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Spin-bath narrowing with adaptive parameter estimation
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We present a measurement scheme capable of achieving the quantum limit of parameter estimation using an
adaptive strategy that minimizes the parameter’s variance at each step. The adaptive rule we propose makes the
scheme robust against errors, in particular imperfect readouts, a critical requirement to extend adaptive schemes
from quantum optics to solid-state sensors. Thanks to recent advances in single-shot readout capabilities for
electronic spins in the solid state (such as nitrogen vacancy centers in diamond), this scheme can also be applied
to estimate the polarization of a spin bath coupled to the sensor spin. In turns, the measurement process decreases
the entropy of the spin bath resulting in longer coherence times of the sensor spin.
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A common strategy for estimating an unknown parameter
associated with a field is to prepare a probe and let it interact
with the parameter-dependent field. From the probe dynamics,
it is possible to derive an estimator of the parameter. The
process is repeated many times to reduce the estimation
uncertainty. A more efficient procedure takes advantage of the
partial knowledge acquired in each successive measurement
to change the probe-field interaction in order to optimize the
uncertainty reduction at each step. This adaptive Bayesian
estimation strategy has been proposed to improve the sen-
sitivity of parameter estimation in quantum metrology [1].
It has been shown that adaptive estimation can achieve the
Heisenberg or quantum metrology limit (QML) without the
need for entangled states [2–5]. Here we introduce an adaptive
scheme that attains the QML, as manifested by various
statistical metrics of the estimated parameters. In addition, the
proposed scheme can be made robust against errors so that the
QML is achieved, e.g., even for imperfect readouts, a critical
requirement to extend adaptive schemes from quantum optics
to solid-state sensors. We further present an application of the
adaptive scheme to the measurement of a quantum parameter:
Given single-shot readout capabilities for electronic spins in
the solid-state [6–8], the scheme could be used to create a
narrowed state of a surrounding spin bath, thus increasing the
sensor coherence. In this context, the QML scaling translates
into a shorter time for the narrowing process, an important
feature when dealing with a finite bath relaxation time.

Consider a two-level system {|0〉,|1〉} interacting with an
external field characterized by the parameter b, H = bσz. A
typical situation is a sensor spin- 1

2 interacting with a magnetic
field. The parameter can be estimated by a Ramsey experiment
(Fig. 1), where the probability of the system to be in the |m〉
state (m = {0,1}) at the end of the experiment is given by

Pϑ (m|b) = 1
2 [1 − (−1)me−τ/T2 cos(bτ + ϑ)], (1)

where ϑ is the phase difference between the excitation and
readout pulses, and we have introduced a decay with a
constant T2 during the interrogation time τ . If we have prior
knowledge of the parameter—described by an a priori prob-
ability distribution (p.d.f.) P (0)(b)—the measurement updates
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our knowledge, as reflected by the a posteriori probability:
P (b|m) ∝ P (0)(b)Pϑ (m|b).

More generally, after each measurement we can update
the probability for the phase ϕ = bτ , so that after n such
measurements with outcomes �mn, we have a p.d.f.

P (n)(ϕ| �mn) ∝ P (n−1)(ϕ| �mn−1)Pϑ (mn|ϕ). (2)

Thanks to the periodicity of the probability P (ϕ), we can
expand it in Fourier series [4], P (n)(ϕ) = ∑

k p
(n)
k eikϕ , so that

we can rewrite Eq. (2) as

p
(n)
k ∝ 1

2p
(n−1)
k + 1

4e−τ/T2
[
ei(mnπ+ϑ)p

(n−1)
k−1

+ e−i(mnπ+ϑ)p
(n−1)
k+1

]
.

The proportionality factor is set by imposing that p
(n)
0 = 1

2π
as

required for a normalized p.d.f. We can further generalize this
expression when the system is allowed to evolve for an integer
multiple tn of the time τ , thus obtaining a general update rule
for the p.d.f.:

p
(n)
k ∝ 1

2p
(n−1)
k + 1

4e−tnτ/T2
[
ei(mnπ+ϑn)p

(n−1)
k−tn

+ e−i(mnπ+ϑn)p
(n−1)
k+tn

]
. (3)

An adaptive strategy will then seek to choose at each step the
optimal tn and ϑn that lead to the most efficient series of N

measurements for a desired final uncertainty.
In order to design an adaptive strategy, we need to define

a metric for the uncertainty (and accuracy) of the estimate.
The Fourier transform of the p.d.f. can be used to calculate
the moments of the distribution as well as other metrics
and estimator. From the formula for the moments, 〈ϕα〉 =∫ π

−π
P (ϕ)ϕαdϕ = ∑

k pk

∫ π

−π
eikϕϕαdϕ, we can calculate the

variance,

〈ϕ2〉 − 〈ϕ〉2 = 2π3

3
p0 + 4π

∑
k �=0

(−1)k

k2
pk − 〈ϕ〉2,

where the average is 〈ϕ〉 = −2iπ
∑

k �=0
(−1)k

k
pk.

The variance is often not the best estimate of the uncertainty
for a periodic variable [3]. A better metric is the Holevo
variance [9],

VH = (2π |〈eiϕ〉|)−2 − 1 = (2π |p−1|)−2 − 1, (4)
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where we used the fact that 〈eiϕ〉 = p−1. We further notice
that while the absolute value of p−1 gives the phase estimate
uncertainty, its argument provides an unbiased estimate of ϕ.
More generally, estimates are given by ϕest = arg(〈eitϕ〉)/t =
arg(p−t )/t , giving new meaning to the Fourier coefficients of
the p.d.f.

The goal of the estimation procedure is then to make |p−1|
as large as possible. Assume for simplicity ϕ = bτ = 0 and ne-
glect any relaxation. Then the probability of the outcome ms =
0 is Pϑ (0|0) = 1

2 (1 − cos ϑ). We assume that we do not have
any a priori knowledge on the phase, so that P (0)(ϕ) = 1/2π .
We fix the number of measurements N , each having an interro-
gation time Tn = tnτ = 2N−nτ [4,10,11]. A potential strategy
would be to maximize |p(n)

−1| at each step n. However, under

the assumptions made, p
(n)
−1 = 0 until the last step n = N ,

where it is

p
(N)
−1 = e−i(mN π+ϑN )

4π

[
2πp

(N−1)
−2 e2iϑN + 1

]
.

Writing p
(N−1)
−2 = qeiχ , we have

4π
∣∣p(N)

−1

∣∣ =
√

1 + 4π2q2 + 4πq cos(χ + 2ϑN ).

This is maximized for ϑN = −χ/2 = 1
2 arg[p(N−1)

−2 ] and by

maximizing q = |p(N−1)
−2 |. A similar argument holds for the

maximization of |p(N−1)
−2 |: One has to set ϑN−1 = 1

2 arg[p(N−2)
−4 ]

and maximize |p(N−2)
−4 |. By recursion we have that at each step

we want to maximize

∣∣p(n)
−tn

∣∣ =
∣∣∣∣e

−i(mnπ+ϑn)

4π

[
2πp

(n−1)
−tn−1

e2iϑn + 1
]∣∣∣∣ .

We have thus found a good adaptive rule, which fixes tn =
2N−n and ϑn = 1

2 arg[p(n−1)
−tn−1

].
With this rule we obtain the standard quantum limit (SQL)

for the phase sensitivity, as we now show. Using the optimal
phase, the Fourier coefficients p

(n)
−tn

are at each step

p
(n)
−tn

= 1

2

[
1

2π
+ p

(n−1)
−tn−1

]
= 1

2π
(1 − 2−n).

Then, for a total number of measurements N , the Holevo
variance is VH = [1 − 2−(N+1)]−2 − 1 ≈ 2−N . The total in-
terrogation time is T = τ (2N+1 − 1) yielding

VH (T ) = 4T τ

(T − τ )2
≈ 4τ

T
. (5)

We can improve the sensitivity scaling and reach the QML
by a simple modification of this adaptive scheme. Instead of
performing just one measurement of duration tn at each nth

step, we perform two, updating the p.d.f. according to the
outcomes. For ϕ = 0, the update rule at each step is now

p
(n)
k = 1

N
[
6p

(n−1)
k + 4p

(n−1)
k−tn

+ 4p
(n−1)
k+tn

+ p
(n−1)
k−2tn

+ p
(n−1)
k+2tn

]
,

with the normalization factor

N = 2π
[
6p

(n−1)
0 + p

(n−1)
−2tn

+ p
(n−1)
2tn

]
.
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FIG. 1. (Color online) P.d.f (left) and its Fourier transform (right)
after an eight-step adaptive measurement, with one (red, dashed) and
two measurements per step (black). Inset: Ramsey sequence.

Restricting the formula above to the terms p
(n)
−tn

gives

p
(n)
−tn

=
1

2π
+ p

(n−1)
−tn−1

π
[

3
2π

+ p
(n−1)
−tn−1

] . (6)

By recursion this yields

∣∣p(n)
−tn

∣∣ = 1

2π

(
1 − 3

22n+1 + 1

)
,

from which we obtain a Holevo variance that follows the QML,
VH ≈ 3 × 2N , or in terms of the total interrogation time

VH = 48T τ 2(T + 4τ )

(T − 2τ )2(T + 6τ )2
≈ 48τ 2

T 2
. (7)

The classical and quantum scaling of the adaptive scheme
with one or two measurements per step is confirmed by
the p.d.f. obtained in the two cases (Fig. 1). For one
measurement, the final p.d.f Fourier coefficients are |pk| = 1

2π

[1 − 2−(N+1)|k|], and the probability is well approximated by
a sinc function,

P (N)(ϕ) = 2N+1

2π
sinc(2N+1ϕ)2,

which gives a variance σ ≈ 2−N/2. For two measurements per
step, the p.d.f. is well approximated by a Gaussian [12] with a
width σ =

√
3

2 × 2−N .
We now consider possible sources of nonideal behavior.

The first generalization is to phases ϕ �= 0. In this case, while
the SQL is still achieved with the one-measurement scheme,
two measurements per step do not always reach the QML.
Indeed, at each step there is a probability P(1 − P) that the
two measurements will give different results; if this happens
at the nth step, we obtain p

(n)
−tn

= 0, thus failing to properly
update the p.d.f. While the probability of failure is low, a
solution could be to perform three measurements and update
the p.d.f. only based on the majority vote.

We can further consider the cases where the signal decays
due to relaxation or there is an imperfect readout. Then the
probability (1) becomes

Pϑ (m|b) = 1
2 [1 − c(−1)me−τ/T2 cos(bτ + ϑ)],
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FIG. 2. (Color online) Holevo variance vs total time T =
Mτ (2N+1 − 1), with τ = 1. (•) with one measurement per step
(M = 1) VH follows the SQL. (◦) with two measurements per step
(M = 2) achieve the QML. (∗) with c = 0.95, the QML scaling is
lost, but can be preserved for longer with M = 4 (�) and restored
(�) by setting M = n + 1, even for lower c, e.g., c = 0.85 (	).

with c the readout fidelity. Considering the effects of only this
(constant) term, the update rule Eq. (6) becomes

p
(n)
−tn

= c
[

1
2π

+ p
(n−1)
−tn−1

]
π

[
1
π

(
1 + c2

2

) + c2p
(n−1)
−tn−1

] .

We can calculate a recursion relationship in the limit of good
measurement, ε = (1 − c) ≈ 0, to obtain

|p−1| ≈ 1

2π

[
1 − 3

2
(1 + Nε)2−2N

]
,

which yields an Holevo variance VH ≈ 3(1 + εN )2−2N that no
longer follows the QML scaling, except for εN ∼ 1. A similar,
more complex result is expected if relaxation effects are taken
into account [12]. A strategy to overcome this limitation is to
repeat the measurement at each step more than two times
(Fig. 2). Specifically, setting the number of measurements
M = n + 1 (if allowed by relaxation constraints) restores the
QML scaling.

The proposed adaptive method promises to achieve
Heisenberg-limited estimation of a classical phase without the
need of fragile entangled states and thus it could improve the
sensitivity, e.g., of recently proposed magnetic sensors [13].
It can be used to measure a quantum variable as well, such as
a phase resulting from the coupling of the sensor to a larger
quantum system or bath. In turns, the measurement can be used
to lower the entropy of the bath (usually a thermal equilibrium
mixture) yielding an increase in the coherence time of the
sensor [10,14,15]. The QML scaling of this adaptive method
translates into a faster narrowing of the bath dispersion, which
would improve similar schemes in solid-state systems [16,17],
where the bath itself might present fluctuations.

Specifically, we consider the coupling of a sensor spin to
a spin bath. This situation is encountered in many physical
systems, such as quantum dots [18,19] or phosphorus donors
in silicon [7,20]. Here we analyze as an example the system
comprising a nitrogen-vacancy (NV) center electronic spin
coupled to the bath of nuclear 13C spins in the diamond lattice
[21,22]. Recent advances in the measurement capabilities [6]
offer a single-shot readout of the NV state, thus enabling
adaptive schemes.

In a large magnetic field along the NV axis, the hyperfine
interaction between the electronic spin and the nuclear spins
is truncated to its secular part, H = Sz

∑
k AkIz,k = SzAz

(where S denotes the electronic spin, Ik the nuclear spins).
During a Ramsey sequence on resonance with the ms = 0,1
energy levels of the electronic spins, the coupled system
evolves as

|ψ(t)〉 = [sin(Azt)|1〉 + cos(Azt)|0〉] |ψ〉C, (8)

where |ψ〉C is the initial state of the nuclear spin bath. The
measurement scheme (Ramsey followed by NV readout) is a
quantum nondemolition measurement [23–25] for the nuclear
spins, since their observable does not evolve (as long as the
secular approximation holds). The adaptive process is then
equivalent to determining the state-dependent (quantized)
phase ϕ = 〈Azt〉. The uncertainty on the nuclear bath state,
ρC = ∑

α pα|ψα〉〈ψα|C , is reflected in the p.d.f of the phase
(with an injective relation if the operator Az has nondegenerate
eigenvalues). Thus updating the phase p.d.f. will update the
density operator describing the state of the nuclear bath. After
each readout of outcome m, the system is in the state

ρ(n) ∝ |m〉〈m|ρ(n−1)|m〉〈m|
= |m〉〈m|

∑
α

Pϑ (m|ϕα)p(n−1)
α |ψα〉〈ψα|C, (9)

with Pϑ (m|ϕα) = |〈m,ψα| [sin(Azt)|1〉 + cos(Azt)|0〉] |ψα〉|2.
Note that in this expression the probability update rule is
equivalent to Eq. (2) and thus the adaptive procedure ensures
that the final state has lower entropy than the initial one.

A difference between measuring a classical field and a
quantum operator is that in the latter case the resulting phase is
quantized, thus it has a discrete p.d.f. An extreme case is when
all the couplings to the NC nuclear spins are equal, Ak = a,
∀k. Then the eigenvalues are na/2, with |n| � NC integer,
each with a degeneracy d(n) = (

NC

NC/2+n

)
. While the adaptive

scheme needs to be modified (e.g., by considering a discrete
Fourier transform), we note that since all the eigenvalues are
an integer multiple of the smallest, nonzero one (a for NC

even, a/2 for NC odd), we only need M steps, with 2M � NC

2
[with minimum interrogation time τ = 2π/(a2M )], to achieve
a perfect measurement of the degenerate phase ϕ [10]. In the
more common scenario where Ak varies with the nuclear spin
position (and NC is large enough), the eigenvalues give rise to
an almost continuous phase [15], thus it is possible to directly
use the adaptive scheme derived above.

As an example of the method, we consider one NV
center surrounded by a bath of nuclear spins (13C with 1.1%
natural abundance). At low temperature and for NV with low
strain, it is possible to perform a single-shot readout of the
electronic spin state with high fidelity in tens of μs [6]. Optical
illumination usually enhances the electronic-induced nuclear
relaxation [26], due to the nonsecular part of the hyperfine
interaction. This effect is however quenched in a high magnetic
field (B � 1T) and the relaxation time is much longer than the
measurement time (T1 � 3ms [27]), a sign of a good QND
measurement.

We simulated the Ramsey sequence and adaptive measure-
ment with a bath of ∼2600 spins around the spin sensor in
a large magnetic field. We considered the full anisotropic
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FIG. 3. (Color online) Simulated NV center spectrum from a
Ramsey sequence before (dotted) and after (solid line) an eight-
step adaptive measurement. The adaptive scheme narrows the bath
distribution, here corresponding to a 50× improvement of the
coherence time. We considered ∼2600 close nuclear spins, randomly
positioned in the diamond lattice, in a 1 T magnetic field and initially
in the maximally mixed state. We simulated full dipolar couplings
among the nuclear spins and between the NV and the bath spins
(approximating the hyperfine interaction) to validate the secular
approximation. The narrow spectrum reveals an average nuclear field
of 〈Bn〉 ≈ 700 nT (this was chosen at random among possible nuclear
spin-state-dependent fields; similar results were obtained for different
fields and spin positions in the lattice). In the inset, Holevo variance
(circles) as a function of the total time, and signal decay (dotted line)
due to intrabath couplings during the adaptive scheme interrogation
time (TRamsey).

hyperfine interaction between the NV and the 13C spins and
we took into account intrabath couplings with a disjoint cluster
approximation [12,28]. Even for the longest evolution time of

the Ramsey sequence required by the adaptive scheme, the
fidelity F of the signal with the ideal Ramsey oscillation (in
the absence of couplings) is maintained. After an eight-step
adaptive measurement, the nuclear spin bath is in a narrowed
state. We note that in general the adaptive scheme does not
polarize the spin bath (indeed a final low polarization state is
more probable). However, the bath purity is increased, which is
enough to ensure longer coherence times for the sensor spins,
since it corresponds to a reduced variance of the phase and
hence of the sensor spin dephasing. In Fig. 3, we compare the
NV center spectrum for an evolution under a maximally mixed
nuclear spin bath and under the narrowed spin bath. The figure
shows a remarkable improvement of the NV coherence time.

In conclusion, we described an adaptive measurement
scheme that has the potential to achieve the quantum metrology
limit for a classical parameter estimation. We analyzed how
imperfections in the measurement scheme affect the sensitivity
and proposed strategies to overcome these limitations. This
result could for example improve the sensitivity of spin-based
magnetometers, without recurring to entangled states. In
addition, we applied the scheme to the measurement of a
quantum parameter, such as arising from the coupling of the
sensor to a large spin bath. We showed that the adaptive scheme
can be used to prepare the spin bath in a narrowed state: As the
number of possible configurations for the spin bath is reduced,
the coherence time of the sensor is increased. The scheme
could then be a promising strategy to increase the coherence
time of qubits, without the need of dynamical decoupling
schemes that have large overheads and interfere with some
magnetometry and quantum information tasks.

This research was supported in part by the US Army Re-
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