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Observation of phonon hopping in radial vibrational modes of trapped ions
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We observed phonon hopping by using the radial vibrational motion of trapped ions and we investigated the
properties of radial mode phonons, which can be used for quantum simulation of the Hubbard model. This study
represents an essential step toward realizing a physical implementation of the Bose-Hubbard model with trapped
ions.
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Quantum simulation of many-body systems opens the way
to investigate intriguing phenomena in solid-state physics
such as high-temperature superconductivity. Trapped ions
are promising systems for quantum simulations and several
experiments have been demonstrated, including the simulation
of Ising spin models [1,2]. The radial vibrational modes of ions
have been used to generate an effective Ising interaction [2,3]
and tunable spin-spin couplings have been measured [4].

Radial motion of ions can also be applied to the quantum
simulation of the Bose-Hubbard model (BHM), in which
localized bosons hop between sites [5]. The radial phonons of
trapped ions are suitable for simulating such a system because
the radial trapping potential can be made much larger than the
Coulomb interaction so that radial phonons can be considered
to be locally trapped phonons in each ion [6,7]. Thus, when
trapped ions are used to simulate the BHM, radial phonons
act as bosons at each site and the Coulomb interaction induces
phonon hopping.

Trapped ions have the advantages of good controllability
of the internal and external degrees of freedom and the ability
to address single ions in the ion chain. When simulating the
BHM with trapped ions, these advantages allow us to realize
unique physical situations in the BHM.

In this Rapid Communication, we report the observation of
phonon hopping dynamics in radial vibrational modes of two
trapped ions. This study is an essential step toward realizing
the physical implementation of the BHM with trapped ions.

Similar experiments have been performed recently in which
phonon energy is exchanged between remotely trapped ions in
a double-well potential [8,9]. Such an energy exchange can be
used to transmit quantum information between remote ions.

Trapped ions in a linear Paul trap form a linear chain in one
direction when the radial confinement is stronger than the axial
confinement so that the motion can be decomposed into three-
dimensional vibrations in the axial (z) and radial (x and y)
directions. The Hamiltonian that governs motion in one of the
radial directions (which we take to be the y direction in this
study) can be written as
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Here, we consider the case of two ions for simplicity. yi

and zi are the spatial coordinates and Pi is the momentum
of the ith ion in the ion chain. m is the ion mass and ωy is

the trap frequency in the y direction. The first two terms in the
Hamiltonian represent the kinetic energy and the trap potential
and the last term is the Coulomb interaction.

Equation (1) can be rewritten in terms of local phonon
operators as [6,7]
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where
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ai and a
†
i are, respectively, the annihilation and creation

operators of the y mode phonons of the ith ion, d0 = |z1 − z2|
is the interion distance in the axial direction, and κ represents
the phonon hopping rate. The first term is the trap potential
in the y direction; it contains a harmonic potential correction
due to the Coulomb interaction. The second term represents
hopping of phonons between ions 1 and 2.

To derive Eq. (2), the phonon number nonconserving terms
a2

i , a
†2
i , a1a2, and a

†
1a

†
2, are neglected in the rotating wave

approximation. This approximation is valid for radial-mode
phonons because the trap potential is much larger than the
Coulomb potential [6].

For two ions, the hopping interaction couples |n〉1|n + 1〉2

and |n + 1〉1|n〉2, which causes phonon energy to be exchanged
between the ions at the phonon hopping rate κ . Here, |n〉i
represents the Fock state of the ith ion, where n is the phonon
quantum number.

Phonon hopping can also be explained in terms of
the normal modes of the radial vibrational motion. The
Hamiltonian given by Eq. (2) can be rewritten in terms of
two eigenmodes whose frequencies are separated by h̄κ . The
creation operators of these modes are a

†
c = (a†

1 + a
†
2)/

√
2 and

a
†
c = (a†

1 − a
†
2)/

√
2, which correspond to the center-of-mass

(c.m.) mode and the rocking mode, respectively.
For one-phonon excitation, the two eigenstates are
(|1〉|0〉 ± |0〉|1〉)/√2. When one phonon is excited in
the local mode, the nonstationary state of |1〉|0〉 evolves into
the state|ψ(t)〉 = e−iωy t [cos(κt/2)|1〉|0〉 − i sin(κt/2)|0〉|1〉],
which shows that the phonon hops at a rate of κ .

To observe phonon hopping, we use the radial mode of two
40Ca+ ions in a linear trap where the radio-frequency and dc
electric fields give radial and axial confinement, respectively.
The radio-frequency signal is fed to the trap electrode through
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a helical resonator that has a resonance frequency of 25 MHz.
In our setup, the distance between ions and the electrode is
600 μm. When only a radio-frequency field is applied in
the radial directions, the secular frequencies for the radial
directions are degenerate due to the rotational symmetry. To
lift this degeneracy and address a specific vibrational mode,
we apply a dc voltage to a diagonal pair of trap electrodes
that are segmented into three parts. The trap frequency in
each direction is (ωx,ωy,ωz)/2π = (3.36,3.17,0.82) MHz and
the corresponding interion distance in the axial direction is
6.4 μm. A detailed description of the trap apparatus and the
laser configuration is described in our previous study [10].

Two-step laser cooling employing Doppler cooling using
the S1/2-P1/2 transition and sideband cooling using the S1/2-
D5/2 quadrupole transition enables ground-state cooling of
all the vibrational modes. The mean phonon number of
the c.m. modes in each direction after sideband cooling is
(〈nx〉,〈ny〉,〈nz〉) = (0.08,0.08,0.11) under typical experimen-
tal conditions. In the case of the rocking mode, the mean
phonon number of the x and y modes are measured to be
below 0.09 after sideband cooling. The inverse of the ion
heating rates of x,y, and z modes (c.m.) are also measured
to be [83(7),97(20),488(120)] ms/quanta using the method
described in Ref. [11].

The laser beam for the quadrupole transition (729 nm) is
oriented 60◦, 60◦, and 45◦ relative to the x, y, and z directions,
respectively, and the projection of the wave vector in each
direction is (kx,ky,kz) = ( 1

2 , 1
2 , 1√

2
)|k|. k is the wave vector of

the 729-nm laser. In our setup, ions are equally illuminated by
the 729-nm laser radiation and the error of the intensity at the
ions is less than 5%.

Phonon hopping is observed using the following steps (the
experimental sequence is shown in Fig. 1). (1) All the six
vibrational modes of two ions comprising the c.m. and rocking
modes of the radial and axial vibrations are cooled to near the
ground state by sideband cooling at d0 = 6.4 μm (ωz = 2π ×
820 kHz). (2) The interion distance is dynamically increased by
ramping down the dc voltage for axial trapping. The ramping
profile is exponential. The ramping time, which we define here
as the time when the voltage is decreased to 1/e from the initial
value, is 1.2 ms and the axial trap frequency is adiabatically
decreased for 5 ms. (3) A π pulse that is resonant with the
blue sideband transition is applied to one of the ions to prepare
the initial phonon state of |0〉1|1〉2. Immediately after this, a
854-nm laser pulse that is nearly resonant with the D5/2-P3/2

transition is applied to pump the internal state to S1/2. (4) A

SBC

Axial potential
 ramp down

BSB
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FIG. 1. Experimental time sequence for observing phonon
hopping (SBC: sideband cooling; BSB: blue sideband; ICCD:
intensified charge coupled device).

delay time with no laser interaction is inserted to observe
phonon hopping; the Coulomb interaction induces coupling
between |0〉1|1〉2 and |1〉1|0〉2 with a coupling strength κ . (5) A
laser pulse for exciting the sideband transition is applied to
the ions to estimate the mean phonon number of each ion
by comparing the excitation probabilities of the red and blue
sideband transitions [12]. (6) The ion separation is restored
to the initial separation by increasing the dc voltage for axial
trapping. The ions are irradiated by light from the 397-nm laser
and their fluorescence is detected by an intensified charge-
coupled-device camera to determine the internal states of the
individual ions.

In step (3), a tightly focused laser beam (full width at
half maximum of 22 μm), which is detuned by 50 GHz
from the D5/2-P3/2 transition, is applied to generate a spatial
inhomogeneity of the ac Stark shift to D5/2. It enables us to
manipulate the state of the individual ions and to create a local
phonon in the desired ion. The same method is described in
our previous study [13]. Moreover, the pulse width for local
phonon creation is shorter than the phonon hopping time 1/κ ,
so that phonon hopping to the other ion can be prevented during
phonon creation.

For this reason, the hopping rate must be smaller than
ηy� to prepare an appropriate initial state. Here, ηy is the
Lamb-Dicke parameter and � is the Rabi frequency of the
quadrupole transition. However, ηy� is limited to ∼12 kHz due
to technical limitations on the laser power. It is thus necessary
to adjust the ion spacing so as to satisfy κ < ηy�; this requires
that d0 be greater than 13 μm. The corresponding axial trap
frequency ωz is below 2π × 280 kHz and the Lamb-Dicke
parameter ηz is above 0.13. However, under these conditions,
sideband cooling of the axial motion is not efficient because
the axial motion is not well within the Lamb-Dicke region
characterized by ηz

√
nz � 1 after Doppler cooling. Therefore,

we selected the above-mentioned scheme that involves a
dynamical change in the axial potential.

Figure 2 shows a result showing phonon hopping between
two ions. The horizontal and vertical axes represent the
hopping time and the mean phonon number of each ion,
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FIG. 2. (Color online) Observed phonon hopping dynamics. The

horizontal and vertical axes represent the hopping time and the mean
phonon number of each ion, respectively.

031401-2



RAPID COMMUNICATIONS

OBSERVATION OF PHONON HOPPING IN RADIAL . . . PHYSICAL REVIEW A 85, 031401(R) (2012)

respectively. The hopping time is varied by changing the delay
time in step (4). The trap frequency in the radial direction
is ωy = 2π × 3.23 MHz and the ion separation is 18.9 μm.
The ion separation is estimated using the relationship d0 =
( e2

4πε0mω2
z
)1/3 2.018

20.559 [14,15], where we used the experimentally
measured value of ωz = 2π × 161 kHz.

Figure 2 reveals sinusoidal oscillations in the mean phonon
number of each ion. The oscillations of ions 1 and 2 are out
of phase with each other, indicating that energy is exchanged
between the two ions by coherent phonon hopping. By fitting
the data with a sinusoidal function the hopping rate is estimated
to be κ = 2π × 4.0(2) kHz. The hopping rate is calculated to
be κ = 2π × 4.02 kHz from Eq. (3), which agrees with the
experimentally measured value.

In the ideal case, the mean phonon number will oscillate
between 0 and 1; in contrast, the result in Fig. 2 exhibits an
offset in the residual phonon number. We speculate that this
is mainly due to ion heating by the rf noise from the trap
electrodes during the dynamical changing the ion distance
in step (2), which leads to the displacement of the ion’s
position from the null point of the rf potential. The measured
mean phonon number immediately after step (2) is typically
about 0.23.

The pulse width for preparing the initial phonon state is
40 μs, which is shorter than the hopping time 1/κ . The
expected value for the phonon number of ion 1 at the end of the
pulse is calculated to be 9.5 × 10−2. This is obtained by solving
the Schrödinger equation for the following Hamiltonian,
which includes the ion-laser interaction and phonon hopping,
H = h̄η�

2 (σ+
2 a

†
2 + σ−

2 a2) + h̄κ
2 (a†

1a2 + a1a
†
2). Here, σ+

2 and
σ−

2 respectively represent the raising and lowering operators
for the quadrupole transition of ion 2. η� = 2π × 12.5 kHz
and κ = 2π × 4.0 kHz are used in the calculation. Such
unwanted phonon excitation can be suppressed by reducing
the ratio of κ to η�.
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FIG. 3. (Color online) Hopping rate as a function of the interion
distance. The solid circles represent data obtained by measuring the
phonon hopping dynamics. The open circle represents the result of a
measurement of the mode splitting (see Fig. 4).
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FIG. 4. (Color online) Measured spectrum of the center-of-mass
and rocking modes (blue sideband transition) when ωy/2π =
3.23 MHz and the interion distance is 17.8 μm. The splitting of
the two modes was estimated to be 4.4(2) kHz by fitting the data.

To investigate the dependence of the hopping rate on
the interion distance in Eq. (3), we measured the hopping
dynamics for various ion separations while keeping the radial
trap frequency (ωy = 2π × 3.23 MHz). Figure 3 shows a plot
of the obtained hopping rates as a function of the interion
distance. The dashed line represents a curve calculated using
Eq. (3); it fits the experimental data well.

The energy splitting of the normal modes (c.m. and rocking)
of radial vibrations is identical to the hopping rate. Figure 4
shows a measured two-mode spectrum of the blue sideband
transition for an ion separation of 17.8 μm and for ωy = 2π ×
3.23 MHz. This is taken with a sequence similar to the case
of the phonon hopping, with steps (1), (2), (5), and (6), where
the frequency of the pulse in step (5) is varied. The excitation
pulse width is 300 μm. The solid line is the fitting curve, which
is a sum of two Gaussian functions (dashed line). The mode
splitting estimated from the fitting is 4.4(2) kHz; it is plotted
in Fig. 3. We conjecture that the deviation from the calculation
results is due to the slow fluctuation of the rf drive during the
measurement sequence, which takes more than 5 min, and that
leads to slow and small drift of hundreds of hertz of the radial
trap frequency.

The limiting factor of the fidelity in these experiments is ion
heating during the dynamic change of the axial trap potential.
A possible way to reduce this heating is to alter the laser beam
configuration such that the wave vector of the 729-nm laser
is orthogonal to the axial trap direction; this would allow the
dynamical change in the potential to be omitted, preventing
unwanted phonon creation.

It is necessary to generate the phonon-phonon interaction to
realize quantum simulation of the BHM. One possible scheme
for this is to introduce an optical standing wave in the radial
direction that is far from resonance to induce anharmonicity in
the radial trap potential [6,7]. For 40Ca+ ions, it is possible to
use a laser that is off resonance from the S1/2-P1/2 or D5/2-P3/2

dipole transition. It is expected to be possible to generate a
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phonon-phonon interaction of 5 kHz using a 150-mW laser
beam with a beam radius of 40 μm that is detuned by
100 GHz from the S1/2-P1/2 transition. Moreover, it is possible
to mimic the phonon-phonon interaction by using the laser-ion
interaction, as proposed in Ref. [16], where trapped ions
were considered theoretically for simulating physical systems
consisting of a coupled-cavity array or interacting polaritons
described by the Jaynes-Cummings-Hubbard model.

In conclusion, we have observed phonon hopping
by using the radial vibrational modes of trapped ions

and we have investigated the character of radial-mode
phonons. The next challenges toward realizing the quan-
tum simulation of many-body systems are to generate the
phonon-phonon interaction and to increase the number of
ions.
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