
PHYSICAL REVIEW A 85, 024102 (2012)

Tight lower bound on geometric discord of bipartite states
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We use singular value decomposition to derive a tight lower bound for geometric discord of arbitrary bipartite
states. In a single shot this also leads to an upper bound of measurement-induced nonlocality which in turn
yields that for Werner and isotropic states the two measures coincide. We also emphasize that our lower bound
is saturated for all 2 ⊗ n states. Using this we show that both the generalized Greenberger-Horne-Zeilinger and
W states of N qubits satisfy monogamy of geometric discord. Indeed, the same holds for all N -qubit pure states
which are equivalent to W states under stochastic local operations and classical communication. We show by
giving an example that not all pure states of four or higher qubits satisfy monogamy.
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Recent years have witnessed the emergence of some
nonclassical correlations other than entanglement. Of them,
the quantum discord is the most well studied and it indicates
that separable states may possess quantumness which can
be exploited in various tasks, e.g., state merging. There are
different versions of quantum discord and their measures.
However, almost all measures are very difficult to calculate
analytically, except the geometric discord (GD) introduced by
Dakić et al. [1]. GD is defined as

D(ρ) = min
χ∈�0

‖ρ − χ‖2, (1)

where �0 is the set of zero-discord states (i.e., classical-
quantum states, given by

∑
pk|ψk〉〈ψk| ⊗ ρk) and ‖A‖2 =

Tr(A†A) is the Frobenius or Hilbert-Schmidt norm. The
authors in [1] have also calculated D for arbitrary two-
qubit states, using the explicit Bloch representation. This,
however, poses a problem in generalizing the formula since the
explicit Bloch representation is not known beyond two-qubits
(particularly, conditions for a vector v ∈ Rd2−1 to represent
the Bloch vector of a qu-dit is not known for d � 3). So, this
problem cannot be solved analytically, in general. Fortunately,
Luo and Fu have given an alternative description of GD
in [2], via a minimization over all possible von Neumann
measurements on ρa ,

D(ρ) = min
�a

‖ρ − �a(ρ)‖2, (2)

and cast GD as the following optimization problem:

D(ρ) = Tr(CCt ) − max
A

Tr(ACCtAt ), (3)

where C = (Cij ) is an m2 × n2 matrix, given by the expansion

ρ =
∑

cijXi ⊗ Yj (4)

in terms of orthonormal operators Xi ∈ L(Ha),Yj ∈ L(Hb)
and A = (aki) is an m × m2 matrix given by

aki = Tr|k〉〈k|Xi = 〈k|Xi |k〉 (5)

for any orthonormal basis {|k〉} of Ha . Thus, the problem
of determination of D reduces to finding the maximum of
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f (A) := Tr(ACCtAt ) subject to the restriction in Eq. (5).
Some effort has been directed toward this last part [3]. In
this Brief Report, we derive a lower bound of GD for arbitrary
states which will be shown to be saturated by all 2 ⊗ n states.

Another postentanglement measure of quantum correla-
tions is the measurement-induced nonlocality (MIN), intro-
duced by Luo and Fu [4]. The MIN is defined as somewhat
dual to the GD, by

N (ρ) = max
�a

‖ρ − �a(ρ)‖2, (6)

where the maximum is taken over the von Neumann measure-
ments �a = {�a

k} which do not disturb ρa locally, that is,∑
k

�a
kρ

a�a
k = ρa. (7)

Thus, MIN is an indicator of the global effect on the whole
system ρab caused by locally invariant measurement applied
to one part, ρa . In [4], the authors have calculated MIN for
arbitrary pure states and 2 ⊗ n mixed states. We will show that
our lower bound of GD automatically reduces to the upper
bound of MIN derived therein. Using this bound, we show
that the Werner and isotropic states have the same amount of
GD and MIN. These states are good candidates for maximally
entangled states and have been studied frequently in literature.

A tight lower bound on geometric discord for arbitrary
states. To solve the optimization problem in Eq. (3), it is
helpful to fix the orthonormal bases {Xi},{Yj } and usually
the following Bloch representation is considered:

ρ = 1

mn

[
Im ⊗ In + xt λ ⊗ In + Im ⊗ yt λ +

∑
Tijλi ⊗ λj

]
,

(8)

where λ = (λ1,λ2, . . . ,λd2−1)t with λi being the generators of
SU(d) for appropriate dimension d = m,n [5]. Comparing the
two forms of ρ given by Eqs. (4) and (8), we identify X1 =

1√
m

Im, Y1 = 1√
n
In, Xi �=1 = 1√

2
λi−1, Yj �=1 = 1√

2
λj−1, and

C = 1√
mn

⎛⎝ 1
√

2
n

yt√
2
m

x 2√
mn

T

⎞⎠ . (9)
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Next we observe that the restriction (5) basically gives the
following three restrictions on A:

et := (ak1)mk=1 = (〈k|X1|k〉)mk=1 = 1√
m

(1,1, . . . ,1), (10a)

m∑
k=1

ak :=
m∑

k=1

(aki)
m2

i=2 =
(

m∑
k=1

aki

)m2

i=2

= (Tr Xi)
m2

i=2 = 0,

(10b)

the isometry condition AAt = Im, (10c)

and |k〉〈k| should be a legitimate pure state. (10d)

Before proceeding further, we note that the condition (10d)
means (aki)m

2

i=1 should be a coherence vector for all k, and
as mentioned before, there is no known sufficient condition
for it beyond R3. Thus, this constraint generically cannot be
implemented into the optimization problem for m � 3. So,
for the time being, let us ignore this constraint and optimize
(maximize) f (A) with respect to the other constraints. Clearly,
that would give us a lower bound of D(ρ).

To incorporate Eq. (10a) into A, we write A = (eB), where
B is any m × m2 − 1 matrix subject to the restrictions (10b)
and (10c). With these forms of A and C, we have

f (A) = 1

mn

[(
1 + 2

n

)
‖y‖2

+ 2 Tr

{
B

(√
2

m
x + 2

√
2

n
√

m
T y

)
et

}
+ Tr

{
B

(
2

m
xxt + 4

mn
T T t

)
Bt

}]
. (11)

Noting that xet = 1√
m

(x,x, . . . ,x), we have Tr(Bxet ) =∑m
k=1 ak · x = 0, by Eq. (10b). Similarly, noting that T y is

a column vector, we have Tr(BT yet ) = 0, and hence the first
trace term in Eq. (11) vanishes. So, we are left with only the
second trace term.

Writing A = (eB), we have from Eq. (10c), (eB)(etBt )t =
Im, or eet + BBt = Im. Thus B must satisfy

BBt = Im − eet . (12)

This shows that the eigenvalues of BBt are 1 (with multiplicity
m − 1) and 0 (with e being an eigenvector). Let us choose
an m × m2 − 1 orthogonal matrix U having e as its last
column. Then, every B satisfying Eq. (12) can be written
as B = U�V t , where V is an m2 − 1 × m2 − 1 orthogonal
matrix and � is an m × m2 − 1 diagonal matrix with diago-
nal (1,1, . . . ,1,0). Then defining G := ( 2

m
xxt + 4

mn
T T t ), for

brevity, the last term in Eq. (11) becomes

g(B) = Tr[BGBt ] = Tr[U�V tGV �tUt ]

= Tr[�tUtU�V tGV ] = Tr[	V tGV ], (13)

where 	 := �t� = diag(Im−1,0m2−m). This shows that max-
imum of g(B) occurs when V tGV is a diagonal matrix whose
diagonal entries are in nonincreasing order. Since G is real

symmetric, there always exists such an orthogonal V . Hence
we have

max g(B) =
m−1∑
k=1

λ
↓
k , (14)

where λ
↓
k are the eigenvalues of G sorted in nonincreasing

order. Substituting this value of g(B) in Eq. (11), we get
max f (A), which in turn gives the desired lower bound for
GD from Eq. (3) as

D(ρ) � 1

mn

[
2

m
‖x‖2 + 4

mn
‖T ‖2 −

m−1∑
k=1

λ
↓
k

]
. (15)

We note that this straightforward derivation uses singular
value decomposition and does not require any upper bound
for f (A). This is an important advantage because it directly
shows what the minimum of g(B) should be [which would
correspond to min f (A) and will be needed for deriving MIN].
A lower bound of GD has been derived in [2] using only the
isometry condition (10c). Since we have used more constraints,
undoubtedly our bound is sharper.

Before applying this lower bound to solve some interesting
related problems, let us show that this bound could be achieved
by an infinite number of (collection of measurementlike)
operators �a = {|k〉〈k|}, where each |k〉〈k| is a Hermitian, unit
trace, but not necessarily positive operator. If all |k〉〈k| satisfy
Eq. (10d), it would correspond to the optimal von Neumann
measurement �a , which would yield the minimum of GD. We
note that �a = {|k〉〈k|}, where

|k〉〈k| =
m2∑
i=1

akiXi = 1

m
Im + 1√

2
akλ, k = 1,2, . . . ,m − 1

(16)

and |m〉〈m| = Im − ∑m−1
k=1 |k〉〈k|. Thus we need to determine

only the first (m − 1) projections |k〉〈k| and for this we should
consider only the first m − 1 rows of B. So, denoting cor-
responding restrictions of B,e,U,� by Bm−1,em−1,Um−1,


respectively, Eq. (12) reduces to Bm−1B
t
m−1 = Im−1 − (1 −

1/m)em−1et
m−1. This in turn gives

Bm−1 = (a1,a2, . . . ,am−1)t = Um−1
V t, (17)

where Um−1 has em−1 as its last column, 
 =
diag(1,1, . . . ,1,1/

√
m), and columns of V are the eigenvectors

of G corresponding to eigenvalues λ
↓
k . We note that different

choice of Um−1 corresponds to different |k〉〈k| (though the
set �a may remain invariant). For a particular explicit
representation, out of many choices for the rest of the columns,
a particular one is to choose Um−1 as the Helmert matrix
[6] which is given by (for clarity column vectors are not
normalized)

Um−1 =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1 1

−1 1 1 . . . 1 1
0 −2 1 . . . 1 1
0 0 −3 . . . 1 1
0 0 0 . . . 1 1
0 0 0 . . . −m + 2 1

⎞⎟⎟⎟⎟⎟⎠ . (18)
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Denoting the row vectors of Um−1 (with normalized columns)
as r′

k , we have from Eq. (17),

ak = rkṼ , k = 1,2, . . . ,m − 1, (19)

where rk = r′
k ◦ (1,1, . . . ,1,1/

√
m) (“◦” is entrywise multi-

plication) and Ṽ is the m − 1 × m2 − 1 left-upper block of
V t . We emphasize that for m � 4, the choice Um−1 is not
unique, e.g., for m = 5, Um−1 can be taken as the standard
4 × 4 Hadamard matrix.

Upper bound for MIN and its saturation by Werner and
isotropic states. To calculate MIN for a state ρ, we have to find
minimum of Tr(AT T tAt ) where A has to satisfy an additional
constraint (7). As in the case of GD, ignoring Eqs. (10d) and
(7) we would get an upper bound of MIN. Setting G = T T t ,
we see that the required minimum is exactly the minimum of
g(A) in Eq. (13). Hence just like Eq. (14), we have

min g(A) =
m−1∑
k=1

λ
↑
k . (20)

Thus we have the following upper bound on MIN:

N (ρ) � 1

mn

[
4

mn
‖T ‖2 −

m−1∑
k=1

λ
↑
k

]
= 4

m2n2

m2−m∑
k=1

λ
↓
k , (21)

where λ
↑
k (λ↓

k ) are the eigenvalues of T T t sorted in nonde-
creasing (nonincreasing) order. We note that this upper bound
is exactly the same as derived in [4]. If we set x = 0, the extra
constraint (7) for MIN gets automatically satisfied. In addition,
if all the eigenvalues are equal, the lower bound of D(ρ) in (15)
and the upper bound of N (ρ) in (21) coincide. So, if one of
the bounds saturates, necessarily we will have D = N . As an
interesting consequence, we give the following two examples.
The m × m-dimensional Werner states

ρ = m − z

m3 − m
1 + mz − 1

m3 − m
F, z ∈ [−1,1],

with F := ∑
kl |k〉〈l| ⊗ |l〉〈k| has

D = N = (mz − 1)2

m(m − 1)(m + 1)2
.

For the m × m-dimensional isotropic states

ρ = 1 − z

m2 − 1
1 + m2z − 1

m2 − 1
|�〉〈�|, z ∈ [0,1],

with |�〉 := 1/
√

m
∑m

k=1 |k〉 ⊗ |k〉 we have

D = N = (m2z − 1)2

m(m − 1)(m + 1)2
.

All 2 ⊗ n states saturate our lower bound. Setting m = 2,
we see from Eq. (18) the unique U1 is just 1 (seen as 1 × 1
matrix), and hence from Eq. (19), a1 = 1/

√
2v1. Then from

Eq. (16), the unique measurement operators are given by

|1〉〈1| = 1
2 (I2 + v1λ),

(22)
|2〉〈2| = 1

2 (I2 − v1λ),

Since v1 (which is the eigenvector corresponding to the largest
eigenvalue of G) has norm 1, both the operators in Eqs. (22) are
projectors and hence satisfy Eq. (10d). Thus all 2 ⊗ n states

saturate our lower bound showing its tightness. We wish to
mention that GD for these states have also been derived in [7],
following the approach of [1].

One immediate consequence of the saturation of lower
bound is that it readily gives GD for any N -qubit state. This
in turn enables us to check monogamy relations, etc., for qubit
states. We will consider this case in the following paragraph.

Geometric discord is monogamous for both generalized
Greenberger-Horne-Zeilinger (GHZ) and W states of N

qubits. Recently many authors have studied the monogamy
property of different versions of quantum discord [8–10]. A
correlation measure Q is said to be monogamous if and only
if for any tripartite state ρ123 (generalization to arbitrary state
is straightforward) the following inequality holds:

Q(ρ12) + Q(ρ13) � Q(ρ1|23). (23)

The authors of [8,9] have shown that for (a specific measure
of) quantum discord, all three-qubit pure W -type states violate
monogamy relation, while the GHZ-type states may or may
not violate monogamy. Here we will show that the N -qubit
generalized GHZ state |GGHZ〉 = a|00 · · · 0〉 + b|11 · · · 1〉
and the generalized W states |GW 〉 = ∑N

k=1 ck|001k0 · · · 0〉
both satisfy monogamy for GD.1

Since GD is non-negative and any bipartite reduced density
matrix (RDM) ρ1K of |GGHZ〉 is classical, Eq. (23) is
automatically satisfied for |GGHZ〉. Indeed, the relation holds
for any arbitrary Schmidt-decomposable state

∑√
λi |ii · · · i〉.

Thus, GD is monogamous for |GGHZ〉.
In the case of |GW 〉, being pure, it should have a Schmidt

decomposition over the cut 1|23 · · · N and the Schmidt
coefficients (square root of eigenvalues of ρ1) are given by
c1 and

√
1 − c2

1. Hence by the result of [4], the right-hand
side of Eq. (23) becomes 2 det(ρ1) = 2c2

1(1 − c2
1) = 2c2

1(c2
2 +

c2
3 + · · · + c2

N ). To evaluate the left-hand side we note that the
required bipartite RDMs are given by

ρ1k =

⎡⎢⎢⎣
1 − c2

1 − c2
k 0 0 0

0 c2
k c1ck 0

0 c1ck c2
1 0

0 0 0 0

⎤⎥⎥⎦ . (24)

Expressing in Bloch form, we have x = (0,0,1 − 2c2
1) and

T = diag(2c1ck,2c1ck,1 − 2c2
1 − 2c2

k). Hence we have by our
formula

D(ρ1k) = c2
1c

2
k + 1

4 min
{
4c2

1c
2
k,
(
1 − 2c2

1

)2

+ (
1 − 2c2

1 − 2c2
k

)2}
. (25)

Using min{a,b} � a, this gives D(ρ1k) � 2c2
1c

2
k . Thus, sum-

ming over k’s our claim follows.
One notable observation is that if we set all ck’s equal

to (1/
√

N ), then Eq. (23) becomes an equality. This is quite
remarkable, because it is known that the same relation holds
for the entanglement measure tangle τ [11], where the concept
of monogamy appeared for the first time.

1Just two days prior to this submission, in an interesting work
Streltsov et al. [13] have proven that all pure three-qubit states satisfy
monogamy of GD.
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We will now show that the result remains unchanged even if
we add a term c0|00 · · · 0〉 to |GW 〉, i.e., if we consider a class
of states including all N -qubit pure states which are equivalent
to W states under stochastic local operations and classical
communication (SLOCC) [12]. In this case the right-hand side
of Eq. (23) becomes 2 det(ρ1) = 2c2

1(c2
2 + c2

3 + · · · + c2
N ). To

evaluate the left-hand side, we note that each RDM ρ1k has
x = (2c0c1,0,1 − 2c2

1) and

T =
⎛⎝ 2c1ck 0 2c0c1

0 2c1ck 0
2c0ck 0 1 − 2c2

1 − 2c2
k

⎞⎠ .

Therefore eigenvalues of xxt + T T t are given by λ1 = 4c2
1c

2
k ,

λ2,3 = a ± √
b where a = (1 − 2c2

1)2 − 2c2
k(1 − c2

0 −
c2
k − c2

1) + 4c2
1(c2

0 + c2
k) and b = 8c2

1c
2
k[−(−1 + 2c2

0 +
2c2

1)2 − 2(−1 + 3c2
0 + 2c2

1)c2
k − 2c4

k] + a2. Noting that
‖x‖2 + ‖T ‖2 = 8c2

1c
2
k + 8c2

0c
2
1 + (1 − 2c2

1)2 + 4c2
0c

2
k + (1 −

2c2
1 − 2c2

k)2 := 8c2
1c

2
k + c, we have

‖x‖2 + ‖T ‖2 − max{λ1,λ2,λ3} � ‖x‖2 + ‖T ‖2 − λ2

= 8c2
1c

2
k + c − (a +

√
b)

� 8c2
1c

2
k + c − a − |c − a|

� 8c2
1c

2
k, (26)

where we have used b = (c − a)2 + 32c2
0c

2
1c

2
k(1 − c2

0 − c2
1 −

c2
k) � (c − a)2. Hence D(ρ1k) � 2c2

1c
2
k and summing over k’s

the desired result follows.
Due to this similarity with tangle it may be tempting to

think that GD is also monogamous (at least) for all N -qubit

pure states. But GD, in contrast to tangle, is not monogamous
for mixed states [13]. This indicates that maybe GD is not
monogamous for all pure states. To show this, let us consider
the following N -qubit pure state:

|ψ〉 = √
p|00 · · · 0〉 +

√
1 − p| + 1 · · · 1〉, (27)

where |+〉 = 1/
√

2(|0〉 + |1〉). For this state, we
have D(ρ1|23···N ) = 2 det(ρ1) = p(1 − p), whereas
D(ρ1k) = 1/2 min{p2,(1 − p)2}. The state being symmetric
in parties 2,3, . . . ,N , monogamy relation (23) is satisfied if
and only if

N − 1

2
min{p2,(1 − p)2} � p(1 − p). (28)

Clearly all

p ∈
(

2

N + 1
,
N − 1

N + 1

)
violate this relation. Thus not all pure states, beyond three
qubits, satisfy monogamy of GD.

To conclude, we have derived in a very simple way, a tight
lower bound for geometric discord of arbitrary bipartite states
which is saturated by all 2 ⊗ n states. We have also shown
that Werner and isotropic states have the same amount of
geometric discord and measurement-induced nonlocality. All
pure N -qubit generalized GHZ and W states are shown to
satisfy monogamy of geometric discord. Giving an example
we have shown that not all pure states of four or higher qubits
satisfy monogamy of geometric discord.

We would like to thank P. S. Joag for helpful discussions.
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