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Discriminating between the von Neumann and Lüders reduction rule
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Given an ensemble of systems in an unknown state, as well as an observable Â and a physical apparatus which
performs a measurement of Â on the ensemble, whose detailed working is unknown (“black box”), we study
how one can test whether the Lüders or von Neumann reduction rule applies.
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I. INTRODUCTION

In his groundbreaking book [1] of 1932, von Neumann
investigated the quantum mechanical measurement problem
and formulated a rule for how to obtain the state of an
ensemble of physical systems after a measurement. This
rule was later substantially modified by Lüders [2]. It is
the Lüders reduction or projection rule that nowadays is
mostly used. The Lüders rule states that after a selective
measurement [3] of an observable Â with discrete eigenvalues,
the subensemble of systems with the measurement result ai

is in the (non-normalized, pure) state P̂i |ψ〉, where P̂i is
the (possibly multidimensional) projection operator onto the
eigenspace of the eigenvalue ai , and |ψ〉 is the state prior to
the measurement. For an initial density matrix ρ̂, one obtains
P̂i ρ̂P̂i [4].

The von Neumann reduction rule assumes that in the
case of degeneracy, one measures a refinement Â′ of Â,
which commutes with Â and has only nondegenerate discrete
eigenvalues [1] and thus lifts the degeneracy. Usually this
results from consecutive measurements [e.g., [5] and Eq. (A5)
of the Appendix below]. Then Â is a function of Â′, for
example, Â = f (Â′), and from a measurement result a′ of
Â′ for an individual system, one obtains the corresponding
result a = f (a′) for Â. As a generalization, we introduce here
the notion of a partial von Neumann-type measurement that
can also arise from consecutive measurements (cf. Appendix).
One can choose a refinement that lifts the degeneracy of
Â only partially. Then Â = f (Â′) is still the case, but Â′
may have some degenerate eigenvalues. Then a partial von
Neumann-type measurement is obtained by performing a
Lüders-type measurement of this observable Â′. There are
recent and important investigations of the state after more
general measurements [6,7], but we restrict ourselves to the
above reduction rules.

In this paper, we propose a simple three-step procedure,
based on selective measurements, to test whether or not one
deals with a Lüders-type measurement of an observable Â. We
illustrate this for a particular measurement result, for example,
a1. After the measurement, the subensemble of systems with
the result a1 is selected and denoted by E1. Then a refinement
of Â, denoted by σ̂ , with discrete nondegenerate eigenvalues,
is measured for each system of E1. Then, on E1, one again
measures Â by means of the unknown apparatus and then
again σ̂ . If for any system of E1 the result of the second
measurement of σ̂ differs from the first, then one does not

have a Lüders-type measurement. If the results are the same
for each system, one chooses another, particular, refinement σ̂ ′
of Â with nondegenerate eigenvalues that does not commute
with σ̂ (i.e., only with Â). Then one proceeds as before, with
σ̂ ′ instead of σ̂ . But now it turns out that one has a Lüders-type
measurement (on E1) if and only if for each system the two
results of the σ̂ ′ measurements are the same.

The plan of the paper is as follows. In Sec. II, we show how
the procedure works in the simple case of an observable with
twofold degeneracy. In Sec. III, the general case is treated. In
Sec. IV, the results are discussed. In the Appendix, we give
examples of Lüders, von Neumann, and partial von Neumann-
type measurements.

II. TESTING THE TWOFOLD DEGENERATE CASE

For greater transparency, the procedure will first be ex-
plained for the example of the Appendix with two spins, Â =
σ1z + σ2z. The eigenvalue a1 = 0 of Â is twofold degenerate.
An as-yet unknown apparatus performs a measurement of Â

on an ensemble E . The apparatus can be assumed to perform
a measurement of an observable Â′, which is a possible trivial
or nontrivial refinement of Â. We say that Â′ is associated to
the apparatus.

We assume that the result a1 = 0 is found on a subensemble
E1 of systems. In the two-dimensional eigenspace of the
eigenvalue a1 of Â, the as-yet unknown observable Â′, which
commutes with Â, either has two nondegenerate eigenvalues
or a single twofold degenerate eigenvalue. In the former case,
the apparatus performs a von Neumann measurement and, in
the latter case, a Lüders measurement.

Now we choose a refinement σ̂ of Â with nondegenerate
eigenvalues. As an example, we take it to be diagonal in the
basis | + +〉, | + −〉, | − +〉, and | − −〉, e.g.,

σ̂ =
∑

ij=±
(2i + j )|ij 〉〈ij |. (1)

In the two-dimensional eigenspace of Â for a1, the eigenvalues
and eigenvectors of σ̂ are s1 = 1 with |s1〉 = | + −〉, and s2 =
−1 with |s2〉 = | − +〉. It may happen that inadvertently and,
at this stage, unknown to us, the chosen σ̂ and the unknown
operator Â′ associated with the apparatus are jointly diagonal
and commuting. This will cause a complication and will later
require an additional step in the procedure. Now we proceed
as follows.
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(i) First a measurement of σ̂ is performed on the subensem-
ble E1. Since σ̂ has only nondegenerate eigenvalues, there is no
difference between a von Neumann and a Lüders measurement
of σ̂ , and the possible results are s1 and s2. If s1 is found, then
the subensemble of corresponding systems in E1 is denoted
by E11, and after this measurement it is in the pure state |s1〉;
similarly for s2.

(ii) Now one lets the apparatus measure Â on the systems
of E1. Of course, the value found is again a1 for each system. If
the apparatus performs a Lüders measurement, then the state
|si〉 of subensemble E1i is definitely not changed, while for a
von Neumann measurement, a change of the state |si〉 may or
may not occur.

(iii) After this, one again measures σ̂ on E1. If one finds
both s1 and s2 for systems in E11, then the state |s1〉 has been
changed and one concludes that the apparatus performs a von
Neumann measurement; similarly for E12.

If, on the other hand, one finds only s1 on E11, then this
means that one of the projection operators in the decomposition
of Â′ leaves |s1〉 invariant, and that |s1〉 is an eigenvector of Â′.
But then the orthogonal vector |s2〉 is also an eigenvector of Â′.
Thus, Â′ and σ̂ are diagonal in the same basis and commute. To
find out whether or not the above unknown projection operator
of Â′ is two dimensional, one now chooses another operator,
for example, σ̂ ′, which does not commute with σ̂ , e.g.,

σ̂ ′ = σ1z + σ2z + (�σ1 + �σ2)2. (2)

The relevant eigenvalues are s ′
1 = 4 and s ′

2 = 0 with eigenvec-
tors |s ′

1,2〉 = |φ+,−〉 from Eq. (A2), and they are not orthogonal
to |s1〉, with 〈s1|s ′

1,2〉 �= 0. Now one proceeds as before for σ̂ .
One first measures σ̂ ′ on the systems of E11, which is in the
state |s1〉, and denotes by E ′

11 the subensemble of systems for
which the value s ′

1 has been found. Then, on E ′
11, which is in

the state |s ′
1〉, one lets the apparatus perform a measurement of

Â. This measurement again yields the value a1, but it may
or may not have changed the state of E ′

11, depending on
whether the apparatus performs a von Neumann or Lüders
measurement. Then again σ̂ ′ is measured on E ′

11. If both
s ′

1 and s ′
2 appear as measurement results, then the state has

been changed and therefore the apparatus performs a von
Neumann measurement. If only the value s ′

1 appears, then
|s ′

1〉 is an eigenstate of Â′, as is |s1〉, from the above argument.
From the nonorthogonality of |s1〉 and |s ′

1〉, it follows that the
corresponding eigenspace of Â′ is two dimensional. Hence, in
this case, the apparatus performs a Lüders measurement.

III. THE GENERAL TEST

In this section, we describe the test procedure for Lüders
versus von Neumann for a general observable Â with discrete,
possibly degenerate, eigenvalues ak . Corresponding orthogo-
nal eigenvectors are denoted by |aα

k 〉, α = 1, . . . , nk so that
the degeneracy is nk . Then,

Âk =
∑

k,α

ak

∣∣aα
k

〉〈
aα

k

∣∣

≡
∑

k

akP̂k, (3)

where P̂k is the projection operator onto the eigenspace of
ak . According to the Lüders rule, the subensemble with the
measurement result ak is described by

P̂k|ψ〉 (4)

in the case of a pure initial state |ψ〉, and by

P̂kρ̂P̂k (5)

in the case of a mixed initial state ρ̂. Both the norm squared
and the trace give the probability of finding the value ak .
The complete ensemble is, directly after the measurement,
described by the normalized density matrix,

∑

k

P̂kρ̂P̂k. (6)

Now consider a refinement Â′ of Â which partially lifts the
degeneracy of Â. Then, Â′ is of the form

A′ =
∑

kβ

a′
kβP̂

β

k , (7)

P̂k =
mk∑

β=1

P̂
β

k , (8)

where the orthogonal projection operators P̂
β

k ,β = 1, . . . ,mk ,
are partial sums of |aα

k 〉〈aα
k | for fixed k. Then Â is a function

of Â′, Â = f (Â′), and f (a′
kβ) = ak . A partial von Neumann

measurement of Â is obtained by a Lüders measurement of Â′,
where the apparatus is so programmed that its output is f (a′

kβ)
instead of a′

kβ . After the measurement, the subensemble for
which the output is f (a′

kβ) = ak is described, instead of by
Eq. (5), by the density matrix

∑

β

P̂
β

k ρ̂ P̂
β

k , (9)

and the complete ensemble by their sum over k. Note that if
mk = 1 for all k, i.e., P̂

β

k ≡ P̂ 1
k = P̂k , then one has a Lüders

measurement, and if all P̂
β

k are one-dimensional projection
operators, then one has a usual (i.e., not a partial) von Neumann
measurement.

We now describe the test procedure, Lüders versus von
Neumann, for the general case and consider an ensemble E of
systems with initial density matrix ρ̂. As before, we denote
by Â′ the observable associated to the unknown apparatus
and consider the subensemble E1 of systems for which an
eigenvalue a1 of Â has been found as the measurement result.
The eigenvalue is n1-fold degenerate. The subensemble E1 is
described by the density matrix ρ̂1, with

ρ̂1 =
m1∑

β=1

P̂
β

1 ρ̂ P̂
β

1 , (10)

where the P̂
β

k are the unknown projection operators on
eigenspaces of Â′.

Let σ̂ be an observable commuting with Â and with discrete
nondegenerate eigenvalues. The previous steps can now be
adapted as follows:

(i) First one measures σ̂ on the systems of E1. The eigen-
values of σ̂ in the a1 eigenspace are denoted by s1, . . . ,sn1 ,
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with eigenstates |si〉. The subensemble of systems for which
the result si is found in the measurement will be denoted by
E1i . It can be described by the pure state |si〉.

(ii) Now one lets the apparatus perform a measurement of
Â on the systems of E1. The result is, of course, again a1, and
after the measurement the density matrix of the subensemble
E1i is proportional to

m1∑

β=1

P̂
β

1 |si〉〈si | P̂ β

1 . (11)

If m1 = 1, i.e., if the apparatus performs a Lüders measurement
in the a1 eigenspace, then this is the pure state |si〉〈si |.
Otherwise it is a mixed state.

(iii) After this, one again measures σ̂ onE1. If for a system of
a subensemble E1i this second measurement of σ̂ gives a result
different from si , then one concludes from step (ii) that the
apparatus has changed the state |si〉, and thus has not performed
a Lüders measurement, but rather a (possibly partial) von
Neumann measurement.

If, however, the result is always si for each E1i , then E1i

remains in its state |si〉 after the measurement of Â by the
apparatus and hence this state is an eigenvector of Â′. (If all si

appear as measurement results, then this implies that Â′ and σ̂

happen to commute on the a1 eigenspace.)
In this case, one chooses an additional observable σ̂ ′, with

nondegenerate eigenvalues, which commutes with Â but not
with σ̂ and has the following special property. In the a1

eigenspace, the eigenvalues and eigenvectors of σ̂ ′ are denoted
by s ′

i and |s ′
i〉. The latter are connected to the eigenvectors |sj 〉

of σ̂ by a unitary transformation, and one chooses σ̂ ′ in such
a way that one has

|s1〉 =
n1∑

i=1

γi |s ′
i〉 with γi �= 0 for all i, (12)

where s1 is assumed to have occurred as a result in the
measurement of σ̂ . Such a σ̂ ′ can always be found, and Eq. (12)
is the key to distinguishing both types of measurements.
On the systems of the subensemble E11 (which in this case
has remained in the state |s1〉), one then performs, with
σ̂ replaced by σ̂ ′, the steps (i)–(iii). Since the transition
probability |〈s1|s ′

j 〉|2 = |γj |2 �= 0, all eigenvalues s ′
i appear as

measurement results in the first measurement of σ̂ ′, and the
associated subensembles E ′

1i are in the state |s ′
i〉. Then, as the

second step, one lets the apparatus perform a measurement of
Â. In the third step, σ̂ ′ is measured again on the systems of
the subensemble E11. If for any system of E11 the result of the
second measurement of σ̂ ′ differs from the first, then the state
has been changed by the apparatus and one has a (possibly
partial) von Neumann measurement.

Otherwise, if for all systems of E11 the result of the second
measurement of σ̂ ′ is the same as in the first, then the states
|s ′

i〉 are not changed and hence are eigenvectors of Â′, as is
|s1〉. Then all vectors in Eq. (12) are eigenvectors of Â′. But
this can only happen if they belong to the same eigenvalue,
since |s1〉 is not orthogonal to any |s ′

i〉. This implies that the
a1 eigenspace of Â is also an eigenspace of Â′, and hence
the apparatus performs a Lüders measurement of a1, if for

each system of the subensemble E11 the results of the first and
second measurement of σ̂ ′ are the same.

IV. DISCUSSION

In this paper, the two forms of the reduction rule due
to von Neumann and Lüders, also known as the projection
postulate, have been discussed. The original formulation of
von Neumann starts with an observable with discrete, possibly
degenerate, eigenvalues, but then goes over to a refinement
with nondegenerate eigenvalues, thus lifting the degeneracy.
The projection operators are then one dimensional and project
onto the individual nondegenerate eigenvectors. Lüders, on
the other hand, does not lift the degeneracy but uses projections
onto eigenspaces of the original observable. The dimension
of these eigenspaces are given by the degeneracy of the
observable under consideration. In this paper, we have also
introduced an additional, sort of intermediary, reduction rule
for which a refinement of the observable is used that lifts the
degeneracy only partially and may retain some degeneracy.
We call the associated measurement a partial von Neumann
measurement.

It has been shown here that all three forms of the reduction
rule may appear quite naturally, depending on the realization
of a particular measurement apparatus. Therefore, all three
forms have their own legitimacy, and one cannot say that one
is better than the other. Their applicability depends on the
circumstances, i.e., the details of the measurement apparatus.

The main investigation of this paper focused on the follow-
ing question: If a measurement apparatus for an observable
is only known to obey one of the forms of the reduction rule
of von Neumann and Lüders, but otherwise the details of the
apparatus are not known, then how can one check whether or
not the reduction has occurred by the Lüders rule? To this end,
we have proposed and studied a three-step procedure based on
measurements of an auxiliary observable. The outcome of the
latter measurements indicates the type of reduction.

It would be interesting if one could carry this investigation
over to the more general types of measurements characterized
in Ref. [6].
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APPENDIX: EXAMPLES FOR DIFFERENT
MEASUREMENT SCHEMES

We consider an ensemble consisting of systems, each
with two independent spins, �σ1 and �σ2, with �σ as the Pauli
matrices. For the z component of the total spin, σtot,z =
σ1z + σ2z, the possible measurement results are 2, 0, 0, and
−2, with corresponding eigenvectors | + +〉, | + −〉, | − +〉,
and | − −〉.

Now, in the case of a Lüders-type measurement, if the
initial state of the ensemble is a pure state |ψ〉, then after
the measurement the respective subensembles are given by the
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pure states P̂i |ψ〉, i = 1,0, − 1. Here,

P̂1 = P̂|++〉, P̂0 = {P̂|+−〉 + P̂|−+〉}, P̂−1 = P̂|−−〉, (A1)

where P̂|φ〉 ≡ |φ〉〈φ|. The total ensemble is then described
after this measurement by a density matrix given by∑

i P̂i |ψ〉〈ψ |P̂i ; similarly for an initial density matrix instead
of a pure state.

Following von Neumann, instead of σtot,z one can measure
a refinement of σtot,z with nondegenerate eigenvalues, e.g., the
observable Â′ ≡ σtot,z + (�σtot)2, which lifts the degeneracy of
σtot,z. From this, one obtains an indirect measurement of σtot,z

as follows. The eigenvectors of Â′ are

| + +〉, |φ+〉 ≡ {| + −〉 + | − +〉}/
√

2,
(A2)

| − −〉, |φ−〉 ≡ {| + −〉 − | − +〉}/
√

2,

with respective eigenvalues a′ = 6, 4, 2, and 0. If one
defines the function f (x) = − 8

3x + x2 − 1
12x3, then f (6) = 2,

f (4) = 0, f (2) = −2, f (0) = 0, and f (Â′) = σtot,z. This is
either checked directly by insertion of Â′ or by applying
f (Â′) to the eigenvectors of Â′. Therefore, if the result of
an Â′ measurement on a system is a′, then one knows that
σtot,z has the values f (a′). In contrast to the previous Lüders
measurement, now the subensemble with the result 0 for σtot,z

is in a mixed state, given by the density matrix

P̂|φ+〉|ψ〉〈ψ |P̂|φ+〉 + P̂|φ−〉|ψ〉〈ψ |P̂|φ−〉. (A3)

The complete ensemble has now the density matrix

P̂|++〉|ψ〉〈ψ |P̂|++〉 + P̂|φ+〉|ψ〉〈ψ |P̂|φ+〉
(A4)

+P̂|φ−〉|ψ〉〈ψ |P̂|φ−〉 + P̂|−−〉|ψ〉〈ψ |P̂|−−〉.

For consecutive measurements, von Neumann-type measure-
ments appear quite naturally. If the two spins are spatially
sufficiently separated, then one can measure them individually,
e.g., first a Lüders measurement of σ1z and then immediately
afterwards of σ2z [5]. This also provides a measurement
of σtot,z. In this case, the possible individual measurement
results are + + , + −, − +, − −, and after the measurement
the corresponding subensembles are obviously in the states
| + +〉, . . ., | − −〉. If the initial state of the ensemble is a pure
state |ψ〉, then after the measurement its state is given by the
density matrix

∑

i,j=±
P̂|ij〉|ψ〉〈ψ |P̂|ij〉, (A5)

and similarly for an initial density matrix. It is apparent
that this consecutive measurement amounts to a particular
von Neumann measurement, but with a resulting density
matrix which differs from the previous one in Eq. (A4). The
measurement is equivalent to a separate measurement of the
projection operators P̂|ij〉, or, equivalently, of an observable
of the form Â′ = ∑

a′
ij P̂|ij〉 with pairwise different a′

ij ’s. This

observable Â′ can be taken to be associated with the apparatus
measuring the individual spins separately.

We now consider an ensemble consisting of systems each
with three independent spins, �σ1, �σ2, and �σ3, and the observable
Â = σ1z + σ2z. One can now consecutively measure σ1z and
σ2z, as before. Then, with three independent spins, this
gives a partial von Neumann measurement of σ1z + σ2z. If
one measured all three spins consecutively, then this would
resolve the degeneracy and lead to an ordinary von Neumann
measurement.
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[4] The Lüders rule can be derived under the assumption of re-
peatability and minimal disturbance caused by the measurement;
see G. Ludwig, Z. Phys. 135, 483 (1953); Die Grundlagen der
Quantenmechanik (Springer, Berlin, 1954). In this context, it is
noteworthy that Dirac, in the first edition of his famous book,

defines observations causing minimal disturbance which seem
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