
PHYSICAL REVIEW A 85, 023839 (2012)

Experimental measurement of gain and loss in a microcavity laser
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In a microcavity laser, it is known that the quality factor obtained experimentally is much less than the
one obtained numerically. This quality factor degradation in experiment is caused by various effects, such as
absorption, surface roughness, flatness of the ridge boundary, and curvature. To understand the quality-factor
degradation we obtain the gain and the internal loss coefficient in an elliptic microcavity laser. In the experiment,
we take a triangular orbit. To confirm the triangular orbit, we measure the mode spacing and estimate the emission
direction by including the Fresnel filtering. By using the Fourier transform analysis, we obtain the loss and gain
coefficients because the triangular orbit can be regarded as a Fabry-Perot resonator due to the incidence angle.
The obtained loss for our microcavity laser is larger than the one caused by material absorption, which is due to
environmental losses, such as surface roughness and flatness of the ridge boundary.
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I. INTRODUCTION

In a deformed microcavity laser, resonances and their
emission directions have been intensively studied because the
cavity has high potentiality in applications for optoelectronic
circuits. Most recent studies are focused on high-quality-factor
resonance modes, which emit unidirectionally in cavities
with spiral [1], rounded-isosceles-triangle [2], annular [3],
limaçon [4], gibbous [5], and ellipse-with-notch shapes [6]
and two jointed half ellipses [7]. Along with these regular
scarred resonances, two special kinds of resonance, a quasiscar
[8–10] and a scarlike [11] resonance, have attracted much
attention because they appear only in an open system. Qua-
siscar and scarlike resonances were experimentally verified in
spiral-shaped [12] and ellipse-shaped microcavity lasers [13],
respectively.

Regarding a scarlike mode observed in an elliptic mi-
crocavity laser, the cavity can be considered as a deformed
cavity from a circle while the integrability of the underlying
classical ray dynamics is preserved. The important feature
of the ray dynamics of an elliptic cavity in comparison
with a circular cavity is that there exist two different types
of motion [14]: One is a bouncing-ball-type mode and the
other is a whispering-gallery mode. The scarlike resonance
modes show localized intensity patterns on a specific periodic
orbit underlying in the corresponding classical ray dynamics.
This phenomenon is something unexpected because the ray
dynamics of the elliptic cavity is integrable and the resonance
modes of the corresponding wave mechanics are believed to
be supported by the underlying resonant tori rather than by
a specific periodic orbit according to the usual ray and wave
correspondence. In order to explain the wave phenomenon of
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localized modes for systems with an integrable closed counter-
part, Unterhinninghofen et al. have developed a semiclassical
extension of the ray dynamics including the Goos-Hänchen
shift [15]. It is therefore quite important to study the impact
of these scarlike modes on emission properties of an elliptic
cavity. The necessity of this study is one motivation for the
experiment we perform in this paper.

In an open system such as a semiconductor microcavity,
there exists no true bound state due to the loss on the
cavity boundary. In a microcavity laser, the intensity of light
increases as the light travels inside of the cavity when the
cavity is connected to an external source. Hence the resonance
mode usually expected to have a short lifetime can last
a long time because of the gain effect from the external
excitation. However, the intensity also decays due to the
inherent absorption of the cavity material and the transmission
through the boundary. In a microcavity laser, in addition to
these losses, surface roughness, flatness, and curvature on
the boundary can work as losses degrading the quality factor
because the cavity size is so small. Hence the measurement
of the loss and the gain in a certain periodic orbit can help
us understand the optical properties of a periodic orbit. This
expectation is another motivation for our study.

Our experiments are performed by using a highly deformed
elliptic microcavity laser, which generates various scarlike
resonance modes of triangular, bow-tie, double-bow-tie, and
triple-bow-tie orbits below the laser threshold [13]. Among
them, we attend to a resonance mode of a triangular orbit,
whose incidence angle is less than the critical angle, for
measurement of the gain and the loss because it can be
regarded as the mode in a Fabry-Perot resonator. In Sec. II,
the path length is obtained from the mode spacing to estimate
the periodic orbit. From the path length, we confirm the
triangular scarlike mode. In Sec. III, the emission directions
are calculated by including the Fresnel filtering [16,17] to
understand the emission direction of a triangular scarlike
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mode. We also show that the emission directions including
the Fresnel filtering well agree with the emission direction
measured near the major axis. In Sec. IV, we measure
the loss and the gain of the InGaAsP/InP microcavity by
using the Fourier transform analysis [18,19]. We compare
the experimental results with the values obtained by different
measurement methods [20–23] and discuss them.

II. EXPERIMENTAL SETUP AND SPECTRUM

An elliptic InGaAsP/InP multiple-quantum-well microcav-
ity laser, whose minor axis radius is 30 μm and whose
aspect ratio is b/a = 0.3179, is fabricated, where a and b

are the radii of the major and the minor axes, respectively.
The fabrication procedure and parameters are the same as
in Refs. [12,24]. To measure the emission spectrum, we use
a lensed optical fiber whose core and clad diameter are 8
and 125 μm, respectively. The input facet of the lensed fiber
is a cone type whose angle is 70◦, and the input facet of
the fiber core is spherical, with a radius of 15 μm. The
launched emission intensity is measured with a power meter
(Newport 818-IR) connected to a multifunction optical meter
(Newport 1835-C). The emission spectrum is measured with
an optical spectrum analyzer (Agilent 86142B) as we increase
the injection current. The current is controlled with a laser
diode controller (Lightwave LDC-3744B) at room temperature
(T = 20 ◦C).

Figure 1(a) is the experimental setup, showing an elliptic
microcavity laser, the stylus (as an anode), and the lensed
optical fiber for measurement of the emission. Figure 1(b)
shows triangular periodic orbits developed inside the el-
liptic microcavity laser. The length of the orbit is L =
387.26 μm. The incident angles at three reflecting points, P1 =
(94.243,1.552), P2 = (94.243,−1.552), and P3 = (0,−30) in
Cartesian coordinates, are about 9.26◦ for P1 and P2 and 71.49◦
for P3. At point P3, total internal reflection occurs because the
incident angle is larger than the critical angle, θc = 17.88◦,
for the effective refractive index of ne = 3.258, where ne is
obtained by the beam propagation method. At point P1, two
transmitted lights, E1 and E2, are caused by the clockwise
and the counterclockwise traveling waves, respectively. The
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FIG. 1. (Color online) (a) Experimental setup: A is the elliptic
microcavity laser, B is the stylus as an anode, and C is a lensed optical
fiber for measurement of the emission. (b) Diagram of triangular
orbits developed inside the elliptic microcavity, where the distance of
points P1 and P2 from the major axis is exaggerated for clarity.

FIG. 2. Emission spectrum measured near the major vertex
at a current of I = 50 mA below the laser threshold current
(Ith � 65 mA).

emission direction of E1 and E2 is 31.6◦ with respect to the
outward normal when the Fresnel filtering effect [16,17] is not
taken into account.

Figure 2 is the measured spectrum near the major vertex
at the injection current I = 50 mA, which is less than the
threshold current for laser emission (Ith ∼ 65 mA). Figure 2
shows that the average mode spacing �λ is 1.71 ± 0.05 nm
in the range from 1565 to 1575 nm for the mean wavelength
of about 1569.71 nm. When we consider the mode spacing of
�λ and the group refractive index of ng = 3.68 [13], the orbit
length L inside the elliptic microcavity is 390.8 μm within
2.8% error. This experimentally obtained orbit length is very
close to the length of the triangular orbit of 387.26 μm within
a deviation of 0.9%. This value is quite different from the orbit
length of the bow-tie resonance mode of 398.1 μm. Indeed,
the emission of the triangular mode is measured around the
major axis, as in Ref. [13]. The lasing emission of the bow-tie
mode is also measured around the major axis, as in Ref. [13].
Nevertheless, the emission direction of the bow-tie mode is
still about ±25◦ from the major axis, as shown in Ref. [13].
Actually, we can detect the weak emission of the bow-tie mode
because of the acceptance angle of the fiber, but the intensity
is weaker than the intensity of the triangular mode. Hence
the emission around the major axis is the triangular mode.
Also the length of the triangular orbit is much shorter than
that of the bow-tie orbit of 398.1 μm. In the next section,
we describe the emission direction of the triangular mode by
including the Fresnel filtering effect.

III. EMISSION DIRECTION

When a beam with a Gaussian angular distribution is
incident to the boundary inside the cavity, a part of the light,
whose incident angle is larger than the critical angle, is totally
reflected with an evanescent wave. The other part of the light
in the angular distribution is reflected and transmitted across
the boundary according to Snell’s law. Hence the direction of
the outward beam field is shifted from what is expected by
Snell’s law. This effect is known as Fresnel filtering [16,17].

When a beam field Ei is incident to the inward boundary
with a Gaussian angular distribution as shown in Fig. 3, the
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FIG. 3. Diagram of the calculation including the Fresnel filtering.
P0 is the observation point on the y axis, and P is the emission point on
the boundary. There are two refracted beam fields, E1 and E2, at one
reflected point due to clockwise and counterclockwise propagation
directions. n and θn are the outward normal direction and the angle
from the x axis at point P , respectively. θ is the angle between the
observation point Po and the x axis. δ and h are the differences of x

and y components between the bouncing point and the vertex point,
respectively. d is the distance between the vertex and the y axis.

refracted asymptotic far field E is given as follows [16]:

E = E0�√
2iρ�/ne

[√
1 − s2

o cos φ
]

√
n2

e − sin2 φ
T (so)G(so) exp(iρ�/ne) ,

(1)

T (so) = 2ne

√
n2

e − sin2 φ

μ
√

n2
e − sin2 φ + n2

e

√
1 − sin2 φ

, (2)

G(s) = exp[−(�/2)2s2 + i�
√

1 − s2zo] , (3)

so(φ) = [
sin φ cos θi − sin θi

√
n2

e − sin2 φ
]/

ne , (4)

where Po(ρ,φ) is the observation point in the polar coordinate
attached to the boundary, θi is the incidence angle, μ is the
polarization factor of 1 (or ne) for TE (or TM), and � = nekow

is the dimensionless width of the incidence Gaussian beam.
Here w is the minimum beam waist at a distance zo from the
interface, and ko is the wave number in free space.

When a certain periodic orbit is developed inside the
microcavity, there are two emission directions at one reflected
point P due to clockwise and counterclockwise propagation
directions. In the case of the triangular orbit in an elliptic
microcavity, the total field E at the observation point Po is a
vector sum of E1, E2, E3, and E4, as shown in Fig. 1(b). The
x component of the total field E on point Po is given by

Ex = E1x + E2x + E3x + E4x . (5)

In this orbit, fields E3 and E4 and fields E1 and E2 are
symmetric with respect to the x axis, respectively. Field E1 at
point Po is calculated numerically by using the Eqs. (1)–(4)
with consideration of the following relations:

φ = θ + θn , (6)

ρ = (d + δ)/ cos θ , (7)

θ = tan−1[(−y + h)/(d + δ)] , (8)

(a)

(b)

FIG. 4. (Color online) Emission intensity distribution depending
on the distance. (a) The measured intensity distribution depending on
the distance when the injection current is 50 mA. The curves from A
through E are the emission intensity depending on the position on the
y axis when the distance is 55, 60, 70, 80, and 100 μm away from
the major vertex, respectively. (b) Numerically obtained distributions
of a triangular orbit including the effect of Fresnel filtering when the
distance is the same as in (a).

where θn is the angle between the x axis and the outward
normal at point P . θ is the angle between the observation
point Po and the x axis. δ and h are the x and y component
differences between the bouncing point and the vertex point,
respectively, and d is the distance between the vertex and the
y axis. Fields E2, E3, and E4 can be calculated similarly.

Figure 4(a) is the measured intensity distributed on the y

axis depending on the distance as shown by the inset. The
curves from A to E are the intensity distribution when the
distance is 55, 60, 70, 80, and 100 μm away from the major
vertex, respectively, at the injection current of I = 50 mA.
Figure 4(b) is the calculated result of the intensity distribution
including the Fresnel filtering effect for the triangular orbit
at the same distances as in Fig. 4(a). The fitted parameters
are zo = 2.5 μm and � = 8.0742. Due to the Fresnel filtering
effect, the emission direction is rotated about 6◦ to the outward
normal from the direction expected according to Snell’s law,
31.6◦. The measured direction is similar to the calculated one.
Figure 4 shows the maximum intensity on the major axis.
Hence we can measure the emission of the triangular orbit in
the major-axis direction.

IV. LOSS AND GAIN COEFFICIENTS

Measurement of the loss and gain coefficients is useful for
understanding the quality-factor degradation and the optical
property of a microcavity laser. To obtain the loss and gain
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coefficients, first, the reflectance R should be precisely deter-
mined by considering the polarization state of the emission.
From the measurement of the emission polarization, we find
that the emission is composed of about 90% p polarization
and about 10% s polarization. The reflectance R is about
0.226 at the reflection point P1 because the incident angle is
θi = 9.26◦. On determination of the reflectance, we carefully
consider the Gaussian angular distribution of the incident
wave. At reflection point P1, we approximately obtain the
radius of the curvature, which is about 41.383 μm. When
we apply Hentschel’s [25] and Lee’s [7] theoretical results,
the reflectance is about 0.22583, while the reflectance due to
the Fresnel equation is about 0.22582. The difference is less
than 0.01%.

Because of the reflectance, which is R < 1.0, the tri-
angular periodic orbit can be considered as a Fabry-Perot-
type resonator. To obtain the loss and the gain we obtain
Fourier transform spectra depending on the injection current.
The adjacent peak-amplitude ratio r in a Fourier transform
spectrum contains the information of the propagation loss-gain
K at a given injection current in a Fabry-Perot-type laser
because of the relation of r = Ii+1/Ii = Re−KL, where Ii+1

and Ii are the (i + 1)th and ith peaks in the transformed
spectrum, respectively, and L is the cavity length [18,19,26].
When a light travels along a path periodically, the Fourier
transform spectrum I (xd ) of the emission spectrum is given as
follows:

I (xd ) = |1 − Re2iψ |2

×
∞∑

m=0

∞∑
l=0

[R(l+m)e−2iψ(l−m)]

{κL(l + m + 1)+i[πxd + ngL(l − m)]} ,

(9)

where xd is the Fourier transform pair of the wave number k, l
and m are the integers, κ is the imaginary part of the complex
refractive index, ψ is the effective phase change of the light
due to the reflection, and R is the reflectance at the reflection
point. Here the imaginary part of the complex wave number is
given by Im[k] = koκ = α/2, where α is the total internal loss
coefficient except for the loss due to the reflectance R [27].

Figure 5 shows the Fourier transform spectra of the
emission spectra. The insets are the emission spectra when
the injection currents are (a) I = 38 mA and (b) I = 72 mA.
In our experiment, the distance of the input facet of the optical
fiber, of which the direction is fixed on the direction of the
major axis of the microcavity laser, is about 60 μm away from
the major vertex. As the injection current is increased, the
peak position and the mode spacing are almost maintained.
Note that the resonance of the triangular orbit is not lased even
if the injection current is larger than the threshold current for
lasing the bow-tie resonance mode (Ith = 65 mA). We measure
the spectrum of the spontaneous emission up to I = 78 mA. In
the transformed spectrum, since the first-order peak in Eq. (9)
is at the position of xd = ngL/2π , we can obtain the orbit
length L. The cavity length L in Eq. (9) corresponds to L/2
in our cavity. As is shown in Figs. 5(a) and 5(b), since the
adjacent peak-amplitude ratio r = Ii+1/Ii increases as the
injection current increases, we can determine the gain and
the loss.

FIG. 5. Fourier transform spectra of the emission spectra (inset)
from the elliptical microcavity when the injection currents are
(a) 38 mA and (b) 72 mA. These spectra are measured in the direction
of the major axis at a distance of about 60 μm away from the major
vertex.

In the transformed spectra, we can obtain the gain and the
loss from the following relation:

K = α − γ (I ) , (10)

where α is the total internal loss and γ is the gain. The gain γ

has a dependency on the injection current I with the following
form [19,21]:

γ (I ) = γo ln[I/Ic], (11)

where γo is the gain coefficient of a microcavity laser. It is
acceptable to treat the constant current Ic in Eq. (11) as a
threshold current of the gain because the gain effect begins to
emerge only when the current I is larger than Ic. When the
injection current I is lower than Ic, only the effect of the loss
α holds.

We measure r depending on the injection current from the
Fourier transform spectra to find the current dependency of the
propagation loss-gain K . Here we note that K is the sum of
the loss and gain effects when the loss due to reflectance is not
considered. Hence K = 0 does not imply the lasing threshold.
The experiment is performed at the current from 10 to 78 mA
with an interval of 5 mA. As shown in Fig. 6, when the injection
current is less than 30 mA, there is no gain effect and only the
internal loss exists. The dotted line implies the internal loss
because below Ic = 30 mA the K is nearly constant. Above
Ic, the emission begins to obtain gain and K decreases. This
means that since K = α − γ (I ), γ begins to increase. From
this result, the total loss coefficient α and the constant current
Ic can be determined. The values of α and Ic are 33 cm−1
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FIG. 6. (Color online) Propagation loss-gain coefficient K with
the injection current I . K = α − γo ln(I/Ic) = −2 ln(r/R)/L. r is
the adjacent peak-amplitude ratio that is a function of the injection
current I . The absorption and the gain coefficient, α and γ , are 33
and 60 cm−1, respectively. The reflectance R at the bouncing point
and the orbit length L of the triangular mode are 0.226 and 387.3
μm, respectively. The current constant Ic for the gain is 30 mA.

and 30 mA, respectively. The gain coefficient γo is obtained
by logarithmic fitting, which is about 60 cm−1 (solid line).
In the case of the Fabry-Perot-type laser diode with the same
material of the InGaAsP/InP multiple-quantum-well structure,
the internal loss α is about 16 cm−1 when the cavity length is
longer than 1 mm [23,28]. In this case α is mainly caused by
the inherent material absorption. In our microcavity laser, α =
33 cm−1 is much larger than α of the Fabry-Perot-type
resonator due to inherent material absorption. We can under-
stand that the loss is caused by surface roughness, flatness
of the ridge boundary, and the curvature of the small-size

microcavity. For this reason the total internal loss is larger
than that of a Fabry-Perot-type resonator.

V. CONCLUSION

We observe the spectra of the spontaneous emission from
the elliptic microcavity laser under the regime of the laser
threshold. From the spectra, we obtain the modes that are
mainly supported by the effectively isolated periodic orbit of a
triangular orbit. To understand the quality-factor degradation,
we measure the loss and gain coefficients of the InGaAsP/InP
microcavity by regarding the triangular orbit as a Fabry-Perot
resonator because the incidence angle is smaller than the
critical angle. First, we confirm from the mode spacing
and the analysis of the emission direction including the
Fresnel filtering effect that the emission around the major-axis
direction is a triangular orbit. From the Fourier transform
analysis of the emission spectrum, we obtain the loss and
gain coefficients. From the results, we understand that, in a
small-size microcavity laser, the quality factor can be degraded
in real systems due to various losses of surface roughness,
flatness of the ridge boundary, and curvature as well as inherent
material absorption.
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