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Path decoherence of charged and neutral particles near surfaces
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We show how the spatial decoherence properties of coherently split beams of charged and neutral particles
are influenced by their (quantum) electromagnetic interaction with a metallic surface. Our investigation makes
use of macroscopic quantum electrodynamics based on linear-response theory, which provides an alternative to
microscopic models of the decoherence mechanism. We find strikingly simple expressions for the decoherence
rate that admit an interpretation in terms of which path information due to image-charge interactions.
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Introduction. According to the superposition principle of
quantum mechanics—itself a straightforward consequence
of the linearity of the Schrödinger equation—linear super-
positions of solutions of the Schrödinger equation are also
solutions themselves. However, in nature these superpositions
of quantum states are hard, if not impossible, to observe.
Interactions with an unobserved environment destroy any
coherent superpositions and leave a quantum system in a
mixed state with no (or strongly reduced) quantum coherence.
Understanding decoherence is important in the study of the
transition from quantum to classical dynamics in quantum
systems interacting with an environment [1]. A variety of
experiments have been designed to push the boundaries of
observation of quantum decoherence effects, most notably in
molecule interferometry [2], cavity quantum electrodynamics
(QED) [3], and ground-state cooling of nanomechanical
oscillators [4].

A particular environment, ubiquitous to many experiments
in atomic physics, consists of the modes of the electromagnetic
field that are modified by the presence of macroscopic bodies
such as mirrors or other dielectric or metallic structures. The
exchange of photons between coherently split electron beams
is a source of decoherence already in free space [5–7] and
sets upper limits to the distance or time the electrons can
travel coherently. However, experiments with coherently split
electron beams close to a metallic surface have shown much
shorter coherence lengths [8]. These were found to be caused
by the field fluctuations emanating from the metal surface [9]
attributed to the dissipative environment obtaining which path
information [10].

In this Rapid Communication, we study the path decoher-
ence of charged and neutral particles near metallic surfaces
from the viewpoint of macroscopic quantum electrodynamics
without resorting to microscopic descriptions of the envi-
ronment. In both instances we concentrate on the long-time
(Markovian) dynamics in the slow-velocity limit. We obtain
intuitive results that can be interpreted as the interaction of
the particles with their mirror images, thus affirming the
interpretation of which path dephasing.

Path decoherence of electron beams. The starting point
is the decoherence functional theory described in Ref. [11],
Chap. 12. As shown therein, the time evolution of the matrix
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elements of the reduced density matrix �̂(t) of a charged
particle moving along two paths 1 and 2 from an initial time ti
to a final time tf can be approximated by

�̂(tf ) � �̂11(ti) + �̂22(ti) + ei��̂12(ti) + e−i�∗
�̂21(ti). (1)

Here, � is the influence phase functional that arises from the
interaction with the (medium-assisted) electromagnetic field.
The decoherence properties, i.e., the degrading of the off-
diagonal density matrix elements �̂ij (ti), are contained in the
imaginary part of this phase |ei�| = e�[c], where the functional
�[c] depends only on the classical current density difference
cμ(x) = [jμ

1 (x) − j
μ

2 (x)]/
√

2 along the two paths 1 and 2. It
can be written as

�[c] = − 1

2h̄2

∫ tf

ti

d4x

∫ tf

ti

d4x ′ D+(x,x ′)μνc
μ(x)cν(x ′) (2)

in terms of the field anticommutator function D+(x,x ′)μν =
〈{Âμ(x),Âν(x ′)}〉.

We focus first on the spatial components of the anticom-
mutator function. They are easily obtained by writing out
the vector potential in terms of its frequency components as
Âi(r,t) = ∫ ∞

0 dω Âi(r,ω)e−iωt + H.c. with (thermal) expec-
tation values (⊥: transverse part) [12]

〈Â†
i (r,ω)Âj (r′,ω′)〉 = h̄μ0

π
n̄th(ω)Im G⊥⊥

ij (r,r′,ω)δ(ω − ω′),

(3)

〈Âi(r,ω)Â†
j (r′,ω′)〉 = h̄μ0

π
[n̄th(ω) + 1]Im G⊥⊥

ij (r,r′,ω)

× δ(ω − ω′), (4)

from which follows that [G(r,r′,ω) = GT (r′,r,ω)]

D⊥
+(x,x ′)ij = h̄μ0

π

∫ ∞

0
dω[2n̄th(ω) + 1]Im G⊥⊥

ij (r,r′,ω)

× [eiω(t−t ′) + e−iω(t−t ′)]. (5)

The mean thermal photon number n̄th(ω) obeys the Bose-
Einstein distribution, n̄th(ω) = [eh̄ω/(kBT ) − 1]−1.

030101-11050-2947/2012/85(3)/030101(4) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.030101


RAPID COMMUNICATIONS

STEFAN SCHEEL AND STEFAN Y. BUHMANN PHYSICAL REVIEW A 85, 030101(R) (2012)

FIG. 1. (Color online) Schematic setup of two electron beams
traveling along the x direction with velocity v close to a dielectric or
metallic surface. The two beams are separated by a lateral distance L

and travel at a distance z from the surface.

For a single charged particle (e.g., an electron) traveling
along a path re(t), the classical current density is simply
je(x) = −evδ[r − re(t)] so that the spatial part �(ij )[c] of the
decoherence functional (2) becomes [ri ≡ ri(t), r′

i ≡ ri(t ′)]

�(ij )[c] = −e2μ0

4h̄π

∫ ∞

0
dω

∫ tf

ti

d4x

∫ tf

ti

d4x ′[2n̄th(ω) + 1]

× eiω(t−t ′)v · {Im G⊥⊥(r1,r′
1,ω) + Im G⊥⊥(r2,r′

2,ω)

− Im G⊥⊥(r1,r′
2,ω) − Im G⊥⊥(r2,r′

1,ω)} · v + c.c.

(6)

For simplicity, we have assumed that both electron beams
travel in parallel with the same velocity v. The temporal
and mixed spatio-temporal contributions vanish identically
for such motion when also being parallel to the surface, so
that �[c] ≡ �(ij )[c]. In principle, these contributions exist for
divergent and convergent beams and lead to bremsstrahlung
[11].

At this point it is impossible to simplify the expressions
further without referring to a specific geometry. As an example,
we envisage a situation in which a wave packet is initially
split, and its two components then propagate parallel to a
macroscopic body before being recombined. We are interested
in the decoherence during the parallel transport as depicted in
Fig. 1. Decomposing the Green’s function into a free-space
part G(0) and a scattering part G(S), we note that the (double-
sided transverse) scattering part dominates at small particle-
surface distances. For a particle traveling along the x direction
parallel to a plane dielectric or metallic surface, we use the
Weyl expansion to write the scattering part of the relevant
Green’s tensor component as [12] (ri = ρi + ziez, k = k‖ +
kzez)

G(S)
xx (r1,r2,ω) =

∫
d2k‖
(2π )2

eik‖·(ρ1−ρ2)Rxx(k‖,z,ω), (7)

Rxx(k‖,z,ω) = i

2kz

e2ikzz

[
rpc2

ω2

(
− k2

z

k2
x

k2
‖

)
+ rs

k2
y

k2
‖

]
, (8)

where rs,p(k‖,ω) are the Fresnel reflection coefficients for
(s,p)-polarized waves. Here we have also assumed that both
electron beams travel across the surface at the same height
z. Note that the spatial arguments in the Green’s tensor
refer to the time-dependent trajectories of the two electron
beams, r1,2(t) = r1,2 + vt . Hence, in the Weyl expansion there

are terms of the form eik‖·[ρi (t)−ρj (t)] =eik‖·(ρi−ρj )eik‖·v(t−t ′),
implying that spatio-temporal dependencies decouple.

The time integrals in the decoherence functional can then
be performed to give

∫ tf

ti

dt

∫ tf

ti

dt ′ ei(k‖·v±ω)(t−t ′)

= 2

(k‖ · v ± ω)2
[1 − cos(k‖ · v ± ω)(tf − ti)]. (9)

The remaining exponential functions containing only the
spatial variables combine to

eik‖·(ρ1−ρ1) + eik‖·(ρ2−ρ2) − eik‖·(ρ1−ρ2) − eik‖·(ρ2−ρ1)

= 2[1 − cos k‖ · (ρ1 − ρ2)]. (10)

With these results, the decoherence functional reads

�[c] = −e2v2μ0

h̄π

∫ ∞

0
dω Im

∫
d2k‖
(2π )2

[1 − cos k‖ · (ρ1 − ρ2)]

× [2n̄th(ω) + 1]
i

2kz

e2ikzz

[
rpc2

ω2

(
− k2

z

k2
x

k2
‖

)
+ rs

k2
y

k2
‖

]

×
[

1 − cos(k‖ · v + ω)t

(k‖ · v + ω)2
+ 1 − cos(k‖ · v − ω)t

(k‖ · v − ω)2

]
,

(11)

where we have set t ≡ tf − ti .
As it stands, Eq. (11) is still not analytically tractable.

Hence, some more approximations are in order. Insisting that
the decoherence functional should be linear in the interaction
time, we have to employ the long-time limit. This is equivalent
to performing a Markov approximation which can be done if
we assume that the surface response function is not sharply
peaked. In this limit, one approximates

[1 − cos(k‖ · v ± ω)t]

(k‖ · v ± ω)2
�→ πt δ(k‖ · v ± ω). (12)

The frequency integration can then be performed. Note that
the integral only runs over positive frequencies whereas the
projection of the wave vector onto the direction of the velocity
can be both positive or negative. Hence, we have to write

∫ ∞

0
dω[δ(k‖ · v + ω) + δ(k‖ · v − ω)]f (ω) = f (|k‖ · v|).

(13)

In this way we obtain

�[c] = −μ0q
2v2t

h̄

∫
d2k‖
(2π )2

[1 − cos k‖ · (ρ1 − ρ2)]

× [2n̄th(|k‖ · v|) + 1]Im Rxx(k‖,z,|k‖ · v|). (14)
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Combining all of the above yields an expression for the decoherence functional in the long-time limit as

�[c] = −t
q2

ε0h̄

∫∫
k‖dk‖dϕ

(2π )2
[1 − cos(k‖L sin ϕ)][2n̄th(k‖v| cos ϕ|) + 1]

e−2k‖zγ (ϕ)

2k‖γ (ϕ)

× Im

{
rp(k‖,k‖v| cos ϕ|) − v2

c2
[rp(k‖,k‖v| cos ϕ|) cos2 ϕ − rs(k‖,k‖v| cos ϕ|) sin2 ϕ]

}
, (15)

where we have set γ 2(ϕ) = 1 − v2

c2 cos2 ϕ, with ϕ be-
ing the angle between the vectors v and k‖. We
have also assumed for simplicity that v ⊥ (ρ1 − ρ2). For
slow velocities, we set γ (ϕ) � 1 such that ε(ω)ω2/c2 =
ε(k‖v| cos ϕ|)k2

‖v
2 cos2 ϕ/c2 � k2

‖ and hence rp(k‖,ω) �
rp(∞,ω) ≡ rp(ω) and neglect the last line in Eq. (15) to obtain

�[c] = −t
q2

ε0h̄

∫∫
k‖dk‖dϕ

(2π )2
[1 − cos(k‖L sin ϕ)]

× [2n̄th(k‖v| cos ϕ|) + 1]
e−2k‖z

2k‖
Im rp(k‖v| cos ϕ|).

(16)

Note that in this limit the reflection coefficient for s-polarized
waves does not contribute. This is entirely due to the
low-frequency dominance of the reflection coefficient for
p-polarized waves, and not a geometric artefact.

At this point one might be tempted to set the velocity to
zero in order to find the slow-particle limit explicitly. This
proves to be tricky on two grounds. First, we have already
performed the Markov approximation in which we assumed
that all time scales are long compared to the inverse velocity
(times a transverse wave number). Second, the imaginary
part of the reflection coefficients vanish at zero argument by
virtue of the Schwarz reflection principle, rp(ω) = r∗

p(−ω).
However, the mean thermal photon number grows over all
bounds, n̄th(k‖v| cos ϕ|) �→ kBT /(h̄k‖v| cos ϕ|). This is com-
pensated by the fact that the reflection coefficient can be
expanded for small arguments as rp(ω) � rp(0) + iωr ′

p(0)
with rp(0),r ′

p(0) ∈ R. In particular, for metals that can be
described by a Drude permittivity ε(ω) = 1 + iσ/(ε0ω) with
conductivity σ , one finds that r ′

p(0) = 2ε0/σ .
Let us first look at what happens at finite temperature. Using

standard integrals we find that

�th[c] = −t
q2kBT r ′

p(0)

2πε0h̄
2

[
1

2z
− 1√

(2z)2 + L2

]
. (17)

Equation (17) is, due to the way in which the velocity and tem-
perature combine, in fact a high-temperature expansion. The
distance-dependent terms in brackets are easy to understand;
the first is clearly the distance between one electron and its
image in the metal (distance 2z), and the second is the distance
between one electron and the image of the other [distance√

(2z)2 + L2]. If the separation between the two electron paths
vanishes (L → 0), the spatial decoherence effect vanishes as
L2, as expected. Note that in this limit the spatial decoherence
rate is independent of the velocity of the particles.

In the zero-temperature limit, there is nothing to compen-
sate the velocity dependence of the reflection coefficient rp,
hence the decoherence functional turns into

�0[c] = −t
q2vr ′

p(0)

2π2ε0h̄

[
1

(2z)2
− 1

(2z)2 + L2

]
. (18)

Its structure is similar to the thermal result, Eq. (17), with
the difference that the frequency kBT /h̄ has been replaced
by the velocity divided by another power of the separation
of the electrons from their mirror images. In both cases,
the spatial decoherence vanishes as soon as r ′

p(0) vanishes.
As noted above, this is the case for perfect conductors with
σ → ∞.

Comparing Eqs. (17) and (18) provides a means to
distinguish between high-temperature and low-temperature
limits (both are understood for slow velocities). The high-
temperature limit is thus obtained whenever the condition
kBT /h̄ � v/z is met. At room temperature, this implies that
z/v � h̄/(kBT ) = 2.55 × 10−14 s is the time the electrons
would need to reach the surface at normal incidence. Hence,
already at room temperature the high-temperature limit (17) is
valid for experimentally achievable distances and velocities.
The zero-temperature limit (18) can be observed at very low
temperatures (on the order of μK) with typical velocities on
the order of 100 ms−1.

Decoherence of neutral atoms. We now briefly discuss the
path decoherence of neutral particles. The main difference
between globally neutral systems of charges and charged
particles such as electrons is that for the latter one cannot
define a length scale associated with any transition, making
it hard to perform meaningful approximations. In contrast,
globally neutral systems of charges such as atoms inherently
possess length scales associated with multipole transitions.
For example, in a two-level atom with a dipole-allowed
transition of energy h̄ωA, the time dependence of the dipole
moment operator d̂ is as e−iωAt , which allows to define
fast and slowly varying amplitudes as well as a length
scale c/ωA.

The decoherence functional �[d] for neutral atoms can be
derived in two equivalent ways. First, one can start from the
current density j(r,t), expanded in terms of dipole moments.
In this way, the current density takes the form j(r,t) =
d
dt

[d(t)δ(r − rA(t))], where magnetic effects are omitted.
Partial integration with respect to t and t ′ transforms the
anticommutator function for the vector potential into that of the
electric field, since −Ȧ = E. The second, equivalent, way is to
go back to the derivation of the decoherence functional itself
and use the Hamiltonian Ĥ = −d̂ · Ê instead of Ĥ = −ĵ · Â.
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The calculation proceeds as before, except that the thermal
expectation value of the electric field [13]

〈Êi(r,ω)Ê†
j (r′,ω′)〉

= h̄μ0

π
ω2[n̄th(ω) + 1]Im Gij (r,r′,ω)δ(ω − ω′) (19)

is needed, with a similar expression holding for the normally
ordered expectation values. For the classical dipole moments
we insert d(x) = de−iωAt δ(r − rA), assuming that the dipole
moment is associated with a transition of frequency ωA and
strength d. Using again the Weyl expansion for the Green’s
function we find for the double time integral in the Markov
approximation∫∫ tf

ti

dt dt ′ ei(k‖·v−ωA±ω)(t−t ′) �→ πt δ(k‖ · v − ωA ± ω),

(20)

with t = tf − ti .
Assuming further that the velocity of the atom is low enough

then, in the near-field limit, |k‖ · v| � ωA. The frequency
integral then picks out the atomic transition frequency ωA

which, together with the remaining prefactors, combines neatly
to the expression for the decoherence functional

�[d] � − t

2
[�th(ωA,0) − �th(ωA,L)], (21)

where �th(ωA,L) is the thermal spatial coherence function at
frequency ωA and separation L [14]. At vanishing separation
this reduces to the spontaneous decay rate �th(ωA,0). From
previous works [14,15] we know that we can write in the
near-field limit

�th(ωA,L) �
[

1 − L2

32

∂2

∂z2

]
�th(ωA,0), (22)

which, combined with the distance scaling in the near field of
�th(ωA,0) ∝ 1/z3

A, leads to

�th[d] � −t
3L2

16z2
A

�th(ωA,0). (23)

The result is as expected; the path decoherence rate is again
quadratic in the path separation L, and it is proportional to
the spontaneous decay rate �th(ωA,0) in the near-field limit.
Note that this result expresses the decoherence of external
degrees of freedom in terms of relaxation rates of the internal
dynamics.

Conclusion. We have shown that the effect of path decoher-
ence of both charged and neutral particles near macroscopic
bodies can be traced back to the interaction of the particles
with their mirror images inside the material. As expected,
as soon as the material could in principle determine the
positions of the images by performing a measurement, i.e.,
due to nonzero resistivity, path decoherence sets in. This is
consistent with the interpretation that the material gains which
path information and thus destroys the coherence between the
beams. Regardless of whether or not the particles are charged,
the spatial decoherence rate for small path separations L is
proportional to L2. This result confirms previous theoretical
predictions based on decoherent histories [6] and experimental
observations [3,8].

The lack of an intrinsic length scale for charged particles
such as electrons means that taking the slow-velocity limit
is equivalent to the zero-frequency limit. The transition
frequency of a neutral particle, however, sets a time scale and
therefore a length scale with respect to which one can define a
nonretarded limit.

The approach based on macroscopic quantum electro-
dynamics provides an alternative viewpoint to microscopic
models of path decoherence. It covers all choices of surface
material, from metals to semiconductors and dielectrics, and
describes the decoherence of charged and neutral particles. It
also allows for the inclusion of different geometries, if the
appropriate Green’s tensor is specified. The insight that one
gains by using this approach is an effective way to describe
experimental evidence of either existing experiments using
electrons [8] of planned experiments with ions.
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