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Quantifying correlations via the Wigner-Yanase skew information

Shunlong Luo* and Shuangshuang Fu
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190 Beijing, People’s Republic of China

Choo Hiap Oh
Center for Quantum Technologies and Physics Department, National University of Singapore, 3 Science Drive 2, 117543, Singapore

(Received 11 January 2012; published 15 March 2012)

In order to quantify the information content of quantum states in the presence of conserved quantities, Wigner
and Yanase introduced the notion of skew information [Proc. Natl. Acad. Sci. USA 49, 910, (1963)], which
was later identified as a paradigmatic version of quantum Fisher information. The skew information is quite
different from, yet deeply connected with, the ubiquitous quantum entropies and has important applications in
quantum theory. In this paper, pursuing further the original idea of Wigner and Yanase, we propose a measure
for correlations in terms of the skew information, investigate its fundamental properties, and elucidate its
characteristics. An appealing feature of this measure for correlations is that its evaluation does not involve any
optimization, in sharp contrast to the entanglement and discord measures, and can be straightforwardly calculated.
In particular, the algorithm and explicit formulas for general bipartite states are prescribed, and simple analytical
expressions for some special states, including arbitrary bipartite pure states, the Bell-diagonal states, and some
highly symmetric states such as the Werner states and the isotropic states, are obtained.
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I. INTRODUCTION

With the development of quantum information theory, cor-
relations are playing an increasingly fundamental and impor-
tant role in the study and exploitation of quantum advantage. In
particular, it has been widely recognized, during the past few
decades, that correlations (including entanglement, and more
generally, quantum correlations) are valuable resources for
quantum information processing [1–5]. Thus, it is desirable
to characterize and quantify correlations in the quantum
context from various perspectives. The celebrated Holevo
inequality sets an upper bound for the accessible information
(i.e., the correlations between measurement outcomes and
the original states) in quantum measurements [6,7]. Many
measures for entanglement are widely studied, such as the
entanglement of formation, the distillable entanglement, the
relative entropy of entanglement, etc. [1–5]. On the other
hand, several measures for correlations beyond entanglement,
such as the quantum discord [8–10], the information deficit
[11], the geometric discord [12,13], the measurement-induced
nonlocality [14], are also introduced to capture quantum
correlations or nonlocality beyond entanglement.

Although all the above measures are introduced from
intuitive motivations and reasonable arguments, they are all
notoriously difficult to calculate. For example, the analytical
expression for the entanglement of formation is only known for
very few special states, such as two-qubit states and some other
special states, and for the quantum discord, we even do not have
an analytical formula for general two-qubit states [10,15–17].

In contrast to the entropic approach to correlations, we will
in this paper introduce an alternative measure for correlations
in terms of quantum Fisher information, which is motivated
by quantum estimation, and has the advantage that it can
be straightforwardly evaluated. This measure is based on the
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important and significant notion of skew information,

I (ρ,X) := − 1
2 tr[

√
ρ,X]2, (1)

introduced by Wigner and Yanase in 1963 [18]. Here ρ is
a quantum state (in general mixed) and X is an observable
(a self-adjoint operator, which is often a Hamiltonian served
as a conserved quantity), and [·,·] denotes commutator. If ρ is
pure, then I (ρ,X) reduces to the variance V (ρ,X) := trρX2 −
(trρX)2. The skew information constitutes an alternative
measure for the information content of a quantum state ρ skew
to an observable X [18] and is quite different from, but deeply
connected with, the ubiquitous quantum entropies [18–21]. It is
also an important concept in information geometry [20,22,23].

There are at least four closely related interpretations of the
skew information:

(i) As the information content of ρ with respect to observ-
ables not commuting with (i.e., skew to) the conserved quantity
X. This is the original meaning of the skew information [18].

(ii) As a measure quantifying the noncommutativity be-
tween ρ and X. This is plainly clear from the defining Eq. (1)
and is exploited by Connes and Stormer in their elegant
proof of the homogeneity of states in type III von Neumann
algebras [24]. The subtle and intriguing point here is that the
square root

√
ρ, rather than ρ, enters the defining Eq. (1), which

is reminiscent of the replacement of a probability density by
its square root (wave amplitude) in the wave formulation of
quantum theory.

(iii) As a version of quantum Fisher information with
respect to the time parameter encoded in the evolution of ρ

driven by the conserved quantity (Hamiltonian) X [25,26].
This viewpoint shows that the skew information quantifies the
accuracy in parameter estimation and is intrinsically connected
with quantum estimation and quantum metrology.

(iv) As a measure of quantum uncertainty of X in the state
ρ [27,28], which is in some sense dual to the viewpoint of
(i). This meaning has interesting applications in refining the
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Heisenberg uncertainty relations [28–32] and in characterizing
the Bell inequalities [33].

The skew information has many advantages over the
variance, and is a remarkable informational quantity with an
interesting history and nice properties [18,19,34,35]:

(1) The skew information is nonnegative and reduces to the
variance if the state is pure. Moreover, 0 � I (ρ,X) � V (ρ,X).

(2) I (ρ,X) is convex in ρ in the sense that [18,34]

I

(∑
i

λiρi,X

)
�

∑
i

λiI (ρi,X) (2)

for any quantum states ρi and any constants λi satisfying∑
i λi = 1,0 � λi � 1. The convexity of the skew information

and, more generally, of the Wigner-Yanase-Dyson information
Iα(ρ,X) := − 1

2 tr[ρα,X][ρ1−α,X], 0 < α < 1, is a celebrated
conjecture first proved by Lieb in 1973 [34]. This convexity
in turn plays a crucial role in the first proof of the strong
subadditivity of the von Neumann entropy (equivalently,
the monotonicity of the quantum relative entropy), which
is extremely fundamental in quantum information theory
[4,19,36]. In contrast, the variance V (ρ,X) is concave in ρ.

(3) For any bipartite state ρab of a composite system Ha ⊗
Hb with marginal ρa = trbρab, and any observable Xa on Ha ,
it holds that [34]

I (ρab,Xa ⊗ 1b) � I (ρa,Xa). (3)

Here 1b is the identity operator on Hb.
The skew information I (ρ,X) depends on both the state

ρ and the observable X. In order to get an intrinsic quantity
capturing the information content of the state ρ without any
other involvement, Luo introduced the average [35,37]

Q(ρ) :=
∑

i

I (ρ,Xi) (4)

as a measure of information content in the quantum state
ρ of an m-dimensional system H . Here {Xi} is a family
of m2 observables (self-adjoint operators), which constitutes
an orthonormal base for the real Hilbert space L(H ) of all
observables on H with the Hilbert-Schmidt inner product
〈A|B〉 := trAB. It has been established that Q(ρ) is inde-
pendent of the choice of the orthonormal base {Xi} [35] and
is actually an intrinsic quantity given by

Q(ρ) =
∑
μ<ν

(
√

λμ −
√

λν)2 = m −
( ∑

μ

√
λμ

)2

, (5)

where {λμ} are the eigenvalues of ρ. Therefore, the quantity
Q(ρ) is intimately related to the notions of generalized
entropies of Rényi and Tsallis [38–40], which are essentially
the trace of some powers of the state.

Following the original motivation and reasoning of Wigner
and Yanase [18], we call Q(ρ) the information content of ρ.
In this context, the average uncertainty of ρ may be quantified
by [27]

V (ρ) :=
∑

i

V (ρ,Xi),

which can be evaluated as V (ρ) = m − trρ2, and is essentially
the Brukner-Zeilinger invariant information [41,42].

Now consider a bipartite state ρab of the composite system
Ha ⊗ Hb with dimHa = m and dimHb = n. In order to
capture the correlations in ρab from the quantum estimation
perspective, we first introduce the global information content
of ρab with respect to the local observables of Ha as

Qa(ρab) :=
∑

i

I (ρab,Xi ⊗ 1b), (6)

which will be proved to be independent of the choice of the
orthonormal base {Xi} for L(Ha). Then the difference

F (ρab) := Qa(ρab) − Qa(ρa ⊗ ρb) (7)

between the information content of ρab and ρa ⊗ ρb with
respect to the local observables of Ha may be interpreted
as a measure for correlations in ρab.

As will be seen from subsequent Eq. (9), the above
measure for correlations can also be equivalently expressed
as F (ρab) := Qa(ρab) − Q(ρa), and from this, we reveal an
alternative meaning of F (ρab): since Qa(ρab) synthesizes
the skew information of the global state ρab with respect
to the local observables of Ha , and Q(ρa) synthesizes the
skew information of the local state ρa with respect to
the local observables of Ha , the difference between these
two quantities captures the correlations in ρab that can be
probed by local observables of Ha . Actually, in view of the
statistical interpretation of the skew information as quantum
Fisher information [25,26], F (ρab) quantifies the advantage
(accuracy gained) for quantum estimation based on ρab over
that based on ρa , when the driven Hamiltonian generating the
evolution with time parameter is local.

The present paper is devoted to investigating the correla-
tions measure F (ρab), illustrating its fundamental properties
and implications. We will show that indeed F (ρab) is a
nice measure for correlations, and give its explicit evaluation
in general cases (Sec. II). We also treat explicitly several
examples in Sec. III and conclude with discussion in Sec. IV.

II. CORRELATIONS IN TERMS OF SKEW INFORMATION

In this section, we investigate the basic properties of F (ρab)
and prescribe its explicit evaluation.

In order to establish that F (ρab) is an intrinsic and
reasonable measure, we must first show that F (ρab) is well-
defined; i.e., it is independent of the choice of orthonormal
base {Xi} for L(Ha). First, note that

I (ρa ⊗ ρb,Xi ⊗ 1b) = − 1
2 tr[

√
ρa ⊗ ρb,Xi ⊗ 1b]2

= − 1
2 tr[

√
ρa ⊗

√
ρb,Xi ⊗ 1b]2

= − 1
2 tr([

√
ρa,Xi]2 ⊗ ρb)

= − 1
2 tr[

√
ρa,Xi]2

= I (ρa,Xi), (8)

we conclude that

Qa(ρa ⊗ ρb) = Q(ρa),

and consequently, F (ρab), as defined by Eq. (7), can be
equivalently expressed as

F (ρab) = Qa(ρab) − Q(ρa). (9)
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Since we already know that Q(ρa), as defined by Eq. (4), is
independent of the orthonormal base [35], in order to establish
the invariance of F (ρab), it suffices to show that Qa(ρab), as
defined by Eq. (6), is independent of the orthonormal base
{Xi}; i.e., if {Kj } is another orthonormal base for L(Ha), then∑

i

I (ρab,Xi ⊗ 1b) =
∑

j

I (ρab,Kj ⊗ 1b).

To prove this, noting that since {Xi} and {Kj } are both
orthonormal bases for L(Ha), we may write

Kj =
∑

i

aijXi, j = 1,2, · · · ,m2,

with (aij ) an m2 × m2 real orthogonal matrix, such that∑
j

aij ai ′j = δii ′ , i,i ′ = 1,2, · · · ,m2.

Consequently,∑
j

I (ρab,Kj ⊗ 1b)

= −1

2

∑
j

tr

[√
ρab,

∑
i

aijXi ⊗ 1b

]2

= −1

2

∑
j

∑
ii ′

aij ai ′j tr[
√

ρab,Xi ⊗ 1b][
√

ρab,Xi ′ ⊗ 1b]

= −1

2

∑
ii ′

∑
j

aij ai ′j tr[
√

ρab,Xi ⊗ 1b][
√

ρab,Xi ′ ⊗ 1b]

= −1

2

∑
i

tr[
√

ρab,Xi ⊗ 1b]2

=
∑

i

I (ρab,Xi ⊗ 1b).

Therefore, F (ρab) is well defined.
Theorem 1. The measure F (ρab) for correlations has the

following properties.
(1) F (ρab) = 0 if and only if ρab is a product state (i.e.,

ρab = ρa ⊗ ρb).
(2) F (ρab) is locally unitary invariant in the sense that

F (ρab) = F ((Ua ⊗ Ub)ρab(Ua ⊗ Ub)†)

for any unitary operators Ua and Ub on Ha and Hb,

respectively.
(3) F (ρab) is decreasing in the sense that

F (Ia ⊗ Eb(ρab)) � F (ρab). (10)

Here Ia is the identity operation on the state space of Ha , and
Eb is an operation on the state space of Hb.

To establish property (1), first note that if ρab = ρa ⊗ ρb is
a product state, then from Eq. (7), we readily see that F (ρab) =
0. Conversely, if F (ρab) = 0, then in view of inequality (3),
we have

I (ρab,X ⊗ 1b) = I (ρa,X) (11)

for any observable X on Ha , since we can always, up to a
constant normalization, take X as an element of {Xi} in the

definition of F (ρab). Further, we can always expand
√

ρab as√
ρab =

∑
j

Aj ⊗ Yj , (12)

with {Aj } observables on Ha and {Yj } an orthonormal base
for L(Hb). Then

ρab =
∑
jj ′

AjAj ′ ⊗ YjYj ′ , ρa = trbρ
ab =

∑
j

A2
j .

Now let X be any spectral projection of (or any observable
commuting with) ρa in Eq. (11), we obtain I (ρab,X ⊗ 1b) =
0. From

I (ρab,X ⊗ 1b)

= −1

2
tr

[ ∑
j

Aj ⊗ Yj ,X ⊗ 1b

]2

= −1

2
tr

( ∑
j

[Aj ,X] ⊗ Yj

)2

= −1

2

∑
jj ′

tr([Aj,X][Aj ′ ,X] ⊗ YjYj ′)

= −1

2

∑
j

tr[Aj,X]2,

we conclude that

[Aj ,X] = 0

for any j since each term −[Aj ,X]2 is a nonnegative self-
adjoint operator. Noting that X could be any spectral projection
of ρa , we conclude that {Aj } is a commuting family of
observables and thus can be diagonalized under a common
orthonormal base {|μ〉} of Ha . Consequently,

√
ρab, as defined

by Eq. (12), can be expressed as√
ρab =

∑
μ

αμ|μ〉〈μ| ⊗
√

ρb
μ,

with {ρb
μ} a set of states of Hb. This means that

ρab =
∑

μ

α2
μ|μ〉〈μ| ⊗ ρb

μ

is a classical-quantum state. For such a state, it can be readily
evaluated that

F (ρab) =
∑
μ<ν

2|αμαν |
(
1 − tr

√
ρb

μ

√
ρb

ν

)
.

Clearly, this quantity vanishes if and only if tr
√

ρb
μ

√
ρb

ν = 1 for

any μ,ν, and this can happen if and only if ρb
μ = ρb

ν . Therefore,
ρab is a product state.

Property (2) follows from Q(UaρaUa†) = Q(ρa) and

Qa((Ua ⊗ Ub)ρab(Ua ⊗ Ub)†)

=
∑

j

I ((Ua ⊗ Ub)ρab(Ua ⊗ Ub)†,Xj ⊗ 1b)

=
∑

j

I (ρab,(Ua ⊗ Ub)†(Xj ⊗ 1b)(Ua ⊗ Ub))

032117-3



SHUNLONG LUO, SHUANGSHUANG FU, AND CHOO HIAP OH PHYSICAL REVIEW A 85, 032117 (2012)

=
∑

j

I (ρab,(Ua†XjU
a) ⊗ 1b)

= Qa(ρab). (13)

The last equality follows from the fact that {Ua†XiU
a} is still

an orthonormal base for L(Ha).
To establish inequality (10), first note that the operation Eb

can always be expressed as

Eb(ρb) = trc[U (ρb ⊗ ρc)U †],

where U is a unitary operator on Hb ⊗ Hc with Hc an ancillary
system and ρc a state of Hc. Consequently, for any observable
Xa of system Ha , in view of inequality (3) for the skew
information under partial trace, we have

I (Ia ⊗ Eb(ρab),Xa ⊗ 1b)

= I (trc[(1a ⊗ U )(ρab ⊗ ρc)(1a ⊗ U )†],Xa ⊗ 1b)

� I ((1a ⊗ U )(ρab ⊗ ρc)(1a ⊗ U )†,Xa ⊗ 1b ⊗ 1c)

= I (ρab ⊗ ρc,(1a ⊗ U )†(Xa ⊗ 1b ⊗ 1c)(1a ⊗ U ))

= I (ρab ⊗ ρc,Xa ⊗ 1b ⊗ 1c)

= I (ρab,Xa ⊗ 1b),

and the desired result, inequality (10), follows.
In this context, it seems reasonable to make the following

conjecture: F (ρab) is decreasing in the sense that

F (Ea ⊗ Eb(ρab)) � F (ρab), (14)

for any local operations Ea and Eb on the state spaces of Ha

and Hb, respectively.
This conjecture is true at least when ρa is the maximally

mixed state and Ea is a random unitary channel (operation) in
the sense that [44,45]

Ea(ρa) =
∑

i

piUiρ
aU

†
i , (15)

where Ui are unitary operators on Ha , and pi are constants
such that

∑
i pi = 1, 0 � pi � 1. In order to establish

inequality (14) under the above conditions, noting that

Ea ⊗ Eb = (Ea ⊗ Ib)(Ia ⊗ Eb)

and inequality (10) (Ia and Ib are the identity operations on
the state spaces of Ha and Hb, respectively), it suffices to
prove

F (Ea ⊗ Ib(ρab)) � F (ρab) (16)

when Ea is of the form of Eq. (15) and ρa = 1a/m. But from
ρa = 1a/m and Ea(ρa) = ∑

i piUiρ
aUi = 1a/m, we have

Q(ρa) = 0, Q(Ea(ρa)) = 0,

which in turn imply that

F (ρab) = Qa(ρab), F ((Ea ⊗ Ib)ρab) = Qa((Ea ⊗ Ib)ρab).

Now by the convexity inequality (2), we have

Qa((Ea ⊗ Ib)(ρab))

= Qa

( ∑
i

pi(Ui ⊗ 1b)ρab(Ui ⊗ 1b)†
)

�
∑

i

piQa((Ui ⊗ 1b)ρab(Ui ⊗ 1b)†)

=
∑

i

piQa(ρab) [by Eq. (13)]

= Qa(ρab),

from which inequality (16) follows.
Furthermore, noting that any unital (identity preserving)

operation on a qubit system is a random unitary channel
[44,45], we conclude that the above conjecture is true when
dimHa = 2 and Ea is any unital operation.

From Theorem 1, we see that F (ρab) cannot be regarded as a
measure for classical or quantum correlations in the framework
of Refs. [8,9,43]. Rather, it is a kind of measure for total
correlations, or nonlocality, and resembles in some sense the
accessible information.

From the defining Eqs. (5), (6), and (9), we see that F (ρab)
can be calculated rather straightforwardly. More precisely,
the evaluation may proceed as follows. Let {Xi} and {Yj }
be sets of observables that constitute orthonormal bases for
L(Ha) and L(Hb), respectively, then {Xi ⊗ Yj } constitutes
an orthonormal base for L(Ha ⊗ Hb). In particular, the local
orthonormal base {Xi} may be taken in the following canonical
way. Let {|μ〉} be an orthonormal base for Ha , and put

Aμν := 1√
2

(|μ〉〈ν|+|ν〉〈μ|),

Bμν := i√
2

(|μ〉〈ν|−|ν〉〈μ|),

then

{|μ〉〈μ|} ∪ {Aμν : μ < ν} ∪ {Bμν : μ < ν} (17)

constitutes an orthonormal base for L(Ha), and we may use
this base as {Xi} for evaluating F (ρab).

Now, for any bipartite state ρab of Ha ⊗ Hb, its square root√
ρab can always be expressed as√

ρab =
∑
ij

cijXi ⊗ Yj , (18)

with cij := tr
√

ρab(Xi ⊗ Yj ).
Theorem 2. For any bipartite state ρab with square root

expressed as Eq. (18), we have

F (ρab) = 1

2

∑
ii ′

xii ′
∑

j

cij ci ′j +
( ∑

μ

√
λμ

)2

− m. (19)

Here xii ′ := ∑
k tr([Xi,Xk][Xk,Xi ′ ]) which may be interpreted

as the structural constants of the base {Xi}, and {λμ} are the
eigenvalues of ρa = trbρab = ∑

ii ′
∑

k cikci ′kXiXi ′

To prove this, noting that trYjYj ′ = δjj ′ and

I (ρab,Xk ⊗ 1b)

= −1

2
tr

[ ∑
ij

cijXi ⊗ Yj ,Xk ⊗ 1b

]2

= −1

2
tr

(∑
ij

cij [Xi,Xk] ⊗ Yj

)2
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= −1

2

∑
ij i ′j ′

cij ci ′j ′ tr([Xi,Xk][Xi ′ ,Xk] ⊗ YjYj ′)

= −1

2

∑
ij i ′j ′

cij ci ′j ′ tr([Xi,Xk][Xi ′ ,Xk])trYjYj ′

= 1

2

∑
ii ′

∑
j

cij ci ′j tr([Xi,Xk][Xk,Xi ′ ]),

then Eq. (19) follows by taking the sum with respect to k, and
subtracting Q(ρa).

Specifying to the two-qubit case, up to local unitary
equivalence, we may always expand the square root of any
two-qubit state ρab as

√
ρab = h

(
1ab + �a · �σ ⊗ 1b + 1a ⊗ �b · �σ +

3∑
j=1

cjσj ⊗ σj

)
.

(20)
Here {σj } are the Pauli matrices, �a · �σ := ∑

j ajσj , �b · �σ :=∑
j bjσj ,

h := 1

2
√

1 + ∑
j

(
a2

j + b2
j + c2

j

)
is a normalization constant to ensure trρab = 1.

By direct evaluation, we have

Qa(ρab) = 2
∑

j

(
a2

j + c2
j

)
1 + ∑

j

(
a2

j + b2
j + c2

j

) .

On the other hand,

ρa = 1

2

[
1a +

∑
j (aj + bj cj )σj

1 + ∑
j

(
a2

j + b2
j + c2

j

)]
,

and therefore

Q(ρa) = 1 −
√√√√1 −

∑
j (aj + bj cj )2[

1 + ∑
j

(
a2

j + b2
j + c2

j

)]2 .

Consequently,

F (ρab) = 2
∑

j

(
a2

j + c2
j

)
1 + ∑

j

(
a2

j + b2
j + c2

j

)
+

√√√√1 −
∑

j (aj + bj cj )2[
1 + ∑

j

(
a2

j + b2
j + c2

j

)]2 − 1.

Furthermore, if �a = �b = 0, then the state ρab defined via
Eq. (20) is actually a Bell-diagonal state:

ρab = 1

4

[
1ab + 2

1 + ∑
j c2

j

∑
j

(
cj − c1c2c3

cj

)
σj ⊗ σj

]
,

and in this instance, we have

F (ρab) = 2
∑

j c2
j

1 + ∑
j c2

j

. (21)

Theorem 3. Let C(ρa) = {ρab : trbρab = ρa} be the set of all
bipartite states on a composite system with the fixed marginal
ρa , then F (ρab) is convex on this set.

Clearly, C(ρa) is a convex set, and the result follows from
the convexity, inequality (2), of the skew information I (ρ,X)
with respect to ρ.

In general, F (ρab) is neither convex nor concave. To
see this, note that for any separable state ρab = ∑

i piρ
a
i ⊗

ρb
i which is not a product state, we have F (ρab) > 0,

but
∑

i piF (ρa
i ⊗ ρb

i ) = 0. Consequently, F (ρab) cannot
be convex in general. On the other hand, from The-
orem 3 we know that F (ρab) cannot be concave in
general.

III. EXAMPLES

In this section, we illustrate the measure F (ρab) by several
typical examples, and thus show that it indeed captures
correlations in a novel way.

Example 1. Let ρab = |�〉〈�| be a bipartite pure
state of Ha ⊗ Hb with the Schmidt decomposition |�〉 =∑m

μ=1

√
λμ|μ〉 ⊗ |bμ〉, then

F (ρab) =
( ∑

μ

√
λμ

)2

−
∑

μ

λ2
μ. (22)

Here m = dimHa.

To derive the above formula, we use the base given by (17)
to evaluate Qa(ρab) :

I (ρab,|μ〉〈μ| ⊗ 1b) = λμ − λ2
μ,

I (ρab,Aμν ⊗ 1b) = 1
2 (λμ + λν),

I (ρab,Bμν ⊗ 1b) = 1
2 (λμ + λν).

Summing up, we have

Qa(ρab) = m −
∑

μ

λ2
μ.

On the other hand, from ρa = ∑
μ λμ|μ〉〈μ| and Eq. (5), we

obtain

Q(ρa) = m −
( ∑

μ

√
λμ

)2

,

from which the desired result follows.
Since Q(ρa) � 0, and

∑m
μ=1 λ2

μ � 1
m

, it follows that

F (ρab) � m − 1

m
,

with the equality if and only if all λμ are equal. Thus,
F (ρab) reaches its maximum for maximally entangled pure
states.

Example 2. For the Bell-diagonal states with the spectral
decomposition

ρab = λ1|�+〉〈�+| + λ2|�−〉〈�−|
+ λ3|	+〉〈	+| + λ4|	−〉〈	−|,

where |�±〉=(|00〉 ± |11〉)/√2, |	±〉= (|01〉 ± |10〉)/√2,

F (ρab) can be evaluated as

F (ρab) = 2 − 1

2

(∑
μ

√
λμ

)2
.
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To see this, from the spectral decomposition of ρab, we get√
ρab =

√
λ1|�+〉〈�+| +

√
λ2|�−〉〈�−|

+
√

λ3|	+〉〈	+| +
√

λ4|	−〉〈	−|,
By direct calculation, we have

Qa(ρab) = 2 − 1

2

( ∑
μ

√
λμ

)2

,

since ρa = 1a/2, we have Q(ρa) = 0, and the desired result
follows. It can be readily checked that the above formula is
consistent with that given by Eq. (21).

Example 3. For the m × m dimensional Werner state

ρab = m − x

m3 − m
1 + mx − 1

m3 − m
S, x ∈ [−1,1]

with S := ∑
μν |μ〉〈ν| ⊗ |ν〉〈μ|, we have

F (ρab) = 1

2
[m − x −

√
(m2 − 1)(1 − x2)].

To establish this, noting that√
ρab = 1

2
(m1 + m2)

∑
μ 
=ν

|μ〉〈μ| ⊗ |ν〉〈ν|

+ m1

∑
μ

|μ〉〈μ| ⊗ |μ〉〈μ|

+ 1

2
(m1 − m2)

∑
μ 
=ν

|μ〉〈ν| ⊗ |ν〉〈μ|,

with

m1 :=
√

1 + x

m2 + m
, m2 :=

√
1 − x

m2 − m
.

By straightforward and tedious calculation, we obtain

Qa(ρab) = 1

2
[m − x −

√
(m2 − 1)(1 − x2)].

Since ρa is the maximally mixed state, we have Q(ρa) = 0,
and the desired result follows. From this expression, we see
that F (ρab) = 0 if and only if x = 1/m, which coincides with
the zero point of quantum discord.

Example 4. For the m × m dimensional isotropic state

ρab = 1 − x

m2 − 1
1 + m2x − 1

m2 − 1
|�〉〈�|, x ∈ [0,1]

with |�〉 := 1√
m

∑m
μ=1 |μμ〉, we have

F (ρab) = 1

m
[m2x − 2x + 1 − 2

√
x(1 − x)(m2 − 1)].

This can be easily derived by noting that

√
ρab =

√
1 − x

m2 − 1
1 +

(
√

x −
√

1 − x

m2 − 1

)
|�〉〈�|

and Q(ρa) = 0. We see that F (ρab) = 0 if and only
if x = 1/m2; in this case, the quantum discord is also
zero.

IV. DISCUSSION

Based on skew information, we have introduced a
measure for correlations in bipartite states. This measure
can be straightforwardly calculated, in sharp contrast to
other measures for entanglement and quantum correlations,
which involve formidable optimizations and are intractable in
general. The informational meaning of this measure is well
grounded on the significant and basic notion of skew informa-
tion, which plays a fundamental role in quantum estimation
theory. We may also interpret the correlations measure F (ρab)
as the advantage in quantum estimation based on the global
state ρab over that based on the local state ρa , which in turn
is intrinsically due to the correlations in ρab. We have worked
out explicitly several typical examples and have obtained
simple analytical expressions. From these expressions, we
see that F (ρ) indeed characterizes the correlations from an
informational perspective.

Being based on the skew information, F (ρab) is quite
different from the quantum mutual information, which is
based on the von Neumann entropy. While the latter is
well established as a measure for correlations from the
communication perspective, the former arises naturally from
quantum estimation. It would be interesting to investigate
their relationships, as well as similar measures based on
other quantum Fisher information such as that defined by the
symmetric logarithmic derivative [49,50].

It should be noted that F (ρab) is asymmetric with respect
to a and b since we are only taking average on system Ha .
It will be desirable to construct some natural symmetric mod-
ifications of such a measure for correlations. An interesting
candidate might be

G(ρab) := max
∑
ij

[I (ρab,Xi ⊗ 1b + 1a ⊗ Yj )

− I (ρa ⊗ ρb,Xi ⊗ 1b + 1a ⊗ Yj )]

= max
∑
ij

[I (ρab,Xi ⊗ 1b + 1a ⊗ Yj )

− I (ρa,Xi) − I (ρb,Yj )].

Here the maximum is taken over all local orthonormal
bases {Xi} and {Yj } of observables for L(Ha) and L(Hb),
respectively, and ρa = trbρab, ρb = traρab. Although the
superadditivity property,

I (ρab,Xi ⊗ 1b + 1a ⊗ Yj ) � I (ρa,Xi) + I (ρb,Yj ),

fails in general [46–48], the weak superadditivity [48]

I (ρab,Xi ⊗ 1b + 1a ⊗ Yj ) + I (ρab,Xi ⊗ 1b − 1a ⊗ Yj )

� 2[I (ρa,Xi) + I (ρb,Yj )]

still ensures that G(ρab) � 0, since whenever {Xi} is an
orthonormal base for L(Ha), the sign changes in any elements
in {Xi} still lead to an orthonormal base. However, due to the
involvement of maximization, it seems difficult to evaluate
G(ρab) explicitly.
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Although the quantity F (ρab) inherits intuitive meaning
from the skew information, which is a basic and significant
quantity, the operational meaning of F (ρab) is still not clear. It
will be desirable to reveal its operational meaning, relate it to
certain (communication or estimation) capacity issues, apply
it to concrete physical problems, and investigate to what extent
it can capture and reveal the physical properties of quantum
systems. Finally, it is an interesting issue to consider efficient
experimental schemes for determining F (ρab).
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