglement detection
these deviations might be called systematic errors, but for
applications where the presence of entanglement is essential,
secure communication being a prominent example, these
deviations are undesired pitfalls [7,8]. Thus in contrast to
the completely characterized scenario there is also the other
extreme where one does not need any specific quantum-
mechanical model at all. Although it is surprising at first, even
in this most pessimistic, device-independent case it is possible
to infer entanglement for good enough data, for example, by
use of Bell inequalities [9–11].

Detection of entanglement in a completely device-
independent manner has recently attracted a lot of interest;
in particular verification in multipartite settings [12–14] since
it was realized that this task differs from the corresponding

nonlocality one [12]. This was surprising because device-
independent entanglement detection and exclusion of a local-
hidden-variable model are equivalent problems in the bipartite
case [15,16]. Steering inequalities are entanglement detection
methods in hybrid scenarios, i.e., one party is complete
characterized, the other totally uncharacterized [17]. Only a
few results and techniques have addressed the detection of
entanglement in a partially characterized setting so far. The
authors of Refs. [18,19] considered the case of sharp, orthogo-
nal qubit measurements and showed that much more entangled
states can in fact be detected than with the corresponding
Bell inequality. For instance it was proven that the bound
appearing in the famous Bell correlation term of the Clauser-
Horne-Shimony-Holt (CHSH) inequality [10] can actually be
reduced from 2 to

√
2 when the measurements satisfy this extra

constraint. These results were extended in order to provide
even quantitative bounds on the amount of entanglement in
Ref. [20]. In order to devise more robust entanglement verifi-
cation methods that avoid fake entanglement detection under
misspecification of the employed observables, a technique
called the squash model is very useful [21,22]. Applied to
entanglement verification, this notion, usually common in
quantum key distribution, can even be extended [23]. Finally,
in Ref. [24] types of Bell inequalities are introduced that can
be applied if the commutator of different measurement settings
is known.

The purpose of the current paper is to investigate the ver-
ification task in the intermediate regime where one possesses
some partial knowledge of the employed measurement de-
vices. Despite its elegance the completely device-independent
setting suffers from the drawback that it is hard to address
experimentally. In fact no Bell experiments so far were fully
device independent due to certain loopholes, but these are often
irrelevant if certain other assumptions hold. However, such
assumptions, like the fair sampling condition, effectively can
be regarded as partial information, e.g., that the “inconclusive”
measurement outcome is the same for both settings for the fair
sampling case. But clearly, if these additional assumptions are
not satisfied, the corresponding implementation of the Bell test
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also does not provide a positive entanglement check [25,26].
Besides, the completely device-independent scenario is often
also too pessimistic. Of course, for applications like quantum
key distribution this very pessimistic viewpoint is legitimate
but for the mere verification of entanglement in an experiment
this seems like breaking a butterfly on a wheel. Although we
do not address the question of how such partial knowledge can
be obtained or justified, we nevertheless believe that certain
deviations in a measurement description are more serious than
others. For example, the assumption that the measurement of
the electronic state of an ion in a trap is very well described
by a qubit measurement seems much easier to assure than
the assumption that the performed measurements are really
orthogonal or that they are true projectors. Independent of
this discussion of which scenario is now more reasonable
for which situation, our investigations shed some light on
the question of which assumptions are more crucial than
others in order to verify entanglement. In addition, the derived
entanglement criteria are more robust against calibration errors
while they still keep a large detection strength, in particular
when compared to Bell inequalities.

In the following we first focus on the scenario investigated
in Ref. [19] and analyze entanglement verification in the sim-
plest possible setting of two different dichotomic measurement
settings per side. We direct our attention to different assump-
tions about qubit measurements and distinguish three different
classes: sharp, orthogonal, and completely uncharacterized
qubit measurements. We provide a solution in terms of the
singular values of a corresponding data matrix and find that one
detects a much larger fraction of states than with the completely
device-independent setting. This already provides examples
where one detects entanglement although the corresponding
Bell inequalities, the CHSH inequalities [10] in this case, are
not violated, with the sole extra assumption that the dimension
of the underlying quantum system is fixed. Additionally we
consider specific observations where the additional knowledge
of sharpness or orthogonality is irrelevant for the detection
strength and already the dimension restriction suffices to verify
exactly the same amount of entangled states as with completely
characterized, i.e., sharp and orthogonal, measurements. After
considering these various scenarios for two qubits we focus
on the extensions to more dichotomic measurements with
completely unspecified measurements restricted only by the
underlying dimension. We derive a criterion that is applicable
for any of these settings and show that it is capable of detecting
entanglement in data originating from bound entangled states.
Moreover the criterion even shows that with uncharacterized
qutrit measurements one can verify more entanglement than
with the corresponding CHSH inequalities. Note that dimen-
sions d � 4 are not relevant, because then one effectively
equals the detection strength of the Bell inequalities [15,16].

The outline is as follows: In Sec. II we precisely define
entanglement verification under partial information on the
performed measurements. Section III starts with a discussion
about different assumptions on the measurements. In addition
we provide some further notation and background knowledge
about the entanglement criterion that we employ for our
purpose. Section III E finally contains the above-mentioned
results for the two-qubit case, whereas Sec. IV is devoted to

the general scenario of n uncharacterized dichotomic qudit
measurements. Finally we conclude and comment on possible
further extensions and directions in Sec. V. Some technical
details of the proofs can be found in the Appendix.

II. PROBLEM DEFINITION

Suppose that Alice and Bob observe an outcome probability
distribution denoted as P (x,y|a,b), where a labels different
measurement choices with corresponding outcomes x for
Alice, and similarly for Bob. These observed data have a
quantum-mechanical representation if there exists a quantum
state ρAB and corresponding measurements, i.e., sets of
positive operator-valued measures (POVM) for Alice {Ma

x }
and Bob {Mb

y } such that

P (x,y|a,b) = (ρABMa
x ⊗ Mb

y

)
, ∀ x,y,a,b. (1)

The observed data are said to verify entanglement if and only
if all states ρAB that satisfy this relation are entangled. Note
that the measurement description is crucial here because it ties
a quantum-mechanical meaning to the classical outcomes.

In the following we consider the alternative that only partial
knowledge is possessed about the measurement description,
meaning that the POVMs describing the measurement are not
known completely. Hence each local measurement character-
ization is only assured to lie within a certain class. This set of
possible POVMs will be denoted byMA for Alice andMB for
Bob. In this case, successful entanglement detection implies
that for all measurement descriptions only entangled states
give rise to the observed data. More precisely, if S denotes the
set of states having a quantum representation in accordance
with the assumed measurement description,

S = {ρAB| ∃ {Ma
x

} ∈ MA,
{
Mb

y

} ∈ MB :
(2)

P (x,y|a,b) = tr
(
ρABMa

x ⊗ Mb
y

)
, ∀ x,y,a,b

}
,

then the observed data P (x,y|a,b) certify entanglement if and
only if all states of this set S are entangled.

Let us comment on the two extreme cases: If the measure-
ments are completely specified each setM consists of only one
possible element. In this case the question of whether given
observations verify entanglement is completely answered,
for example, with the help of entanglement witnesses, even
if the measurements do not provide full tomography [27].
In the other extreme that the measurements are completely
unspecified the sets M consist of all possible POVMs in
all possible dimensions, and the data correspond exclusively
to entangled states if and only if a Bell inequality with the
specified number of settings and outcomes is violated [15].

Finally let us stress one more technical point: We do
not assume any “convexification” of the problem as, for
example, employed in Ref. [28] for dimension witnesses.
Convexification would mean that if two different observations
P1 and P2 have a separable quantum representation then
so also does their convex combination λP1 + (1 − λ)P2 for
all λ ∈ [0,1]. However, the problem is that the quantum
representations might need different measurements, so that
directly taking the convex combination on the level of quantum
states does not work anymore. In Sec. III E we provide
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an explicit example of this nonconvexity. If one manually
convexifies the problem, e.g., by allowing that states and
measurements can be conditioned on an extra random variable
(or shared randomness in the language of Ref. [28]), one
misses the entanglement of several data sets which could be
detected otherwise. Thus the effectiveness of this intermediate
approach lies, to some extent, in explicitly paying attention to
the nonconvex structure.

III. QUBIT CASE

This section concentrates on the two-qubit scenario. We
start with the definition of different measurement assumptions
followed by an explicit parametrization. Afterward we intro-
duce the notation of a data matrix in order to express our results
more compactly and also state the entanglement criterion that
is employed to prove the main results in the last part of this
section.

A. Different measurement assumptions

First, let us specify more closely the different measurement
properties which were abstractly described by the set M
in the previous section. We consider the simplest nontrivial
case: Each party has two different measurement settings each
of which has two different outcomes. Any such dichotomic
measurement is more compactly determined by the difference
of two POVM elements, e.g., with the first setting for Alice
we associate the operator

A = Ma
+1 − Ma

−1 ⇔ Ma
±1 = 1

2 (1 ± A) . (3)

Here x = ±1 labels the two different outcomes, while the
resolution of the POVM elements Ma

±1 follows because of
normalization. In order that this operator A describes a valid
POVM it must satisfy the conditions

A − 1 � 0, 1 − A � 0. (4)

Let us remark that this condition is still independent of any
dimension restriction and it will reappear in a later section for
the more general case of uncharacterized qudit measurements.
The operator for the second choice of Alice is denoted by A′,
while Bob’s choices are given by B and B ′, respectively.

The following definition summarizes the different qubit
specifications that we consider. Let us point out that the di-
mension restriction seems to us the first nontrivial assumption
that one can make.1

Definition 1 (Qubit measurement models). For two di-
chotomic measurements, characterized by the operators A and
A′ according to Eq. (3) and satisfying Eq. (4), we distinguish
the following cases:

(i) Uncharacterized qubit measurements: Both operators act
on the same qubit.

1The only other alternative would be to provide a distance
measure for the set of POVMs, i.e., δ({Ma

x,ideal},{Ma
x,true}) � ε which

quantifies the difference between the true and the ideal measurement
descriptions. If one wants to make this bound independent of the
dimension, this norm must be independent of the dimension as well.
However, we cannot think of any reasonable distance here.

(ii) Sharp qubit measurements: The POVM elements are
rank-1 projectors on the same qubit, i.e., A and A′ have
eigenvalues ±1.

(iii) Orthogonal qubit measurements: The eigenbasis of A

and A′ are mutually unbiased.2

B. Parametrization of POVM elements

In the following we introduce a parametrization of the
POVM elements corresponding to different measurement
scenarios. This parametrization will be convenient later for
the technical proofs. Additionally it should further clarify the
different measurement properties.

1. Sharp qubit measurements

In this case the operators A and A′ can be written as follows:

A = cos(θ )σi + sin(θ )σj , (5)

A′ = cos(θ )σi − sin(θ )σj , (6)

where σi and σj are two different, possibly rotated, Pauli
operators, i.e., they can be written as σi = ûi · 	σ and σj = ûj ·
	σ with two unit vectors ûi ,ûj ∈ R3 satisfying ûi · ûj = 0. The
parameter θ characterizes the tilt between the measurement
directions. Note that this relation can also be reversed, i.e., to
express the Pauli operator in terms of the considered measure-
ment operators. Formally, the relation between orthogonal and
nonorthogonal observables is described by⎡

⎣ 1
σi

σj

⎤
⎦ = R(θ )

⎡
⎣ 1

A

A′

⎤
⎦ (7)

with3

R(θ ) =
⎡
⎣1

1
2 cos(θ)

1
2 sin(θ)

1
2 cos(θ) − 1

2 sin(θ)

⎤
⎦ . (8)

If we refer only to the 2 × 2 submatrix, formed by the second
and third columns and rows, we use the label R2(θ ).

2. Orthogonal qubit measurements

When the measurements are orthogonal but not necessarily
sharp we directly employ the reverse parametrization

σi = x11 + x2A, (9)

σj = x31 + x4A
′, (10)

with xi ∈ R. Note that in order for A and A′ to correspond
to the physical observables given by Eq. (4) these parameters
must satisfy x2 � 1 + |x1| and x4 � 1 + |x3|. Here we can
choose without loss of generality x2,x4 > 0 to be positive,

2Note that this does not imply the orthogonality of A and A′ with
respect to the Hilbert-Schmidt norm.

3For notational clarity if matrix entries are blank they are equal to
zero; if they can be arbitrary they are symbolized by ∗.
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by selecting σi or −σi appropriately. Formally the sharp and
nonsharp observables can be related by⎡

⎣ 1
σi

σj

⎤
⎦ = S(	x)

⎡
⎣ 1

A

A′

⎤
⎦ (11)

with

S(	x) =
⎡
⎣ 1

x1 x2

x3 x4

⎤
⎦ . (12)

3. Uncharacterized qubit measurement

The remaining case of totally uncharacterized qubit mea-
surements can be considered as a combination of the above
two cases. The overall transformation is given by⎡

⎣ 1
σi

σj

⎤
⎦ = R(θ )S(	x)

⎡
⎣ 1

A

A′

⎤
⎦ . (13)

The first operation S turns the operators A and A′ into
sharp, but not necessarily orthogonal, measurements, which
are considered afterward by applying the transformation R.

C. Data matrix

In order to express our results let us define some further no-
tation. The observed data P (x,y|a,b) are compactly expressed
in terms of a data matrix D3, given by the matrix of expectation
values

D3 =

⎡
⎢⎣

〈1〉 〈B〉 〈B ′〉
〈A〉 〈AB〉 〈AB ′〉
〈A′〉 〈A′B〉 〈A′B ′〉

⎤
⎥⎦ . (14)

For convenience we often abbreviate the 2 × 2 submatrix
containing only the full correlations, i.e., built up by the second
and third rows and columns, as D2. Our criteria are typically
given in terms of the singular values of this submatrix, denoted
as λ1/2 � 0.

D. Employed entanglement criterion

For entanglement detection we employ a criterion which is
a direct corollary of the computable cross-norm or realignment
(CCNR) criterion [29,30]. The corollary is formulated in terms
of the singular values of the correlation matrix T3 given by

T3 =

⎡
⎢⎣

〈1〉 〈
σ B

i

〉 〈
σ B

j

〉〈
σ A

i

〉 〈
σ A

i σ B
i

〉 〈
σ A

i σ B
j

〉〈
σ A

j

〉 〈
σ A

j σ B
i

〉 〈
σ A

j σ B
j

〉
⎤
⎥⎦ . (15)

Note that this correlation matrix T3 represents a special data
matrix D3 for which the employed measurement operators are
sharp and orthogonal. Because of those similarities we employ
a similar label T2 in order to refer to the full correlation 2 × 2
submatrix.

FIG. 1. Different detection regions for a data matrix with singular
values λ1 and λ2. The solid and long-dashed lines correspond to
the case of a data matrix with vanishing marginals as discussed in
Proposition 2. The remaining two lines correspond to the determinant
detection rule det(D) = λ1λ2 given in Proposition 4 for qubits (short-
dashed line) and qutrits (dotted line).

Proposition 1 (Corollary of the CCNR criterion). Given the
correlation matrix T3 with ordered singular values λ0 � λ1 �
λ2 � 0. Then the CCNR criterion implies that any separable
state necessarily satisfies

‖T3‖1 = λ0 + λ1 + λ2 � 2. (16)

If the correlation matrix has vanishing marginals, i.e., 〈σ A
k 〉 =

〈σ B
k 〉 = 0 for all k ∈ {i,j}, and λ0 = 1 then this condition is

also sufficient.
For completeness we provide a proof of this proposition in

Appendix A. With this stage set we will state in the next section
our main results on entanglement verification in different two-
qubit scenarios.

E. Main results

In the following we state and prove our main results for
qubits. We first consider the special case that the observed
data matrix D3 has vanishing marginals. We obtain a complete
solution for different scenarios if we use only the knowledge of
the singular values that appear, i.e., the criteria are minimized
over all data matrices with fixed singular values. Using
additional structure of the observation improves the detection
strength as we will see later in Proposition 3. For comparison,
the different detection regions are visualized in Fig. 1.

Proposition 2 (Data matrix with zero marginals). Given a
data matrix D3 of the form

D3 =
[

1
D2

]
, (17)
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where the full correlation data matrix D2 is characterized by the
singular values λ1 � λ2 � 0. These data verify entanglement
under the assumption that the qubit measurements of both
Alice and Bob are

(1) sharp and orthogonal: λ1 + λ2 > 1;
(2) sharp:

√
λ1 + √

λ2 >
√

2;
(3) orthogonal: λ1 + λ2 > 1;
(4) uncharaterized:

√
λ1 + √

λ2 >
√

2.
The definitions of these properties are given in Definition 1

and these bounds are tight for the considered scenario.
Remark 1. Note that we assume that D3 actually originates

from a quantum state under the considered measurement
scenario, which can be assured, for example, if the singular
values satisfy 1 � λ1 � λ2 � 0.

Proof. Case (1) of sharp and orthogonal measurements has
already been discussed in Ref. [19]. Alternatively it is a direct
application of Proposition 1.

All other scenarios are proven along the following lines:
Given the data matrix D3 one first reconstructs the correspond-
ing correlation matrix T3 by the appropriate transformations
S(	x) and R(θ ) as given in Sec. III B. In order to certify
entanglement one employs Proposition 1. However, since T3

depends on the transformation parameters, e.g., θ,	x, . . . , one
needs to optimize over all such choices. This will in general
result in lower bounds on the singular values of the data
matrix. If these bounds are tight then the provided condition is
necessary and sufficient in order to detect entanglement with
the provided data.

Case (2): First let us concentrate on the sharp but not
necessarily orthogonal case, in which the correlation matrix
is given by T3 = R(α)D3R(β)T . For the block-diagonal data
matrix the resulting correlation matrix is of similar block
structure, i.e., T3 = diag[1,T2] with

T2 = R2(α)D2R
T
2 (β). (18)

Hence, if the ordered singular values of T2 are denoted as
t1 � t2 � 0, then Proposition 1 states that the state is entangled
if and only if t1 + t2 > 1 holds for all values of α and β. In
order to minimize the sum t1 + t2 over the angles, we first
lower-bound this quantity by an expression containing only
the singular values of the appearing transformations since this
is more easily optimized in the end.

The lower bound is derived using the inverse relation of
Eq. (18),

D2 = R2(α)−1T2R
T
2 (β)−1 (19)

with

R2(α)−1 =
[

cos(α) sin(α)

cos(α) − sin(α)

]
. (20)

In the following discussion we employ the abbreviations a1 �
a2 � 0 and b1 � b2 � 0 for the ordered singular values of
RT

2 (α)−1 and RT
2 (β)−1, respectively. Furthermore, recall that

D2 is characterized by its two singular values λ1 � λ2 � 0.
For the matrices on the left- and right-hand sides of Eq. (19)

the following relations hold:

t1t2 = λ1λ2

a1a2b1b2
, (21)

t2
1 + t2

2 � (λ1 + λ2)2

a2
1b

2
1 + a2

2b
2
2

. (22)

The proof of these two relations involves some technical
details and is given in Appendix B 1. Employment of these
two identities provides

(t1 + t2)2 � min
α,β

[
(λ1 + λ2)2

a2
1b

2
1 + a2

2b
2
2

+ 2
λ1λ2

a1a2b1b2

]
(23a)

� 1

4
(
√

λ1 +
√

λ2)4. (23b)

The last inequality arises if one employs the true singular
values a1(α), . . . and performs the minimization; for an
explicit proof of this optimization see Lemma 1 in Appendix A.
Equation (23b) confirms that the state is entangled if and only
if

√
λ1 + √

λ1 >
√

2, where the sufficiency follows from the
fact that all appearing inequalities can also be achieved with
equality. This finalizes the proof of Case (2).

Case (3): Next consider the orthogonal case. The correla-
tion matrix T3 = S(	x)D3S(	y)T , with appropriate “sharpener”
transformations S(	x) given by Eq. (12), has the following block
structure:

T3 =
[

1
x Sx

] [
1

D2

] [
1 yT

ST
y

]
(24a)

=
[

1 yT

x xyT + SxD2S
T
y

]
. (24b)

Here we used an analog block decomposition for S(	x)
with column vector x = [x1,x3]T and diagonal submatrix
Sx = diag[x2,x4] and corresponding abbreviations for the
transformation of Bob. In order to prove the statement we will
use the following three inequalities for the ordered singular
values of T3:

t0 � 1, (25)

t0t1 � λ1, (26)

t0t1t2 � λ1λ2. (27)

The proof of these inequalities is given in Appendix B 2.
Further, as shown in Lemma 2 of Appendix C these conditions,
together with the ordering condition 1 � λ1 � λ2 � 0, ensure
that

t0 + t1 + t2 � 1 + λ1 + λ2. (28)

If this ordering is not valid, i.e., λ1 > 1, entanglement directly
follows because

t0 + t1 + t2 � t0 + t1 � 2
√

t0t1 > 2 (29)

via the inequality of arithmetic and geometric means. Thus in
total λ1 + λ2 > 1 is necessary and sufficient for entanglement;
the sufficiency is because one detects the same result as in
the more restrictive case of sharp, orthogonal measurements.
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This finishes the proof for the orthogonal case of qubit
measurements.

Case (4): For the remaining scenario of fully unchar-
acterized qubit measurements we can largely employ the
previous results. In this scenario the correlation matrix T3 =
R(α)S(	x)D3S(	y)T R(β)T is given by

T3 =
[

1
R2(α)

][
1 yT

x xyT + SxD2S
T
y

][
1

R2(β)T

]
(30a)

=
[

1 ỹT

x̃ x̃ỹT + R2(α)SxD2S
T
y R2(β)T

]
(30b)

with x̃ = R2(α)x,ỹ = R2(β)y. In this case the important
submatrix is

T̄2 = R2(α)SxD2S
T
y R2(β)T = R2(α)D̄2R2(β)T , (31)

which can be considered as the central submatrix of the sharp
case, Eq. (18), but where the transformation is applied to D̄2

instead of the true data matrix D2 itself. From the sharp case
we know that the singular values of this matrix T̄2, denoted as
t̄1 � t̄2, satisfy

t̄1 + t̄2 � 1
2 (
√

λ̄1 +
√

λ̄2)2 � 1
2 (
√

λ1 +
√

λ2)2, (32)

where λ̄i � λi are the singular values of D̄2. Next, using
similar arguments as already presented in the unsharp case but
orthogonal case we can derive the following set of inequalities
for the singular values of T3:

t0 � 1, (33)

t0t1 � t̄1, (34)

t0t1t2 � t̄1 t̄2. (35)

Use of Lemma 2 and Eq. (32) once more provides

t0 + t1 + t2 � 1 + t̄1 + t̄2 � 1 + 1
2 (
√

λ1 +
√

λ2)2 (36)

if one has the ordering 1 � t̄1 � t̄2 � 0. If t̄1 > 1 one verifies
entanglement again by the inequality of the arithmetic and
geometric means. This finally shows that the state is entangled
if and only if

√
λ1 + √

λ2 >
√

2, which proves the claim for
uncharacterized qubit measurements. �

Next let us provide an important numerical example. First
it demonstrates that the orthogonal case is indeed differ-
ent from the completely characterized case. Together with
Proposition 2 it shows that the sharp case and the orthogonal
case are indeed inequivalent to each other, i.e., there are
observations which are exclusively detected by one of these
two scenarios. Additionally, this example proves that the
entanglement verification in the unsharp case is in fact a
nonconvex problem. This means that one must be very careful
in applying Proposition 2; it is, for example, not possible to
use it on a “depolarized” version of the observed data matrix
D3, i.e., the one that one obtains by setting the marginals equal
to zero.

Example 1. The data matrix

D3 =
⎡
⎣ 1 1 − √

3
1 − √

3 (15 − 8
√

3)/2
1/2

⎤
⎦ (37a)

≈
⎡
⎣ 1 −0.73

−0.73 0.57
0.5

⎤
⎦ (37b)

can originate from a separable state in the case of orthogonal
qubit measurements, but verifies entanglement for sharp qubit
measurements.

Moreover, it shows that the unsharp scenarios are indeed
nonconvex problems, i.e., a convex combination of two
separable data matrices might no longer be separable.

Proof. First let us give the separable state and its corre-
sponding measurements that are consistent with the given data
matrix. This also discloses the generation of this example. The
data matrix given by Eq. (37a) is obtained by measuring the
separable state

ρsep = 1
4

[
1 ⊗ 1 + 1

2

(
σx ⊗ σx + σz ⊗ σz

)]
(38)

with unsharp measurements A parametrized according to
Eq. (9) with σi = σx , x1 = 1 + √

3, and x2 = 1 + x1, while
A′ = σz, and we have the same settings for Bob’s side. The
reason for the choice of x1 becomes clear later.

Verifying entanglement under the premise of sharp qubit
observables goes as follows: Note that if the measurements are
even orthogonal application of the CCNR criterion of Proposi-
tion 1 immediately shows entanglement. In the nonorthogonal
case one utilizes again the transformations R(α) and R(β)
in order to generate T3 as it was done in Proposition 2.
Even with nonvanishing marginals the important submatrix is
given by T2 = R2(α)D2R2(β)T with D2 being the submatrix
containing the full correlations. Although it is not directly
stated as the CCNR criterion, a state is already entangled if
the singular values of T2 satisfy t1 + t2 > 1.4 As shown in the
proof of Proposition 2, this relation is assured if the singular
values of D2 fulfill

√
λ1 + √

λ2 >
√

2. Since the data matrix
given by Eq. (37a) satisfies this condition, this proves that D3

cannot be compatible with a separable state under sharp qubit
measurements.

Finally one needs to verify using sharp measurements that
the data matrix given by Eq. (37a) is at all consistent with a
valid quantum state. This is necessary in order to assure that
the set S defined as in Eq. (2) is indeed nonempty. However,
the operator

ρent = 1

4

⎛
⎝yσy ⊗ σy +

∑
i,j∈{0,x,y}

[D3]ij σi ⊗ σj

⎞
⎠ (39)

4If the correlation matrix T3 corresponds to a separable state, then
so also does T̄3 where the marginals have been inverted. Since
correlation matrices of separable states form a convex structure, this
assures that the depolarized version T̃3 = (T3 + T̄3)/2 = diag[1,T2]
is also separable. Application of the CCNR criterion to T̃3 assures
entanglement if t1 + t2 > 1 is fulfilled.
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with y = 4
√

3 − 7 represents a valid state compatible with
the data matrix if one employs the sharp measurements
A = B = σx,A

′ = B ′ = σz. Let us point out that this physical
condition determined the parameter x1: We optimized the
detection condition

√
λ1 + √

λ2 while still keeping the data
compatible with a valid state.

Furthermore, this example provides an explicit instance for
the failure of convexity.5 If D3 corresponds to a separable
state then so also does its marginal inverted version D̄3

because it effectively represents only a classical outcome
interchange +1 ↔ −1 on both sides. Thus the data matrix
given by Eq. (37a) with marginals −(1 − √

3) is also separable.
However, taking an equal mixture leads to the depolarized data
matrix D̃3 = diag[1,D2], which would verify entanglement
according to Proposition 2. �

The following proposition demonstrates that the entan-
glement properties are not fully determined by the singular
values of the observed data matrix. Moreover, for this special
data structure it is interesting to observe that the extra
knowledge of sharpness and orthogonality is irrelevant for the
detection strength and mere information about the dimension
of the measurements suffices to verify the same fraction of
entanglement. Furthermore, since these observations satisfy
all CHSH inequalities [10], complete device independent
detection is not possible.

Proposition 3 (Diagonal data matrix). Observations of a
diagonal data matrix

D3 =
⎡
⎣1

λ1

λ2

⎤
⎦ (40)

with 1 � λ1/2 � 0 verify entanglement under the assumption
of qubit measurements if and only if λ1 + λ2 > 1. Hence one
verifies the same fraction as with sharp, orthogonal qubit
measurements. In contrast, completely device-independent
entanglement verification fails.

Proof. The proof runs analogous to that of the qubit
measurement scenario of Proposition 2. Note that the full
correlation matrix T3 is given by Eq. (30b) and that one
detects entanglement if and only if the singular values of T̄2 =
R2(α)D̄2R2(β)T given by Eq. (31), satisfy t̄1 + t̄2 > 1. How-
ever, in contrast to Proposition 2 it is now possible to derive a
tighter lower bound by exploiting the diagonal structure of

D̄2 =
[

x2y2λ1

y2y4λ2

]
=
[

λ̄1

λ̄2

]
. (41)

The singular values of D̄2 are given by the diagonal entries,
which fulfill λ̄i � λi , due to the constraints on the parameters
xi and yi . In order to finish the proof we employ as usual certain
inequalities for singular values of the matrices T̄2 and D2:

t̄1 t̄2 � λ1λ2, (42)

t̄2
1 + t̄2

2 � λ2
1 + λ2

2. (43)

5Note that this is not shown via Proposition 2 because one
employs only some restricted information from the observations,
solely knowledge of the singular values.

These inequalities imply t̄1 + t̄2 � λ1 + λ2 and therefore
prove the claim of the proposition.

In order to prove the inequality (42) one applies the
determinant multiplication rule together with the property
| det[R2(·)]| � 1 that can be checked directly from the defi-
nition given by Eq. (8). The second inequality (43) is verified
by

t̄2
1 + t̄2

2 = tr
(
T̄2T̄

T
2

)
(44a)

= 1
16 {(λ̄1 + λ̄2)2[csc(α)2csc(β)2+sec(α)2sec(β)2]

+ (λ̄1−λ̄2)2[csc(α)2sec(β)2+sec(α)2csc(β)2]}
(44b)

� 1
2 [(λ̄1 + λ̄2)2 + (λ̄1 − λ̄2)2] � λ2

1 + λ2
2, (44c)

where the first inequality is obtained by minimizing each term
within the square brackets separately.

Completely device-independent entanglement verification
fails because all possible Bell inequalities are satisfied, which
is equivalent to a separable quantum representation in the
bipartite case [15,16]. �

IV. QUTRITS AND BEYOND

As shown in the previous section, just having the knowledge
that one is measuring a qubit is enough to detect entanglement
even if the corresponding Bell inequalities, the set of in-
equivalent CHSH inequalities, are not violated. Nevertheless,
if all these Bell inequalities are satisfied then the observed
data can be reproduced by appropriate measurements onto a
higher-dimensional separable state [15,16]; for the considered
case this would be in dimensions 4 ⊗ 4. Thus the only other
nontrivial case is the instance of qutrits. In the following we
prove that even the qutrit assumption alone suffices to detect
more entanglement than with the CHSH Bell inequalities.

Rather than defining different notions of sharpness or
orthogonality for higher-dimensional measurements or more
settings, we focus on the completely uncharacterized case
of n dichotomic measurements on a d-dimensional system.
Each dichotomic measurement is uniquely determined by the
operator given by the difference of two POVM elements and
is denoted as Ai with i = 1, . . . ,n in the following. The
only defining inequality for all these operators Ai , besides
that they are all acting on the same d-dimensional Hilbert
space Cd , is the condition of Eq. (4) which ensures that
they correspond to valid quantum measurements. Similar
conditions are imposed for the measurements for Bob labeled
as Bi . We employ once more the notion of a data matrix D,
each entry defined as [D]ij = 〈Ai ⊗ Bj 〉 for i,j = 0, . . . ,n,
with A0 = B0 = 1, such that it also contains the observed
marginals. Obviously we also have [D]00 = 1, which we
always assume to be fulfilled if we speak about a data matrix.
This is again employed to provide a more compact solution,
which is stated in the following proposition. In addition, from
the above-mentioned qutrit example in the CHSH case, it has
a few more consequences which are commented on afterward.
The conditions for qubits and qutrits are plotted in Fig. 1.
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Proposition 4 (Data matrix for n dichotomic measurements
on two qudits). If the data matrix D corresponding to n

dichotomic measurements satisfies

| det(D)| >

(
d

n + 1

)n+1

(45)

one verifies entanglement under the assumption of d-
dimensional measurements.

If one has at least as many settings as dimensions, i.e.,
n � d, already the condition

| det(D)| >

(
d − 1

n

)n

(46)

ensures entanglement. For the special case of two settings
n = 2 and qutrits d = 3 the condition can be improved to

| det(D)| > 64
81 . (47)

Proof. We follow a similar proof technique as in the previous
section. The data matrix is transformed with appropriate cor-
rections Ga and Gb in order to form a kind of correlation matrix
C = GaDGT

b for which one employs a known entanglement
criterion.

This correlation matrix C is very similar to the previously
employed matrix T3. Here it is defined as C[ρ]ij = tr(ρKA

i ⊗
KB

j ) where each local set Ki consists of orthonormal (with
respect to the Hilbert-Schmidt inner product) observables,
i.e., tr(KiKj ) = δij . Using the inclusion principle in a similar
fashion as in the proof of Proposition 1 one finds that the state
is entangled if the singular values of C, denoted as ci , fulfill

‖C‖1 =
n∑

i=0

ci > 1. (48)

In the following we bound this trace norm by the determi-
nant of the correlation matrix | det(C)| =∏i ci and the extra
knowledge that the largest singular value satisfies c0 � 1/d

which is implied by the choice K0 = 1/
√

d and the inclusion
principle. This provides the following estimate:

n∑
i=0

ci � min
c0�1/d

c0 +
n∑

i=1

ci � min
c0�1/d

c0 + n

(
n∏

i=1

ci

)1/n

(49a)

� min
c0�1/d

c0 + n

( | det(C)|
c0

)1/n

(49b)

=
{

(n + 1)| det(C)|1/(n+1) if | det(C)|1/(n+1) � 1
d
,

1
d

+ n [d| det(C)|]1/n else.

(49c)

Here we employed the inequality of arithmetic and geometric
means in the second step, while the optimization given by
Eq. (49b) is performed using standard analysis. Note that the
first solution in Eq. (49c) is the unconstrained optimum that
could have been inferred directly by applying the inequality of
arithmetic and geometric mean to all terms. However, under
the constraint on the largest singular value this solution is only

reached if the determinant of the correlation matrix satisfies
the stated extra condition. This distinction is necessary for the
improved condition in the case n � d.

The remaining strategy is to lower-bound each solution
of Eq. (49c) by an expression involving the data matrix.
Afterward one investigates which conditions assure that this
lower bound actually exceeds 1, such that, in the spirit of
Eq. (48), it would signal entanglement. The more stringent of
these two cases will be the final entanglement criterion. Here
we need the following inequality that relates the determinant
of correlation and the data matrix:

| det(C)| = | det(D)| | det(Ga)| ∣∣ det
(
GT

b

)∣∣ (50a)

� | det(D)|d−(n+1) (50b)

which follows from the bound | det(G)| � d−(n+1)/2 for each
of the above-mentioned transformations Ga and Gb, proven in
Appendix D.

Let us start with the second solution and employ Eq. (50b),
resulting in

1

d
+ n [d| det(C)|]1/n � 1

d

(
1 + n| det(D)|1/n

)
, (51)

which is larger than 1 if and only if the condition given by
Eq. (46) holds. For the first solution one obtains

(n + 1)| det(C)|1/(n+1) � n + 1

d
max
[
1,| det(D)|1/(n+1)

]
.

(52)

The first part in the maximum follows from the region
constraint on | det(C)|, while the second part is obtained using
Eq. (50b). The maximum appears because both bounds are
valid. The right-hand side of Eq. (52) is larger than 1 if already
one of the terms is. For the general case of this proposition
one chooses the second part of this maximum, which is larger
than 1 if and only if the determinant of the data matrix satisfies
Eq. (45). Because this condition is weaker than the previous
condition from Eq. (51), this is the entanglement criterion for
the general case. For the special configuration of n � d we
employ the first part of the maximum since it always exceeds
1. Hence only the condition from Eq. (51) is relevant for this
case, which proves the proposition of the case n � d.

The improved condition for the qutrit case follows from a
sharper lower bound on the transformations Ga and Gb given
by | det(G)| �

√
3/8, which is proven in Appendix D. �

It is worth stressing that one can employ Proposition 4 not
only with the determinant of the full data matrix D, but also
for each subdeterminant. This describes the case that certain
measurement settings are left out, which is useful when two
or more settings coincide or are linearly dependent, in which
case the determinant of the whole data matrix vanishes.

It is interesting that Proposition 4 detects bound entangle-
ment. In what follows we provide an explicit example of a
positive partial transpose (PPT) bound entangled state that is
detected via the criterion given by Proposition 4, i.e., solely by
having knowledge about the underlying dimension. The state

ρBFP = 1
6 (
+

AB�−
A′B′ + �+

AB�+
A′B′ + �−

AB
−
A′B′

+
−
AB�+

A′B′ + 
−
AB�−

A′B′ + 
−
AB
−

A′B′), (53)
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with 
+, . . . ,�− denoting the projectors onto the standard
two-qubit Bell states, has been shown to be a 4 ⊗ 4 bipartite
PPT bound entangled state [31] under the splitting AA′|BB′.
Assume that one performs “good” enough measurements
described by all traceless operators Akl = σ A

k ⊗ σ A′
l built up

by tensor products of the identity and the Pauli operators,
and the same measurements for Bob. Mixed with white noise
ρ(p) = (1 − p)ρBFP + p1/16, the criterion given by Eq. (46)
becomes

| det(D)| =
[

(1 − p)

3

]15

>

(
3

15

)15

, (54)

and thus verifies entanglement as long as p < 2/5 = 0.4. This
value seems to coincide with the point where entanglement
disappears, i.e., for p � 0.41 the state is separable using the
method of Ref. [32]. This detection capability represents a
clear advantage over Bell inequalities, where it is still unknown
if measurements on a bipartite bound entangled state can
violate a Bell inequality at all, though recent results seem
to falsify this belief [33].

To conclude this section we consider the two-qubit Werner
states ρW(p) = (1 − p)�− + p1/4 and three orthogonal stan-
dard measurements, i.e., σx,σy,σz for both sides. Then the
above-stated conditions verify entanglement as long as the
white-noise parameter satisfies p < 2/3 ≈ 0.67, which co-
incides with the point where entanglement vanishes. This
represents another important improvement with respect to Bell
inequalities, since, first, there is hardly any good Bell inequal-
ity known that detects entanglement if p > 1 − 1/

√
2 ≈ 0.29

and, second, above p � 7/12 ≈ 0.58 it is known that no
measurement would violate a Bell inequality [34].

V. CONCLUSION AND OUTLOOK

We have investigated the task of entanglement detection for
cases where only some partial information about the performed
measurements is known or assumed. The considered scenarios
included properties like sharpness and orthogonality, and cases
where only the dimension of the underlying measurements
is fixed. Via this extra information one verifies more data
as resulting only from entangled states than in the totally
device-independent setting while still keeping a good detection
strength in comparison to the fully characterized case.

There are many further research lines connecting from
here: A thorough investigation of higher-dimensional states
and more measurement settings is clearly interesting in order
to clarify the power but also the limitations of this intermediate
approach. For that one should be aware that the current
methods represent only the first steps toward these directions.
Here alternative tools might be necessary; even an efficient
numerical approach would be of great help. Another approach
would be the investigation of detection methods for the
multipartite case in a similar intermediate setting. Since our
criteria rest on an entanglement criterion based on a correlation
matrix, this extension might be possible utilizing recent
detection methods for genuine multipartite entanglement using
the correlation tensor [35,36]. Regarding explicit tasks, since
our results show that one verifies entanglement even if the
underlying Bell inequality is not violated, this means that
the lower bound on the concurrence given in Ref. [37] could

be improved. This partially characterized scenario might also
be useful in order to obtain steering inequalities which are
more robust against calibration errors, in a similar spirit as in
Ref. [38]. Finally it is tempting to apply these result also to
quantum key distribution operated in a similar intermediate
setting as described here, which has already been started in
Ref. [39]. For that in particular Proposition 3 is interesting,
because it describes exactly the kind of observations that
one expects in an entanglement-based Bennett-Brassard 1984
(BB84) protocol. Since it states that one verifies the same
fraction of entanglement as with totally characterized measure-
ments, this hints that a very strong “semi-device-independent”
key rate could be obtained if one just possesses the knowledge
that one measures a qubit. This would allow a much larger
freedom in finding appropriate squash models for quantum
key distribution since the measurements no longer have to be
fixed [21].
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APPENDIX A: PROOF OF PROPOSITION 1

In this Appendix we provide the proof of the CCNR
criterion adapted to our partial information setting.

Proof. It is only necessary to consider the case of partial
information, since the CCNR criterion is typically formulated
in terms of the full density operator. Following Ref. [40] the
CCNR criterion can be expressed as follows.

Let T4 denote the complete correlation matrix of two qubits,
which results from T3 by addition of the remaining Pauli
operator for each local side. Suppose that its corresponding
ordered singular values are denoted as t0 � t1 � t2 � t3 � 0.
Then the CCNR criterion states that for any separable state
these singular values fulfill

∑3
i=0 ti � 2.

According to the inclusion principle (cf. Corollary 3.1.3 of
Ref. [41]), the ordered singular values are lower bounded by
the singular values of any submatrix. Thus one obtains ti � λi

for i = 0,1,2, such that one arrives at

λ0 + λ1 + λ2 �
3∑

i=0

ti � 2. (A1)

Whenever this condition is violated the state must necessarily
be entangled.

In the case of vanishing marginals with λ0 = 1 the condition
transforms into λ1 + λ2 � 1. Note that the parameters λ1/2 �
1 are also the singular values of the submatrix T2. Using
similar techniques as presented in Ref. [42], it is possible
to fit a rotated Bell-diagonal separable state to these data. This
is achieved along the following lines: First, consider another
correlation matrix T [ρ]αβ = tr(ρσα ⊗ σβ) which is built up
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by the standard Pauli operators {σx,σy,σz} for each local side.
Assume that the given submatrix T2 is precisely the upper-two
block of such a correlation matrix, i.e., T = diag[T2,0] filled
with additional zero entries. The singular value decomposition
of this correlation matrix is given by T = Oa�Ob with
singular values � = diag[λ1,λ2,0] � 0 and Oa and Ob being
special orthogonal matrices of similar block-diagonal form,
i.e., Oa = diag[Ōa, ± 1] and an analogous form of Ob.
Here, note that Ōa and Ōb are the (not necessarily special)
orthogonal matrices from the singular value decomposition of
T2 = Ōadiag[λ1,λ2]ŌT

b .
Next let us discuss the special case of a diagonal

correlation matrix, i.e., T [ρ] = diag[λ1,λ2,0]: These data
correspond to a Bell-diagonal state, abstractly expressed as
ρbs =∑i pi |bsi〉 〈bsi | with standard Bell states |bsi〉 and
appropriate weights equal to pi = (1 ± λ1 ± λ2)/4 having all
four combinations. The above-stated condition ensures that all
probabilities are indeed non-negative and are upper bounded
by 1/2, which ensure separability in this case [42].

For the general case one employs the relation that any
special orthogonal transformed correlation matrix corresponds
to some special unitary transformation on the level of quantum
states [42],

OaT [ρ]OT
b = T [Ua ⊗ UbρU †

a ⊗ U
†
b ]. (A2)

Since local unitary transformations do not change the en-
tanglement properties, the appropriately transformed state
Ua ⊗ UbρbsU

†
a ⊗ U

†
b is the actual separable state for the

general correlation matrix T . Finally, this rotation property
is exploited once more to support the assumption that T2 is the
submatrix of the first two rows of T , since any two orthogonal
vectors can be rotated such that it matches these axis. This
finally proves the claim. �

APPENDIX B: DETAILS FOR TWO-QUBIT CASE

1. Relations for sharp measurements, Eqs. (21) and (22)

Equation (21) is a direct consequence of the determinant
multiplication rule, i.e., det(AB) = det(A) det(B), and of the
fact that the absolute value of the determinant is equal to the
product of its singular values. In order to derive the second
inequality one employs the singular value identities

k∑
i=1

σi(AB) �
k∑

i=1

σi(A)σi(B), (B1)

k∏
i=1

σi(AB) �
k∏

i=1

σi(A)σi(B), (B2)

where σi(·) denotes the decreasing ordered singular values; cf.
Ref. [41]. Application of these identities to Eq. (19) leads to

λ1 + λ2 � b1σ1{[R2(α)]−1T2} + b2σ2{[R2(α)]−1T2} (B3a)

� b1σ1{[R2(α)]−1T2}
+b2{a1t1 + a2t2 − σ1[R2(α)−1T2]} (B3b)

� (a1b1)t1 + (a2b2)t2 (B3c)

�
√(

a2
1b

2
1 + a2

2b
2
2

) (
t2
1 + t2

2

)
, (B3d)

where the Cauchy-Schwarz inequality is applied in the last
step.

2. Relations for orthogonal measurements, Eqs. (25)–(27)

The first condition given by Eq. (25) follows from the
inclusion principle [41] using the first entry as a submatrix.
The last inequality Eq. (27) holds because of the determinant
multiplication rule,

t0t1t2 = | det[S(	x)]|| det(D3)|| det[S(	y)]| (B4a)

= ∣∣ det
(
SxD2S

T
y

)∣∣ = (x2x4)(λ1λ2)(y2y4) (B4b)

� λ1λ2, (B4c)

and the bounds on the appearing parameters, e.g., x2 � 1 +
|x1| � 1.

In order to prove Eq. (26) we apply the inclusion principle
to a particular chosen 2 × 2 submatrix. For this argument the
matrix D̄2 = SxD2S

T
y attains special importance. First, note

that the singular values of D̄2, denoted as λ̄1 � λ̄2, satisfy
λ̄i � λi because the transformations satisfy Sx,Sy − 1 � 0.
Next, employ the singular value decomposition D̄2 = UV T

with  = diag[λ̄1,λ̄2]. Since the singular values of T3 remain
invariant under orthogonal transformations, we apply appro-
priate orthogonal matrices to diagonalize D̄2, which leads to[

1
UT

]
T3

[
1

V

]
=
[

1 ȳT

x̄T x̄ȳT + 

]
, (B5)

with x̄ = UT x,ȳ = V T y. Using the submatrix formed by the
first two rows and columns one obtains[

1 ȳ1

x̄1 x̄1ȳ1 + λ̄1

]
, (B6)

which has determinant λ̄1 � λ1. Then the inclusion principle
directly states Eq. (26).

APPENDIX C: OPTIMIZATION PROBLEMS

In this Appendix we prove two lemmas concerning opti-
mization problems appearing in the proof of Proposition 2.
They are mainly given for completeness of the paper.

Lemma 1 Suppose λ1,λ2 � 0. Then the solution of

min
α,β

[
(λ1 + λ2)2

a2
1b

2
1 + a2

2b
2
2

+ 2
λ1λ2

a1a2b1b2

]
(C1)

with a1 =
√

2 cos(α)2 � a2 =
√

2 sin(α)2 and similarly for bi

with another angle β is

1
4 (
√

λ1 +
√

λ2)4. (C2)

Proof. First note that the ordering of the singular values
does not modify the solution if the optimization is performed
over the full period of each angle, since wrong ordering only
leads to larger function values. Use of the parametrization
α = γ + δ, β = γ − δ simplifies the function to

(λ1 + λ2)2

2 + cos(4γ ) + cos(4δ)
+ 4λ1λ2

| cos(4γ ) − cos(4δ)| . (C3)

Hence it effectively depends only on u = cos(4γ ) and v =
cos(4δ), which are both in the interval [−1,1]. Note that the
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boundary of this feasible set is characterized by either u or v

taking on the extreme values of this interval. In the following
we prove that the minimum lies at this boundary.

Use of the linear variable transformation x = u + v, y =
u − v changes the function to

(λ1 + λ2)2

2 + x
+ 4λ1λ2

|y| . (C4)

Now, taking partial derivatives, one finds that this function
is decreasing with respect to x in the interval (−2,2] and
depending on the sign of y also decreasing in the +y or
−y direction (the exceptional cases y = 0 or x = −2 can be
excluded since they have no minima). Since the variables x

and y are bounded this shows that the minimum is attained at
the boundary. Going back to the form given by Eq. (C3) means
that either cos(4γ ) = ±1 or cos(4δ) = ±1. Here it does not
matter which cosine is put to its extreme values since one
needs to consider only one of them. Only one of these values
±1 leads to the solution, for the other one can directly verify
that its solution is larger than given by Eq. (C2). Concluding,
only the following function needs to be optimized over the
angle ψ :

(λ1 + λ2)2

3 + cos(ψ)
+ 4λ1λ2

1 − cos(ψ)
. (C5)

This optimization can be performed directly by looking for the
vanishing derivatives and using only the real solutions. This
finally leads to the solution given by Eq. (C2). �

Lemma 2. Suppose λ0 � λ1 � λ2 � 0. Then the solution
of

min μ0 + μ1 + μ2

s. t. μ0 � λ0, μ0μ1 � λ0λ1,

μ0μ1μ2 � λ0λ1λ2, (C6)

μ0 � μ1 � μ2 � 0,

is λ0 + λ1 + λ2.
Proof. In order to prove the lemma let us first state the

solution of the following subproblem:

min
x�xmin�0

x + λ

x
=
{

2
√

λ if
√

λ > xmin,

xmin + λ
xmin

else,
(C7)

with λ > 0 which follows using standard analysis. Note that√
λ is the argument of the only positive constrained minimum.
Now we turn to the intended problem given by Eq. (C6).

First consider the case that the parameter μ0 is fixed and that we
bound the sum of the remaining two parameters from below,
which provides

min
μ1,μ2

μ1 + μ2 � min
μ1�μ̄1

μ1 +
(

λ0λ1λ2

μ0

)
1

μ1
(C8a)

�
{

2
√

λ0λ1λ2
μ0

if μ0 � μ̄0,
λ0λ1
μ0

+ λ2 if λ0 � μ0 � μ̄0,
(C8b)

using the abbreviations μ̄1 = λ0λ1/μ0 and μ̄0 = λ0λ1/λ2. In
the first inequality we employ the lower bound on μ2 from the
problem formulation. The second inequality is an application

of the subproblem in which the conditions are reexpressed in
terms of the parameter μ0. In the following we use these lower
bounds and consider variations of μ0 within the corresponding
valid region. For simplicity let us assume strict inequality λ0 >

λ1 > λ2; the statement with equality of some or all parameters
follows then by continuity.

Let us start with the case λ0 � μ0 � μ̄0. Use of the derived
lower bound gives

min
μ1,μ2

λ0�μ0�μ̄0

μ0 + μ1 + μ2 � min
μ0�λ0

μ0 + λ0λ1

μ0
+ λ2 (C9a)

� λ0 + λ1 + λ2, (C9b)

via another application of the given subproblem. Note that
the unconstrained minimum is not achieved, i.e.,

√
λ0λ1 �> λ0

because of the strict ordering.
Next consider the case μ0 � μ̄0, for which we have to

employ the other lower bound in Eq. (C8b). This leads to

min
μ1,μ2

μ0�μ̄0

μ0 + μ1 + μ2 � min
μ0� μ̄0

μ0 + 2

√
λ0λ1λ2

μ0
(C10a)

� λ0λ1

λ2
+ 2λ2 > λ0 + λ1 + λ2.

(C10b)

The optimization problem appearing in Eq. (C10a) is very
similar to our subproblem, in particular it is convex again
for positive μ0. Its only positive constrained minimum is
at the argument 3

√
λ0λ1λ2 which, however, is outside the

allowed region, i.e., μ̄0 > 3
√

λ0λ1λ2 due to the strict ordering
of the λ’s. Thus the optimum is attained at the boundary
μ0 = μ̄0. The last inequality represents another consequence
of the ordering property since it is equivalent to λ0(λ1 − λ2) >

λ2(λ1 − λ2). �

APPENDIX D: TRANSFORMATION DETERMINANTS

In this Appendix we provide a proof for the bounds on
the determinant of the transformations G used in the proof of
Proposition 4. It is a direct consequence of the Gram-Schmidt
procedure.

Lemma 3. The linear transformation G that maps the
operators from the data matrix {Ai} all acting onCd with K0 =
1 and −1 � Ai � 1 for all i = 1, . . . ,n into an orthonormal
operator set {Ki}, i.e., tr(KiKj ) = δij , fulfills

| det(G)| � d−(n+1)/2. (D1)

For the case n = 2, d = 3 the bound can be improved
to

| det(G)| �
√

3

8
. (D2)

Proof. The linear operation G can be obtained, for instance,
using the Gram-Schmidt process. Without loss of generality
this procedure can be decomposed into two operations G =
ON . The first transformation N should map each operator Ai

to its normalized form Ãi = Ai/

√
tr(A2

i ), such that the second

032301-11



TOBIAS MORODER AND OLEG GITTSOVICH PHYSICAL REVIEW A 85, 032301 (2012)

transformation O only needs to orthogonalize them. This
second linear operation always stretches the “vectors” Ãi such
that the volume spanned by this set always increases; therefore
| det(O)| � 1. The first transformation N is a diagonal matrix

with entries given by 1/

√
tr(A2

i ). Since each operator Ai is
bounded by the identity due to the restriction that it describes
a valid measurement, one obtains trA2

i � tr1 � d or finally

| det(G)| = | det(O)| | det(N )| � d−(n+1)/2. (D3)

For the special case of n = 2 and d = 3 we explicitly carry
out the Gram-Schmidt process and minimize the determinant
under the given constraints. We consider the case that G maps
the operators to the orthonormal set {K0 = 1/

√
3,K1,K2}.

This resulting operation G is of triangular form, i.e.,

Ga =
⎡
⎣ 1√

3
∗ N1

∗ ∗ N2

⎤
⎦ , (D4)

which has a determinant N1N2/
√

3. In order to obtain a lower
bound one needs to minimize N1N2 or maximize 1/(N1N2)2,

which results in∣∣∣∣
[

tr(A2) − [tr(A)]2

3

] [
tr(A′2) − [tr(A′)]2

3

]∣∣∣∣
−
[

tr(AA′) − tr(A)tr(A′)
3

]2

(D5a)

�
∣∣∣∣
[

tr(A2) − [tr(A)]2

3

] [
tr(A′2) − [tr(A′)]2

3

]∣∣∣∣
�
(

8

3

)2

. (D5b)

The last inequality originates from the bound

tr(A2) − [tr(A)]2

3
(D6)

= 2

3

(
l2
1 + l2

2 + l2
3 − l1l2 − l1l3 − l2l3

)
� 8

3
, (D7)

where li are the eigenvalues of A that satisfy the box constraint
|li | � 1 due to the measurement condition of Eq. (4). In this
expression at most two of the last three terms can be positive
but one must necessarily be negative. Suppose that this term is
−l2l3 < 0; then l2

2 + l2
3 − l2l3 � 1 holds given the stated box

constraints. �
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