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Observers can always generate nonlocal correlations without aligning measurements by
covering all their bases
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Quantum theory allows for correlations between the outcomes of distant measurements that are inconsistent
with any locally causal model, as demonstrated by the violation of a Bell inequality. Typical demonstrations of
these correlations require careful alignment between the measurements, which requires distant parties to share a
reference frame. Here, we prove, following a numerical observation by Shadbolt et al., that if two parties share
a Bell state and each party preforms measurements along three perpendicular directions on the Bloch sphere,
then the parties will always violate a Bell inequality. Furthermore, we prove that this probability is highly robust
against local depolarizing noise, in that small levels of noise only decrease the probability of violating a Bell
inequality by a small amount. We also show that generalizing to N parties can increase the robustness against
noise. These results improve on previous ones that only allowed a high probability of violating a Bell inequality
for large numbers of parties.
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One of the most fascinating and useful features of quan-
tum theory is that the correlations between the outcomes
of spatially separated measurements can be nonlocal, i.e.,
inconsistent with any locally causal model [1,2]. Typically,
to obtain nonlocal correlations experimentally, great care is
taken to choose measurements that give the strongest nonlocal
correlations possible, which requires distant parties to share a
reference frame [3,4]. While there are proposals for violating
a Bell inequality without the need for a prior shared reference
frame [4,5], these proposals add substantial complexity to the
simple form of a standard Bell test.

Distant parties could attempt to violate a Bell inequality
without aligning reference frames by performing measure-
ments in random directions [6–8], and recent results prove that
such a method can demonstrate a violation with some nonzero
probability. Specifically, for N spatially separated parties who
share a Greenberger-Horne-Zeilinger (GHZ) state [9], almost
all choices of two measurements at each site lead to nonlocal
correlations between measurement outcomes if the number of
parties N is large [7]. Therefore distant parties that do not share
a reference frame can randomly choose measurements that
violate some Bell inequality with a probability that approaches
1 as N increases. If the parties also share a single direction on
the Bloch sphere (as can be the case in, e.g., photon polarization
encodings [4]), then they can always violate one of two Bell
inequalities by an amount that is exponential in N [8].

These results are the weakest for the scenario most
relevant to experiments, namely, the bipartite N = 2 case:
the probability of violating a Bell inequality by choosing two
mutually unbiased measurements randomly in the bipartite
case is ∼42% [7]. In this paper, we show that if the two parties
each choose three measurements corresponding to the x, y,
and z components of their local Cartesian reference frame
(hereafter referred to as a triad of measurements), then they
will always violate a Bell inequality. That this scheme always
results in a violation of a Bell inequality was communicated to
us by the authors of [10] as a conjecture. In this Brief Report,
we prove this conjecture; we note that Ref. [10] presents an
independent proof of the same. We also prove that this form

of a Bell test is robust against noise, in that small levels of
noise only slightly decrease the probability of violating a Bell
inequality.

For the multipartite case, we numerically estimate the
probability of N parties who share an N -partite GHZ state
violating a Bell inequality as a function of the level of local
depolarizing noise when the N parties each choose a triad of
measurements. In the absence of noise, we find that the parties
will always violate a Bell inequality (except for N = 3, where
the numerical probability is ∼99.99%) and the robustness to
noise increases with N .

An intuitive way of understanding the success rate of this
scheme is as follows. When the parties each choose a triad of
measurements, one of each parties’ three measurements must
necessarily be within an angle π

3 of the z axis of the reference
frame in which the entangled state was created. Although the
parties do not know which of their measurement directions are
closest to the z axis, by choosing a triad of measurements
they have covered all possibilities and so can simply test
each possibility using the method of Ref. [8] to always
obtain nonlocal correlations. It has previously been observed
that parties that do not share a reference frame can obtain
nonlocal correlations by trying all possible combinations of
local measurement directions [6]. While this is evidently true,
it is also experimentally infeasible. However, our results show
that the parties only need to try combinations of a finite (and
relatively small) number of measurements at each site in order
to always obtain nonlocal correlations.

The scenario. A verifier prepares many copies of an
N -qubit state ρ and distributes one qubit to each of N parties.
The nth party chooses a triad of measurements, which can be
written as Osn

n = �sn
n · �σ , where �σ = (σx,σy,σz) is the vector

of Pauli matrices (relative to the reference frame in which ρ

was created) and {�0
n,�

1
n,�

2
n} are orthonormal vectors in the

Bloch sphere. The qubits are distributed over channels that
introduce a level γ ∈ [0,1] of local depolarizing noise, where
γ = 1 corresponds to no noise. Regardless of its physical
origin, local depolarizing noise can be modeled by reducing
the visibility of the measurements at each site as γ� [11]. We
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do not consider colored noise, such as local dephasing noise,
as such noise models could allow the parties to establish some
common direction. This in turn would allow the parties to use
the method in Ref. [8] to obtain a greater violation of a Bell
inequality with a smaller number of measurement settings and
inequalities.

For each copy of ρ, each party randomly chooses and
performs one of their three measurements on their qubit. The
parties then send the verifier a list of the measurement choice,
sn ∈ Z3, and corresponding outcome, osn

n ∈ Z2, for each copy
of ρ. The verifier uses the lists to determine if the measurement
outcomes are inconsistent with a locally causal model.

In general, the verifier will need to use the full joint
probability distributions p(�o|�s) to determine if the relation
between the measurement outcomes �o = (o1, . . . ,oN ) and
measurement settings �s = (s1, . . . ,sN ) is inconsistent with a
locally causal model. However, for the scenario we consider,
the verifier only needs to calculate the probabilities p(a|�s) (as
relative frequencies) that the outcomes satisfy

⊕N
n=1 osn

n = a

for a = 0,1 (where addition is modulo 2). They can then
determine the correlation functions

E(�s) = p(0|�s) − p(1|�s), (1)

and determine if the correlation functions are inconsistent with
any locally causal model by checking if they violate some Bell
inequality.

The Bell inequalities we consider are the Mermin-Ardehali-
Belinskii-Klyshko (MABK) Bell inequalities [12], which only
depend on two measurement settings at each site. For N = 2,
the MABK Bell inequalities reduce to the famous Clauser-
Horne-Shimony-Holt (CHSH) [13] Bell inequalities.

To use Bell inequalities that only depend on two mea-
surement settings at each site, the verifier can simply choose
one setting tn for each site and ignore any copy of ρ where
the nth party performed the measurement corresponding to
tn for any value of n = 1, . . . ,N . Mathematically, this can
be represented by the verifier choosing integers rn ∈ Z2

and injective functions τn : Z2 → Z3 for n = 1, . . . ,N . The
measurement settings that the verifier checks for the nth site are
sn ∈ {τn(0),τn(1)}. Denoting by τ (�r) = [τ1(r1), . . . ,τN (rN )]
the set of measurement settings corresponding to a specific
choice of �r = (r1, . . . ,rN ) ∈ ZN

2 , all MABK Bell inequalities
can be obtained from the inequality∣∣∣∣∣

∑
�r∈ZN

2

cos

(
Rπ

4

)
E[τ (�r)]

∣∣∣∣∣ � 2(N−1)/2, (2)

where R = N + 1 − 2
∑N

k=1 rn, by varying over the 6N

functions τ [8]. Note that as presented, this is a form of
postselection, but it does not introduce a communication
loophole as it can also be viewed as a form of preselection.
For example, with each qubit, the verifier could also send an
integer corresponding to a setting that the parties cannot use
to measure that qubit.

The different functions τ correspond to the different
labelings of the measurement directions, �sn

n . We can exploit
these labelings to restrict the relative orientations of the triads
of measurements {�0

n,�
1
n,�

2
n}. It is important to note that the

verifier can only relabel the measurements in the following

manner if they know the orientation between the parties’
reference frames. Without such knowledge, the verifier would
still have to test a variety of labelings in order to identify which
measurements violate a Bell inequality.

With respect to the verifier’s reference frame (in which the
state ρ is prepared), the nth party’s measurement directions
can be written as

�0
n = x ′

n cos χn + y ′
n sin χn,

�1
n = −x ′

n sin χn + y ′
n cos χn, (3)

�2
n = (sin θn cos φn, sin θn sin φn, cos θn),

where

x ′
n = (sin φn, − cos φn,0), (4)

y ′
n = (cos θn cos φn, cos θn sin φn, − sin θn),

θn ∈ [0,π ], and φn,χn ∈ [−π,π ]. For each n, one of the
measurement directions �i

n must be within an angle of π
3 of

either the ±z axis. We relabel the nth party’s measurements so
that this direction is �2

n and swap the sign of �2
n if necessary

(which corresponds to relabeling the measurement outcomes
of the measurement Osn

n ), so that θn is in the interval [0, π
3 ].

Adding multiples of π
2 to χn simply permutes {±�0

n, ± �1
n},

so we can also set χn to be in the interval [−π
4 , π

4 ] for all n.
The bipartite case. As we now prove, two parties who share

the singlet state,

|�−〉 = 2−(1/2)(|0〉|1〉 − |1〉|0〉), (5)

where |0〉 and |1〉 are the computational basis states in the
verifier’s reference frame, in the above scenario will always
violate a Bell inequality. Note that this proof holds for any
maximally entangled two-qubit state due to local equivalence,
but we choose the singlet state for clarity. We also prove that
this result is robust against local depolarizing noise.

For a singlet state distributed over channels that introduce
local depolarizing noise parametrized by γ , the correlation
functions are

E(s1,s2) = 〈�−|(γO1
s1

⊗ γO2
s2

)|�−〉
= −γ 2�1

s1
· �2

s2
. (6)

The singlet state is invariant under arbitrary joint rotations of
the two parties’ Bloch spheres, which allows us to reduce the
problem to one with only three parameters. To do this, first
note that we can rotate both parties’ measurements so that �2

1
is the z axis, i.e.,

�0
1 = (sin χ1, − cos χ1,0),

�1
1 = (cos χ1, sin χ1,0), (7)

�2
1 = (0,0,1),

where we have incorporated φ1 into χ1. We then relabel the
second party’s measurements so that �2

2 is within π
3 of �2

1 (i.e.,
the z axis). Finally, we can rotate both parties’ measurements
around the z axis so that �2

2 is in the xz plane, i.e., the second
party’s measurement directions can be written as

�0
2 = (sin χ2 cos θ, − cos χ2, − sin χ2 sin θ ),

�1
2 = (cos χ2 cos θ, sin χ2, − cos χ2 sin θ ), (8)

�2
2 = (sin θ,0, cos θ ),
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FIG. 1. (Color online) Illustration of the labeling of the two
parties’ measurements in Eqs. (7) and (8).

for some θ ∈ [0, π
3 ] and χ2 ∈ [−π

4 , π
4 ] and the first party’s

measurement directions are as in Eq. (7) for some new value
of χ1 which we can set to be in the interval [−π

4 , π
4 ] by

relabeling the first party’s measurements. An example of a
set of measurements labeled in this manner is shown in Fig. 1.

When the measurements are labeled in this way, the
measurement statistics only need to be tested against a small
number of the 36 Bell inequalities in order to demonstrate
nonlocal correlations. In particular, we only need the three
inequalities obtained from Eq. (2) for τ = (r1,1 − r2), (1 −
r1,r2), and (2 − r1,1 + r2), which can be written as

cos2

(
θ

2

) ∣∣∣sin
(
χ− ± π

4

)∣∣∣ � 2−(1/2)γ −2, (9a)

|a2 − b2 + 2ab| � γ −2, (9b)

where χ± = χ1 ± χ2 and

a = cos
(χ−

2

)
cos

(
θ

2

)
,

(10)

b = cos
(χ+

2

)
sin

(
θ

2

)
.

By adding multiples of π
2 to χ1 and/or χ2 and changing the

sign of χ± [which will only permute the two inequalities in
Eq. (9a)], we can further restrict the parameters to the region

V =
{
θ,χ±|θ ∈

[
0,

π

3

]
,χ− ∈

[
0,

π

4

]
,χ+ ∈

[
0,

π

2

]}
(11)

and ignore the “-” inequality in Eq. (9a) as it is not violated
in V . Therefore at a given noise level γ , the probability of
the observers choosing measurements that result in nonlocal
correlations is lower bounded by

p(γ ) = |V|−1
∫
V

dθ dχ− dχ+ sin θf (θ,χ±,γ ), (12)

where |V| is the volume of the region V and f (θ,χ±,γ ) = 1 if
(θ,χ±,γ ) violate Eqs. (9a) or (9b) and zero otherwise.

In the absence of noise (γ = 1), the only measurements
that do not violate a Bell inequality are when the two parties’
measurements are perfectly aligned, i.e., θ = 0 and χ1 = χ2.
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FIG. 2. (Color online) Plot of the probability of violating one of
the MABK Bell inequalities, pMABK, for N = 2, . . . ,6 parties as a
function of the noise parameter γ for local depolarizing noise.

As this is a set of measure zero, the parties always violate a
Bell inequality.

As γ decreases from 1, small perturbations from this
perfect alignment also do not violate a Bell inequality. For
mathematical convenience, we only consider noise levels
γ � 2

4√18
∼ 0.97 analytically. Numerical data for the full

range of noise levels that allow violations of a Bell inequal-
ity (determined from Tsirelson’s bound [14]) is plotted in
Fig. 2.

For fixed γ ∈ [ 2
4√18

,1], the Bell inequalities in Eqs. (9a) and
(9b) are violated for (θ,χ±) ∈ V when

χ− > sin−1

[
2− 1

2 γ −2 cos−2

(
θ

2

)]
− π

4
:= L(θ,γ ) (13)

or

a −
√

2a2 − γ −2 − 2−(1/2) sin

(
θ

2

)
< 0, (14)

respectively, where we have used a > b > 2−(1/2) sin( θ
2 )

everywhere in V . The left-hand side of Eq. (14) is convex in θ

and nonincreasing in χ− everywhere in V . Therefore Eq. (14)
will be satisfied for all θ ∈ [x(γ ), π

3 ] and χ− ∈ [0,L(θ,γ )]
if it is satisfied for θ = x(γ ), χ− = L[x(γ ),γ ] and θ = π

3 ,
χ− = L(π

3 ,γ ).
Choosing x(γ ) = cos−1 γ 1/6, these conditions are satisfied,

so a Bell inequality is always violated unless θ � cos−1 γ 1/6

and χ− � L(θ,γ ). Therefore, for fixed γ ∈ [ 2
4√18

,1], the
probability of not violating a Bell inequality is upper bounded
by

1 − p(γ ) � 8

π

∫ cos−1 γ 1/6

0
dθ sin θL2(θ,γ )

� (1 − γ 1/6)/4 . (15)

For γ � 2
4√18

, the probability of violating a Bell inequality is
at least 99.8%, so the probability of violating a Bell inequality
is remarkably robust against noise.

The multipartite case. We now consider N parties who
implement the same scheme using the N -partite GHZ state,∣∣�N

GHZ

〉 = 2−(1/2)(|�0N 〉 + |�1N 〉), (16)
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where |�iN 〉 denotes the state in which N qubits are prepared
in the state |i〉. For the N -partite GHZ state with local
depolarizing noise and measurements parametrized as in
Eq. (3), the correlation functions are

E(�s) = Tr

⎡
⎣ρ(λ)

N⊗
j=1

γOj
sj

⎤
⎦

= γ NδN

N∏
j=1

(
�j

sj

)
z
+ γ N

2
Re

N∏
j=1

[(
�j

sj

)
x
+ i

(
�j

sj

)
y

]
,

(17)

where δN ≡ 1 − N (mod 2).
To obtain a numerical estimate of the probability of

the N parties violating a MABK Bell inequality without
sharing a reference frame, we randomly sample 107 sets of
measurements according to the uniform Haar measure on the
surface of the sphere and find the fraction of measurements
that violate a MABK Bell inequality. The results are plotted in
Fig. 2 as a function of γ .

For N �= 3, all 107 sets of measurements led to a violation
of a MABK inequality, and so the numerical evidence suggests
that the parties will always violate a MABK inequality and the
robustness to noise increases with N . The exceptional case
of N = 3, for which the numerical probability of violating a
MABK inequality in the absence of noise is ∼99.99%, occurs
because the correlation functions are independent of the z

component of the measurements for odd N [indicated by the
δN term in Eq. (17)].

Summary. We have proven that two parties who share a
maximally entangled bipartite state will always violate a Bell
inequality by choosing random measurements from a triad of
measurements (corresponding to the x, y, and z directions
on their local Bloch sphere). We have also provided numerical
evidence that N parties who share a maximally entangled state
will always violate a Bell inequality (unless N = 3) with this
measurement choice. Moreover, this scheme is robust against
local depolarizing noise in that small levels of noise will only
slightly decrease the probability of violating a Bell inequality.

We note that local depolarizing noise models a variety of
relevant experimental noise sources and imperfections. For ex-
ample, local depolarizing noise can be used to model imperfect
detectors (i.e., detectors that only detect a fraction γ of events)
or the nonideal preparation of a resource state through such
processes as spontaneous parametric down conversion. Local
depolarizing noise also provides a worst-case bound for other
noise models. Finally, the singlet state with local depolarizing
noise is equivalent to a mixed Werner state, so our results can
also be interpreted as giving a probability of violating a Bell
inequality for Werner states.
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