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Solitons supported by singular spatial modulation of the Kerr nonlinearity
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We introduce a setting based on the one-dimensional nonlinear Schrödinger equation (NLSE) with the self-
focusing cubic term modulated by a singular function of the coordinate |x|−α . It may be additionally combined
with the uniform self-defocusing (SDF) nonlinear background, and with a similar singular repulsive linear
potential. The setting, which can be implemented in optics and Bose-Einstein condensates, aims to extend the
general analysis of the existence and stability of solitons in NLSEs. Results for fundamental solitons are obtained
analytically and verified numerically. The solitons feature a quasicuspon shape, with the second derivative
diverging at the center, and are stable in the entire existence range, which is 0 � α < 1. Dipole (odd) solitons are
also found. They are unstable in the infinite domain, but stable in the semi-infinite one. In the presence of the SDF
background, there are two subfamilies of fundamental solitons, one stable and one unstable, which exist together
above a threshold value of the norm (total power of the soliton). The system, which additionally includes the
singular repulsive linear potential, emulates solitons in a uniform space of the fractional dimension, 0 < D � 1.
A two-dimensional extension of the system, based on the quadratic (χ (2)) nonlinearity, is also formulated.
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I. INTRODUCTION AND THE MODEL

Solitons and their stability in nonlinear Schrödinger and
Gross-Pitaevskii equations (NLSEs and GPEs) in spaces of
different dimensions D and with various types of the non-
linearity is a general problem in mathematical physics, with
vast applications in nonlinear optics, plasmas, Bose-Einstein
condensates (BECs), etc. [1–4]. A fundamental restriction on
the stability of solitons supported by the self-focusing (SF)
nonlinear term |q|2sq, where q is the corresponding wave field,
is imposed by the onset of the critical collapse, according to
the Talanov’s criterion [1], sD < 2.

Recently, the studies of solitons in NLSEs have been
expanded by considering various settings with spatially mod-
ulated nonlinearity (see original papers [5–15] and a review
[16]). Available experimental techniques allow one to engineer
modulation profiles in optics by doping waveguides with
resonant atoms [17], or filling voids in photonic crystals by a
material with the linear refractive index matched to that of the
host medium but with a different value of the Kerr coefficient
[9,11,16]. In BEC, one may use, for the same purpose, the
Feshbach resonance controlled by spatially inhomogeneous
fields [5–7,10,12–14]. In particular, the magnetic field may be
properly shaped by sets of ferromagnetic films [18].

While recent works on this topic were chiefly focused on
regular nonlinearity-modulation patterns, traditional limits of
the studies of localized modes may be transcended by the
consideration of singular modulations. Recently, it has been
demonstrated that the use of the self-defocusing (SDF) cubic
nonlinearity with the local strength diverging at |x| → ∞, or
at finite values of coordinate x, allows one to support bright
solitons in the absence of the SF, without the help of any
linear potential [19,20]. Similar results were obtained in a
system which can be transformed into the same form, with
a constant coefficient of the cubic SDF nonlinearity and a
spatially modulated diffraction coefficient vanishing at |x| →
∞ [21]. In optics and BEC alike, singular nonlinearity patterns

can be created by using modulation profiles with an exact
resonance attained at designated singular point(s) [19,20,22].

The objective of the present paper is to study fundamental
and higher-order one-dimensional (1D) solitons supported
by the cubic SF nonlinearity subject to the basic singular
modulation. In the most general form, the model is represented
by the following NLSE and GPE:

iqz = − 1
2qxx + (σ − |x|−α)|q|2q + β|x|−αq. (1)

Here z is the propagation distance in the NLSE, or time in
the GPE, α > 0 is the singularity power, the coefficient in
front of the SF term is scaled to be 1, and σ � 0 takes into
account a possibility that the singular SF nonlinearity may be
embedded into the SDF background. As concerns the linear
singular potential with coefficient β, it is shown below that it
may be used to emulate the NLSE in the space of a fractional
dimension 0 < D � 1, although we chiefly focus on the case
of β = 0.

Our analysis shows that stable (noncollapsing) solitons
exist at 0 � α < 1, i.e., for a relatively weak singularity. The
numerical results demonstrate that the solitons are also stable
against replacement of the singular modulation profile by a
regularized one, i.e., the true singularity is not necessary for
the creation of the predicted solitons in the experiment. Further,
stable solitons found below are not specifically narrow, hence
Eq. (1), derived in the standard paraxial approximation, is valid
for modeling the light transmission in optical waveguides.
Because we aim to describe the stable solitons, rather than the
complex dynamics of collapsing fields, Eq. (1) is reliable also
in the context of BEC (the mean-field equation might not be
relevant as a dynamical model of the collapse).

The analysis of solitons in the model based on Eq. (1) is
presented below as follows. Analytical results (both exact and
approximate ones) for fundamental solitons are collected in
Sec. II. Numerical findings, which corroborate the analytical
predictions for the fundamental solitons, and exhibit further
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results for dipoles, are reported in Sec. III. The paper is
concluded with Sec. IV, where we also put forward an exten-
sion of the singular-modulation problem for two dimensions
(2D), resorting to the quadratic (second-harmonic-generating)
nonlinearity instead of the cubic one.

II. ANALYTICAL RESULTS
FOR FUNDAMENTAL SOLITONS

We look for stationary solutions to Eq. (1) as q =
exp(ibz)w(x), with propagation constant b > 0 (or chemical
potential −b in the case of the GPE), and real function w(x)
obeying the following equation:

bw = 1
2w′′ + (|x|−α − σ )w3 − β|x|−αw. (2)

Using an obvious rescaling, one can immediately derive an
exact relation for the total norm of solitons in the basic case of
σ = β = 0:

U (b) ≡
∫ +∞

−∞
|q(x)|2dx = b(1−α)/2U (b = 1), (3)

hence the solitons satisfy the Vakhitov-Kolokolov (VK)
stability criterion [2,3] dU/dk > 0 at α < 1, and are definitely
unstable at α � 1 (if they exist in the latter case—see below).
Note that this conclusion does not depend on the type of
the solitons, pertaining to fundamental and higher-order ones
alike.

It is interesting to note that Eq. (2) with σ = b = 0 and
β �= 0 may emulate the radial version of the cubic NLSE in
the uniform space of the fractional dimension,

D = 2(1 − α)/(2 − α), (4)

with the corresponding propagation constant β, if coordinate
x is mapped into r ≡ 2(2 − α)−1|x|(2−α)/2. Indeed, the accord-
ingly transformed Eq. (2) takes the form of

βw = 1

2

(
d2w

dr2
+ D − 1

r

dw

dr

)
+ w3. (5)

For the singularity power α growing from 0 to 1, effective
dimension (4) decreases from 1 to 0. Solitons in the space of
the fractional dimension correspond to β > 0 in Eq. (5). In
terms of the underlying Eq. (1), β > 0 represents a repulsive
singular linear potential, which then competes with the self-
attractive singular nonlinearity. The possibility to use the
present system for emulating the fractional-dimension space
is relevant in the connection to the currently active topic of
“simulating” complex physical media by means of relatively
simple matter-wave settings (or photonic ones, as the above
discussion suggests) [23].

The shape of fundamental solitons near the singular point
can be found by the straightforward expansion of Eq. (2) at
x → 0:

w(x) = w0

[
1 − 2

w2
0 − β

(1 − α)(2 − α)
|x|2−α

+ (
b + σw2

0

)
x2 + O(|x|2(2−α))

]
, (6)

where w0 is the soliton’s amplitude attained at x = 0, and
β < w2

0 is assumed (otherwise, the soliton does not exist). This

soliton may be classified as a “quasicuspon”: While ordinary
cuspons are characterized by a finite amplitude and a diverging
first derivative at x → 0 (see, e.g., Ref. [24]), Eq. (6) features
w′(0) = 0 and w′′(x) diverging at x → 0. The fundamental
soliton does not exist at α > 1, as in that case expansion (5)
represents a nonsoliton solution, with a local minimum, rather
than maximum, at x = 0. Precisely at α = 1, Eq. (6) is replaced
by the following expansion:

w(x) ≈ w0
[
1 + 2

(
w2

0 − β
)|x| ln(1/|x|)],

also with a local minimum at x = 0 (for β < w2
0), hence the

fundamental soliton does not exist in this case either.
The soliton family as a whole may be approximated by the

Gaussian variational ansatz,

w2 = U√
πW

exp

(
− x2

W 2

)
, (7)

with width W and norm U (the total power, in terms of optics)
defined as per Eq. (3). The substitution of the ansatz into the
Lagrangian of Eq. (2) with β = 0,

L =
∫ +∞

−∞
[bw2+(1/2)(w′)2 + (1/2)(σ−|x|−α)w4]dx,

and the subsequent integration yields

L =
(

b + 1

4W 2

)
U + 1

2
√

2πW

×
[√

πσ − �

(
1 − α

2

) (√
2

W

)α]
U 2,

where � is the Gamma function. The variational equations
following from here, ∂L/∂U = ∂L/∂W = 0, predict the
existence of two subfamilies of the solitons at σ > 0, one
VK-stable (with dU/dk > 0), and another unstable, above a
threshold value of the norm, which can be found analytically:

Uthr = π (1/α+1)/2

(
1

α
− 1

)
σ 1/α−1

×
[

(1 − α2)�

(
1 − α

2

)]−1/α

. (8)

Because we consider the case of α < 1, it follows from
Eq. (8) that the threshold vanishes along with the SDF
background at σ = 0. In the same case, the variational
approximation yields explicit results for the norm, width,
and amplitude of the fundamental soliton, as functions of
propagation constant b:

U = π [8/(3 − α)](1−α)/2b(1−α)/2

(1 + α)(1+α)/2�((1 − α)/2)
,

(9)

W 2 = 3 − α

4(1 + α)b
, A2

max = U√
πW

.

As seen from here, the soliton’s amplitude falls to zero at α →
1, A2

max ≈ (1/2)
√

πb(1 − α), while its width remains finite,
W 2 ≈ 1/(4b). This implies that the paraxial approximation,
employed in the derivation of Eq. (1) as the model of optical
media, also remains valid in this limit.

In the case of the weak singularity, α 	 1, another
approximation may be used, based on expansion |x|−α ≈ 1 +
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α ln(1/|x|). After simple manipulations, the corresponding
soliton solution for β = 0 and σ < 1 may be reduced to
the ordinary NLSE soliton with amplitude

√
2b, effective

mass m ≡ 1, and central coordinate ξ , moving in an effective
potential defined by an integral expression, which can be
expanded at small ξ :


(ξ ) = − αb

1 − σ

∫ +∞

−∞
ln

(
1

|y|
)

sech4(y −
√

2bξ )dy

≈ αb

1 − σ
(−0.83 + 2.46bξ 2).

Accordingly, the soliton is predicted to perform small
oscillations around ξ = 0 with squared frequency ω2 ≈
4.92(1 − σ )−1αb2. For instance, at σ = 0 and b = 2 this
formula predicts the period of oscillations T = 2π/ω ≈ 9.0
and T ≈ 3.2, for α = 0.025 and α = 0.2, respectively, while
direct simulations of Eq. (1) yield, in the same cases, T ≈ 10
and T ≈ 3.

To complete the presentation of the analytical results, it is
relevant to mention that, in terms of the scaling with respect to
x, Eq. (1) with α = 1 and β = 0, which, as shown above, does
not produce fundamental solitons, is similar to the equation
with the delta-functional SF term that was introduced in
Ref. [25]:

iqz = − 1
2qxx + [σ − δ(x)]|q|2q. (10)

It is easy to find that Eq. (10) gives rise to exact soliton
solutions,

q = exp(ibz)
√

2b/σ {sinh[2
√

2b(|x| + ξ )]}−1,

with ξ defined by the relation σ sinh(2
√

2bξ ) = 2
√

2b, and
norm U (b) = √

1 + 8b/σ + 1 − 2
√

2b/σ . However, this
U (b) dependence does not satisfy the VK criterion, hence the
solitons are unstable. In the absence of the SDF background,
σ = 0, the norm is degenerate, U ≡ 1, which also suggests
an instability, as in the case of the Townes solitons, associated
with the case of the critical collapse [3]. Indeed, Eq. (10)
with σ = 0 (as well as the quintic NLSE) realizes the critical
collapse in one dimension (1D), as shown by exact solutions
for collapsing and decaying solitons [26].

III. NUMERICAL RESULTS

The analytical predictions were verified by numerical
solutions of Eqs. (1) and (2). For this purpose, the singular
modulation function was replaced by a regularized expression,
|x|−α → (x2 + ε2)−α/2, with sufficiently small ε. It was found
that the fundamental solitons exist and are completely stable,
in terms of eigenvalues of perturbation modes and direct
simulations alike, in the whole interval of 0 � α < 1, in full
agreement with the above prediction based on the VK criterion.
Examples of the solitons, displayed in Fig. 1, demonstrate, as
expected, the drop of the height and steepening of the profile
with the increase of α toward 1.

In the absence of the SDF background and linear
potential (σ = β = 0), the soliton family is characterized by
dependences of the norm and amplitude on the singularity
power α at b = 1 (as stated above, b = 1 can be fixed by
scaling). The dependences are displayed in Fig. 2, along with

FIG. 1. (Color online) Stable fundamental solitons, found as
numerical solutions of Eq. (2) with σ = β = 0, b = 1, and several
values of the singularity power. In this and other figures, all quantities
are plotted in the same scaled units in which Eqs. (1) and (2) are
written.

the predictions of the variational approximation given by
Eq. (9). Very close agreement between the variational and
numerical results is obvious.

As seen in Fig. 3, in the presence of the SDF back-
ground (σ = 1, β = 0), the numerical solution gives rise
to the fundamental solitons at U > Uthr, again in agree-
ment with the analytical prediction. In particular, Eq. (8)
yields Uthr ≈ 2 at α = 0.25. A discrepancy with Uthr ≈ 1.4
observed in Fig. 3 is explained by the difference of the
Gaussian ansatz (7) from the exact (quasicuspon) shape of the
solitons.

The system also gives rise to higher-order solitons, includ-
ing dipoles (odd modes). In particular, the expansion of the

FIG. 2. The norm (U ) and amplitude of the stable fundamental
solitons vs the singularity power α for σ = β = 0 and the propagation
constant scaled to b = 1, as found from the numerical solution of
Eq. (2) (curves), and as predicted by the variational approximation in
the form of Eq. (9) (“VA,” chains of symbols).
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FIG. 3. The numerically found norm of the fundamental solitons
vs the propagation constant for σ = 1 and β = 0 in Eq. (2). In
agreement with the VK criterion, the right and left portions of the
family are found to be stable and unstable, respectively.

dipole solution near x = 0 yields

w(x) = w1x
[
1 − 2(5 − α)−1(4 − α)−1w2

1|x|4−α

+ (b/3)x2
] + · · ·

for σ = β = 0, where w1 is an arbitrary parameter of the
dipole family [cf. Eq. (6)]. As follows from here and is
confirmed by the numerical solution of Eq. (2), the dipoles,
unlike the fundamental solitons, exist also at α � 1, but the
above analysis demonstrates that they are VK unstable in that
case. At α < 1, the dipoles are found to be unstable against
a spontaneous merger into fundamental solitons (see Fig. 4)
(this symmetry-breaking instability mode is ignored by the
VK criterion). Indeed, a detailed analysis demonstrates that
the single eigenmode of small perturbations accounting for the
instability is an even one, with a maximum at x = 0 (not shown
here), in contrast with the odd structure of the unperturbed
dipole.

The dipoles are stabilized in the semi-infinite space, with
a boundary condition (b.c.) q(x = 0) = 0, which may be real-
ized in BEC, as proposed in Ref. [22], by placing the singular
point at a solid surface. This b.c. rules out fundamental solitons,
but makes the dipole stable, eliminating the above-mentioned
instability eigenmode. In the guided-wave-propagation setting,
this b.c. also may be realized—e.g., as a metallic wall of

FIG. 4. A contour plot of |q(x,z)| demonstrating the sponta-
neous transformation of an unstable dipole into a fundamental
soliton at σ = β = 0, α = 0.5, and b = 1. The respective instability
growth rate, found from the linearization of Eq. (1), is real,
0.3775.

a microwave duct, onto which the nonlinearity-enhancing
dopant is deposited. Higher-order modes were also found,
but they are completely unstable against the fusion into
fundamental solitons.

IV. CONCLUDING REMARKS

We have introduced the 1D setting with the singular
modulation of the SF nonlinearity, possibly embedded into
the SDF background and combined with the singular linear
repulsive potential. This setting, which may be realized in
optics and BEC, extends the analysis of solitons in the general
class of physical models based on NLSEs. Properties of
fundamental solitons, which are fully stable, were investigated
analytically and verified numerically. The fundamental soliton
modes found here may also emulate solitons of the cubic NLSE
in the uniform space of fractional dimension 0 < D < 1.
Dipoles (odd solitons) are stable in the semi-infinite domain,
where they replace the fundamental solitons.

A natural issue is the extension of the present setting into the
2D space. While this is impossible with the cubic nonlinearity,
which will inevitably lead to the collapse in 2D, the extension is
feasible for the quadratic (second-harmonic-generating, χ (2))
nonlinearity. Although a detailed analysis of such a model
should be the subject of a separate paper, it is relevant to
give here the underlying equations for the amplitudes of the
fundamental-frequency and second-harmonic waves u(x,y,z)
and v(x,y,z), where z is the propagation distance, and (x,y)
are the transverse coordinates [cf. Eq. (1)]:

iuz + 1
2∇2u + r−αu∗v = 0,

(11)
2ivz + 1

2∇2v − Qv + 1
2 r−αu2 = 0,

where r =
√

x2 + y2, and Q is a real mismatch parameter [27].
In fact, Eq. (11) is also relevant as a 1D quadratic model, with
r−α replaced by |x|−α .

Solutions to Eqs. (11) for fundamental solitons with prop-
agation constant b are looked for as {u(x,y,z),v(x,y,z)} =
{eibzφ(x,y),e2ibzψ(x,y)}, with real functions φ(x,y) and
ψ(x,y) obeying the stationary equations:

bφ = 1
2∇2φ + r−αφψ, 4bψ = 1

2∇2ψ − Qψ + 1
2 r−αφ2,

(12)

cf. Eq. (2). However, the scaling argument, which led to Eq. (3)
in the model with the cubic nonlinearity, applies to Eq. (12)
solely in the case of zero mismatch, Q = 0. In that case, the
scaling laws for the 2D and 1D versions of system (11) take
the following form:

U2D(b)≡
∫ ∫

[φ2(x,y) + 4ψ2(x,y)]dxdy = b1−αU2D(b=1),

U1D(b) ≡
∫ +∞

−∞
[φ2(x) + 4ψ2(x)]dx = b3/2−αU1D(b = 1).

A comparison of these relations with Eq. (3) suggests that
2D and 1D solitons, supported by the singularly modulated
χ (2) nonlinearity with the zero mismatch, may exist and be
stable for the singularity powers α2D < 1 and α1D < 3/2,
respectively.
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On the other hand, nonzero mismatch breaks the scaling
invariance and affects the existence and stability areas for
solitons. In particular, in the limit of large positive Q, the
usual cascading-limit approximation may be used in the
second equation of system (11), v ≈ (1/2)r−αu2 [27]. Upon
substitution into the first equation, this approximation yields
the equation with the effective cubic nonlinearity, which is
relevant only in the 1D case:

iuz + (1/2)uxx + (1/2)|x|−2α|u|2u = 0.

According to the above results, the latter equation gives rise
to stable fundamental solitons at α < 1/2. Thus, the transition
from Q = 0 to Q → +∞ leads to the reduction of the stability

limit for the stable fundamental solitons in the 1D χ (2) system
from α < 3/2 to α < 1/2. Further analysis of the χ (2) system
will be reported elsewhere.
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