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Recent experiments have demonstrated ququart state-independent quantum contextuality and qutrit state-
dependent quantum contextuality. So far, the most basic form of quantum contextuality pointed out by Kochen
and Specker, and Bell, has eluded experimental confirmation. Here we present an experimentally feasible test to
observe qutrit state-independent quantum contextuality using single photons in a three-path setup. In addition, we
show that if the same measurements are performed on two entangled qutrits, rather than sequentially on the same
qutrit, then the noncontextual inequality becomes a Bell inequality. We show that this connection also applies to
other recently introduced noncontextual inequalities.
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I. INTRODUCTION

Measurement outcomes of quantum d-level (with d � 3)
systems prepared in an arbitrary state are not independent
of compatible measurements performed on the same system
[1–3]. This is called quantum contextuality and can be experi-
mentally observed through the violation of inequalities among
probabilities of outcomes of compatible measurements satis-
fied by any noncontextual model (noncontextual inequalities).
Recent experiments have shown state-independent quantum
contextuality for quantum four-level systems [4–6] following
Ref. [7]. The simplest physical system in which quantum
contextuality occurs is a quantum three-level system (qutrit).
Quantum contextuality using a specific qutrit state has been
recently observed [8–10] following Ref. [11]. However, the
most basic form of state-independent quantum contextuality
pointed out by Kochen and Specker (KS) [1,3] and Bell [2]
has so far eluded experimental confirmation. The reason is
that for all state-independent qutrit violations to date [12–14],
the violation is small and will be hidden by experimental
imperfections, since its observation requires testing a large
number of contexts.

In the first part of this paper we describe a specific
experiment to observe qutrit state-independent contextuality
with current technology. A frequently raised criticism of
experiments with sequential measurements focuses on the
assumption of compatibility of the measurements. It adopts
two forms: (i) that there is no operational definition of compat-
ibility, and (ii) that there is no experimental way to guarantee
that the sequential measurements are perfectly compatible—
the so-called compatibility loophole [15]. However, there is an
operational definition of compatibility [16]; the problem lies
in experimentally testing it, since it is difficult to implement
the sharp repeatable quantum measurements assumed in the
textbooks. One way to avoid the compatibility loophole is by
performing local measurements on spatially separated systems
instead of sequential measurements on a single system, and
convert noncontextual inequalities into Bell inequalities. This
raises the question of the connection between contextuality
and nonlocality. It is known that it is possible to convert some
contextuality proofs based on KS sets into Bell inequalities
[17–20]. However, so far only one of them has a violation

large enough to allow experimental verification with entangled
ququarts [20–22].

In the second part of this paper we derive a Bell inequality
from a state-independent noncontextual inequality that does
not contain a KS set. We derive an experimentally testable two-
qutrit Bell inequality from state-independent quantum contex-
tuality and obtain a Bell inequality from a state-independent
quantum contextuality proof that does not contain a KS set.
In addition, we show that the same method can be used to
obtain Bell inequalities starting from any of the noncontextual
inequalities recently introduced in Refs. [13,14,23].

II. EXPERIMENTALLY TESTABLE STATE-INDEPENDENT
NONCONTEXTUAL INEQUALITY

Consider qutrit observables of the type

Ai = 1 − 2|vi〉〈vi |, (1)

where 1 is the 3 × 3 identity matrix and |vi〉 are unit rays. Each
Ai has the spectrum {−1,1,1}. Following Yu and Oh [13], we
choose
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These 13 rays are a subset of the 33-vector set discovered
by Peres [24] (and in fact span one of the three intersecting
cubes appearing in a print by Escher [25]).

The following inequality follows from the assumption that
the outcomes of the measurements of Ai are noncontextual
values 1 or −1,

κ ≡ 1

2
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where �ij is 1 if 〈vi |vj 〉 = 0, and 0 otherwise, and 〈AiAj 〉
denotes the mean value of the product of the measurement
outcomes. The upper bound has been verified by checking all
possible assignments of values 1 or −1.

Inequality (3) is a state-independent noncontextual inequal-
ity, since the prediction of quantum mechanics for any qutrit
state (including the maximally mixed state ρ = 1

31) is

κQM = 29
3 = 9 + 2

3 . (4)

The form of the inequality is similar to that proposed by
Yu and Oh [13], but has been improved for experimental
implementation. First, the relative weights of the terms in (3)
improve the quantum violation. Second, the number of terms
of the form 〈AiAj 〉 has been reduced where possible for ease
of measurement. Finally, the order of sequential measurements
(where Ai is measured first in the expression AiAj ) minimizes
the level of experimental complexity required for the qutrit
system described below.

A state-independent noncontextual inequality is more
robust against noise in the state preparation than a state-
dependent one. This is because the violation is the same for any
state, including the maximally mixed one. A good estimation
of how feasible the inequality is for an actual experiment is the
robustness of the violation against experimental imperfections.
Assuming that all terms are similarly sensitive to errors, a
reasonable measure of robustness is the difference between
the quantum violation and the noncontextual bound divided
by the number of terms scaled with their respective weights.
With this definition, we calculate the robustness to noise of
inequality (3) as

2
3

1
2 (4 + 12) + (9 + 12)

= 2

87
≈ 0.023. (5)

The corresponding calculation for the inequality in the form
first proposed by Yu and Oh [13] yields 1

75 ≈ 0.013. The
greater robustness to noise of inequality (3) shows that it
is more suitable for an experimental test than any previous
inequality [12,14].

III. EXPERIMENTAL REALIZATION OF THE QUTRIT
STATE-INDEPENDENT CONTEXTUALITY TEST

Testing inequality (3) is particulary simple on a qutrit
defined by a single photon in a three-path (a, b, and c) setup.
The basis vectors |0〉,|1〉,|2〉 correspond to finding the photon
in path a, b, or c, respectively. Any state can be prepared

FIG. 1. (Color online) (a) Setup for preparing arbitrary qutrit
states (P1). (b) Setup for preparing state (6) (P2).

with the setup in Fig. 1(a) by adjusting the transmittance and
reflectance of the beam splitters (BSs) and tuning the wedges,
which are related to the amplitude weights and the phase
relations, respectively, of the state. The measurements Ai can
be implemented by mapping |vi〉, the state corresponding to
eigenvalue −1, to path a. This procedure will then map a
state corresponding to eigenvalue +1 to the remaining two
paths b and c. When the transformation is implemented it
is easy to separate a from b and c for further processing.
There are three types of measurement: (i) when i = 1,2,3,4,
(ii) when i = 5, . . . ,10, and (iii) when i = 11,12,13. The
difference between two measurements of the same type is
simply a path relabeling or a phase added, where the latter
can be adjusted by a wedge. In Fig. 2 we show an example
of each type. To measure Ai for i = 5, . . . ,10 a 50 : 50 BS
is used to transform |vi〉 to the state |0〉 that corresponds to

FIG. 2. (Color online) Examples of the three classes of measure-
ments needed for the experiment: A3, A10, and A11, defined in (1)
and (2).
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(a)

(b)

FIG. 3. (Color online) (a) Cascade setup for sequentially measur-
ing Ai and Aj to test inequality (3). (b) Two-party set up for measuring
Ai and Bj ≡ Aj on two different systems to test inequality (8).

path a. The same principle holds for i = 1, . . . ,4, where the
transformation to the state |0〉 is realized in two steps. First,
a 50 : 50 BS is used to transform the state to a superposition
between |0〉 and |1〉. This is followed by a 33 : 66 BS, which
finishes the mapping to |0〉. The last type of measurement, Ai

for i = 11,12,13, is simple since it is already in the encoding
basis, thus no transformation is needed except for rerouting the
path to obtain |vi〉 in path a. Before exiting each measurement
box, a remapping is performed to keep the same encoding
convention between the sequential measurements.

Measuring AiAj requires two sequential measurements
on the same photon, first Ai and then Aj . For that, we
use a cascade setup illustrated in Fig. 3(a), in which the
two outcomes of Ai are each directed into identical but
separated devices for measuring Aj . Each of the four possible
combinations of outcomes corresponds to a detection in one
of the four detectors. This approach satisfies the requirements
for a noncontextuality test: (i) Ai is measured using a similarly
constructed device in every experiment (context), and (ii) the
setup permits all possible combinations of results. For instance,
while quantum mechanics predicts that in an ideal experiment
the outcomes of two compatible Ai and Aj can never both
equal 1, the setup allows such an event.

Like any test of Bell and noncontextual inequalities, the
conclusions of the experiment may be affected by the detection
loophole [26], unless the overall detection efficiency, defined
as the ratio between the number of photons detected divided
by the number of photons emitted by the source, is above a
certain threshold, which depends on the inequality. This is
in fact a difficult loophole to avoid with photons. The aim
of this paper is only to show that qutrit state-independent
contextuality can be observed with photons under the same
assumptions made in most experiments on Bell inequalities,
including the fair-sampling assumption. The proposal is not
intended to be free of the detection loophole. A loophole-free
version of the experiment will require additional features such
as a preparation setup in which one can count the number of
photons emitted and a good enough photodetection efficiency.

IV. EXPERIMENTALLY TESTABLE TWO-QUTRIT
BELL INEQUALITY

An interesting property of inequality (3) is that it is
state independent. Thus it is violated by any state, including

any mixed state obtained by tracing out one qutrit from a
two-qutrit entangled system. A second interesting property is
that the quantum mechanical predictions for 〈AiAj 〉 when the
compatible observables Ai and Aj are measured sequentially
on a single qutrit are the same as the predictions when Ai

and Aj are measured on two separated qutrits prepared in the
maximally entangled state

|ψ〉 = 1√
3

(|0〉1|0〉2 + |1〉1|1〉2 + |2〉1|2〉2). (6)

These two properties allow us to transform the noncontextual
inequality (3) into a Bell inequality between two observers,
Alice and Bob. The method has two steps. In the first step, the
13 observables are distributed between Alice and Bob: Alice
measures Ai with i = 1, . . . ,4,11,12,13 and Bob measures
Bj ≡ Aj with j = 5, . . . ,10. So inequality (3) becomes the
noncontextual inequality
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which still contains terms involving two sequential measure-
ments on Alice’s qutrit (e.g., 〈A11A12〉) and on Bob’s qutrit
(e.g., 〈B5B6〉). In the second step, we exploit that, for state
(6), 〈AiBi〉 = 1 for i = 1, . . . ,13. By replacing both 〈AiAj 〉
and 〈BiBj 〉 with 1

2 (〈AiBj 〉 + 〈AjBi〉 − 〈AiBi〉 − 〈AjBj 〉), we
obtain the following Bell inequality:
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The upper bound follows from the locality assumption (i.e.,
the outcomes of the local measurements of Ai and Bj are
independent of the measurement on the remote qutrit). Notice
that to test inequality (8), Alice has to measure Ai with i =
1, . . . ,13, and Bob has to measure Bj with j = 4, . . . ,13. The
prediction of quantum mechanics for state (6) is

βQM = 47
3 = 15 + 2

3 . (9)

The Bell inequality (8) is essentially different than any other
two-qutrit Bell inequality previously tested [27]: It connects
the contextuality of a single qutrit to the nonlocality of an en-
tangled pair. The measurements are the same in both tests (the
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only difference is the way they are performed—sequentially on
the same system or on different systems) and the mean values
are the same too [as 〈AjBj 〉 = 〈AjAj 〉 for the state (6)]. The
same two-step method for constructing the Bell inequality (8)
starting from the noncontextual inequality (3) can be applied
to construct a Bell inequality starting from any of the recently
introduced noncontextual inequalities in Refs. [13,14,23]. The
connection between the KS theorem and nonlocality shown in
this paper differs from the one in Ref. [28] by not requiring
the assumption of ideally perfect orthogonalities and state
preparations, and thus, is experimentally testable. For example,
nonlocality can be observed even if, instead of state |ψ〉
given by (6), one prepares a noisy state V |ψ〉〈ψ | + (1 − V ) 1

91
with V > 0.95, which is in the range of a carefully designed
experiment.

V. EXPERIMENTAL REALIZATION OF THE BELL TEST

A setup for preparing the desired two-photon state (6) is
shown in Fig. 1(b). A laser pumps three successive nonlinear
crystals, each of which can spontaneously create a pair of
photons with equal probability. A photon pair can be created
in the first, second, or third crystal. Each term |k〉1|k〉2 in state
(6) is directly related to which crystal the photon pair was
created in. The coherent superposition of state (6) is created
by keeping stable the relative phases between the arms. The
left- and right-hand sides of the preparation box are distributed
to Alice and Bob respectively as shown in Fig. 3(b). Using

the distributed state and the measurement setups described in
Fig. 2, Alice and Bob can perform coincidence measurements
to evaluate inequality (8).

VI. CONCLUSION

We have introduced a state-independent noncontextual
inequality for qutrits with a quantum violation large enough
to be observed in a real experiment. This will allow an
experimental observation of the most basic and fundamental
form of quantum contextuality. In addition, we have shown
that the same measurements used for the state-independent
contextuality test on a single qutrit allow us to test nonlocality
on a pair of entangled qutrits, and that this also applies to
any of a family of recently introduced noncontextual inequal-
ities. This establishes a connection between both types of
experiments and provides examples of experimentally testable
Bell inequalities constructed from a proof of qutrit state-
independent contextuality, and examples of Bell inequalities
constructed from proofs of state-independent contextuality
that do not require KS sets.
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