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Quantum theory of frequency pulling in the cavity-QED microlaser
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The spectrum of the cavity-QED microlaser or micromaser is expected to show distinctive features of the
coherent light-matter interaction, which are obscured in the conventional Schawlow-Townes linewidth theory.
However, the spectral studies have been limited to resonant atom-cavity interaction so far. Here we consider the
dispersive interaction in the off-resonance case, from which we uncover a quantum frequency pulling effect in the
microlaser or micromaser spectrum. We present a quantum theory of the spectrum which introduces the notion
of a frequency-pulling distribution associated with the photon number. In contrast to the conventional laser,
periodic variation of the mean frequency pulling is observed with increasing pump parameter and it is attributed
to the strong atom-cavity coupling. The pulling distribution gives rise to a spectral broadening, which can be
dominant over the nondispersive broadening addressed in the previous works. We also developed a corresponding
semiclassical theory and discuss how the introduction of the frequency shift fits in with the extended quantum
theory.
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I. INTRODUCTION

The microlaser or micromaser [1,2] operates with a small
number of atoms under the strong atom-cavity coupling
condition of the cavity quantum electrodynamics (QED).
The manifestation of atom-field coherent interaction, which
is masked by stochastic averages in the conventional laser,
have been observed in the micromaser or microlaser [3–5].
Moreover, its quantum particle property has revealed the
nonclassical aspect of the electromagnetic field [6–8]. The
wave property, on the other hand, which is expected to
exhibit the complementary nature, still awaits its experimental
verification. In particular, the power spectral density or the
first-order coherence is expected to show features [9] that
are unexplainable by the conventional Schawlow-Townes
linewidth theory [10]. Since the seminal work on the theory
of the micromaser spectrum [9], more elaborate and refined
calculations [11–15] have followed. Indirect measurement of
the micromaser spectrum has been proposed by using an
atom probe [16–18]. In the microlaser operating in the optical
region, the spectrum measurement is expected to be rather
straightforward.

It should be noted that all those previous works on the
micromaser or microlaser spectrum have been restricted to
the atom-cavity resonance condition, and thus they cannot
be applied to off-resonance cases by simple modifications
because dispersive interactions can induce a frequency shift,
resulting in a qualitatively different spectral lineshape. Even
in the conventional laser, for example, the phenomena called
frequency pulling or mode pulling makes the true laser
oscillation frequency shifted from a passive cavity resonance
frequency in the presence of a frequency detuning between
the gain medium and the cavity. It is thus natural to ask how
the spectrum changes as we remove the constraint of resonance
over the whole tuning range of the microlaser.

Here we present an extended quantum theory of the mi-
crolaser spectrum, including off-resonance cases. Our theory
predicts a quantum frequency pulling effect, a novel feature not
found in the conventional laser. Moreover, the amount of the
frequency pulling strongly depends on the pumping parameter

owing to the strong atom-cavity coupling. In the standard laser
theory of Lamb and Scully [19], in contrast, the amount of the
pulling is solely determined by the linewidths of the atomic and
the cavity resonances independent of a pumping parameter. In
particular, the unitary evolution of the atomic state gives rise
to a periodic characteristic in the pulling. The analysis given
here is also applicable to the microwave counterpart as long as
thermal microwave photons are negligible.

The quantum frequency pulling to be discussed below is in-
dexed by the photon number, the uncertainty of which leads to
spreading in the frequency shift or a spectral broadening. This
mechanism of dispersive broadening has never been addressed,
although it can easily exceed the nondispersive contribution in
the spectral width under the present experimental conditions
of the microlaser. Only microscopic lasers like the microlaser
or micromaser are adequate to study this quantum dispersive
effect: in the conventional laser, the differential pulling by
one-photon increment or decrement is negligible and thus not a
noticeable effect. We note that laser oscillation frequency shift
with respect to the cavity has been discussed in the so-called
mazer [20], a maser pumped by the matter wave, and in the
trapping state spectrum [11], but not in a general context as
in the present paper. To help gain an insight on the frequency
pulling effect, we also present a corresponding semiclassical
theory.

This paper is composed of the quantum theory in Sec. II
and the semiclassical theory in Sec. III. The quantum theory
is based on the quantum regression (Sec. II A) and the
master equation (Sec. II B). Central analytic formulas are
derived in Sec. II C and Appendix A. After examining the
physical meaning of the result of the quantum theory and its
conventional laser limit (Sec. II D), typical spectral lineshapes
(Sec.II E) and the dependence on detuning (Sec.II F) and
pumping (Sec.II G) are investigated. The semiclassical theory
presented in Sec. III A is based on the Maxwell-Schrödinger
equation and is compared with the quantum theory in
Sec. III B. The correction made by a newly introduced
frequency variable in the semiclassical theory is elucidated
by using a graphical method in Appendix B.
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II. QUANTUM THEORY

In this section, we generalize the master-equation-based
theory of the micromaser spectrum [9] in order to include the
effect of atom-cavity detuning. The key expressions relating
steady-state variables are derived analytically. The numerical
solution of the master equation is used to determine these
steady-state variables and, in turn, to perform exact calculation
of the quantities related to the frequency pulling. The quantum
distribution of the frequency pulling is naturally introduced
along this line of analysis.

A. First-order correlation function

The spectrum of an optical field is obtained by taking the
Fourier transform of its first-order correlation function, which
is written as

〈a†(t)a(0)〉 = trF⊕R[χ (0)a†(t)a(0)], (1)

where χ is the density operator of the field (F)-reservoir (R)
system and a† and a are the creation and annihilation operators,
respectively, of the laser field. The time origin t = 0 here is set
to an arbitrary moment at which the steady state of the system
is achieved. We have knowledge on the evolution of the field
subsystem, which is described by

ρ(t) = trR[χ (t)] (2)

via the master equation

ρ̇(t) = Lρ(t), (3)

the detailed form of which will be described below. The time
evolution of the total system is given by U (t) such that a†(t) =
U †(t)a†(0)U (t). We proceed as

〈a†(t)a(0)〉 = trF⊕R[χ (0)U †(t)a†(0)U (t)a(0)]

= trF {a†(0)trR[U (t)a(0)χ (0)U †(t)]}
≡ trF [a†(0)ρ̃(t)], (4)

to give

〈a†(t)a(0)〉 = 〈a†〉ρ̃(t). (5)

Therefore, 〈a†(t)a(0)〉 is the expectation value of the field
amplitude subject to the transformed density matrix ρ̃(t) =
trR[U (t)a(0)χ (0)U †(t)]. According to the quantum regression
theorem [19], the equation of motion for ρ̃(t) is given by that
of the ρ(t), that is,

˙̃ρ(t) = Lρ̃(t). (6)

In the photon number basis, the first-order coherence function
is related to the off-diagonal element of the density matrix
ρ̃n,n+1 ≡ ρ̃(1)

n as

〈a†(t)a(0)〉 =
∑

n

√
n + 1ρ̃(1)

n (t), (7)

where ρ̃(1)
n (t) is the solution of Eq. (6). The initial value of the

transformed density matrix is given by

ρ̃(0) = trR[a(0)χ (0)] = a(0)ρ(0), (8)

which is in the photon number basis

〈n|ρ̃(0)|n + 1〉 = √
n + 1〈n + 1|ρ(0)|n + 1〉 (9)

with all other terms being zero.

B. Master equation for ρ(1)
n

The next task is to find the time evolution of ρ(1)
n = ρn,n+1.

The master equation is written by considering the change of
the field due to the coherent interaction with the initially
inverted atoms and the incoherent decay. We assume the
tophat interaction model in which the atom-cavity interaction
parameterized by the constant atom-cavity coupling g persists
for a fixed amount of time τ for all atoms that traverse the
cavity mode. The mean number of atoms inside the interaction
region is designated by N . The realistic modification such as
the spatial variation of the cavity mode and the inhomogeneous
distribution of the interaction time can be readily included in
the numerical calculation.

The coarse-grained master equation for the microlaser,
written in the photon number basis, reads [19]

ρ̇nm = anmρn,m + bnmρn+1,m+1 + cnmρn−1,m−1 (10)

where

anm = ra

[
cos

(
�nτ

2

)
cos

(
�mτ

2

)
+ �′2

�n�m

sin

(
�nτ

2

)
sin

(
�mτ

2

)
− 1

− i
�′

�m

cos

(
�nτ

2

)
sin

(
�mτ

2

)
+ i

�′

�n

cos

(
�mτ

2

)
sin

(
�nτ

2

)]
− γc(n + m), (11)

bnm = 2γc

√
(n + 1)(m + 1), (12)

cnm = ra

[
4g2√nm

�n−1�m−1
sin

(
�n−1τ

2

)
sin

(
�m−1τ

2

)]
, (13)

with the field-atom detuning �′ = ω − ω0, the n-photon Rabi frequency �n =
√

4g2(n + 1) + �′2, the injection rate of the
atomic beam ra = N/τ , and the cavity decay rate γc (a half width). Note that the frequency of the laser field ω does not
necessarily coincide with the passive cavity frequency ωc if we are open to possible frequency shift. In that sense we reserve
� for the passive cavity detuning � = ωc − ω0. Since we are interested in the steady-state operation, in which the frequency
of the field is already shifted, the master equation is written in terms of the resulting shifted detuning �′. The introduction of
�′ and the corresponding modification of �n in Eqs. (11)–(13) are the key changes made to the quantum theory of Ref. [9].
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The imaginary part of Eq. (10), which appears only in the presence of a nonzero detuning, already suggests the introduction
of frequency pulling since the steady state ρ̇nm = 0 cannot be achieved without the frequency shifting transformation such as
ρ ′

nm(t) = ρnm(t)ei(n−m)(�′−�)t .

C. Complex eigenvalue of ρ(1)
n and the emergence of frequency pulling

The equation of motion for the off-diagonal element ρ(1)
n appears as

ρ̇(1)
n = −1

2
μnρ

(1)
n + ra

4g2√n(n + 1)

�n−1�n

sin

(
�n−1τ

2

)
sin

(
�nτ

2

)
ρ

(1)
n−1 − 2γc

√
n(n + 1)ρ(1)

n

− ra

4g2√(n + 1)(n + 2)

�n�n+1
sin

(
�nτ

2

)
sin

(
�n+1τ

2

)
ρ(1)

n + 2γc

√
(n + 1)(n + 2)ρ(1)

n+1, (14)

where we defined

−1

2
μn ≡ ra

{
cos
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�nτ

2

)
cos

(
�n+1τ

2

)
+ �′2

�n�n+1
sin

(
�nτ

2
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sin

(
�n+1τ

2

)

− i
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�n+1
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(
�nτ

2
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(
�n+1τ

2
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cos
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2

)
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(
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2
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+ 4g2√(n + 1)(n + 2)

�n�n+1
sin

(
�nτ

2

)
sin

(
�n+1τ

2

)
− 1

}
+ 2γc

√
n(n + 1) − γc(2n + 1), (15)

and we rearranged the terms in order to employ the
detailed balance between 2γc

√
(n + 1)(n + 2)ρ(1)

n+1 and

ra
4g2√(n+1)(n+2)

�n�n+1
sin( �nτ

2 ) sin(�n+1τ

2 )ρ(1)
n in the steady state [9].

Such a balance guides ρ(1)
n to decay exponentially with a single

time constant 1
2μn. The detailed balance holds for most of the

parameter space except the trapping state condition [7,21],
at which the truncation of the Hilbert state occurs. We note
that the single-decay ansatz is known to give more or less an
inaccurate value of the linewidth for the trapping state [15],
and the correct spectrum often comes up with a nontrivial
lineshape [11]. We exclude this singular case in our discussion
for simplicity. As noted in the definition of �′ and � in
Sec. II B, �′ = � + 〈δn〉 is understood in the steady state.

The corresponding field correlation function is then ob-
tained from Eq. (7) with t > 0 as

〈a†(t)a(0)〉 =
∑

n

√
n + 1ρ̃(1)

n (0)e− 1
2 μnt

=
∑

n

(n + 1)pn+1e
− 1

2 μnt

≡
∑

n

(n + 1)pn+1e
−Dnt+iδnt , (16)

where Dn and −δn are defined as the real and imaginary parts
of 1

2μn, respectively, and pn is the steady-state photon number
distribution, which can be obtained by the standard theory of
the micromaser [22]. The optical spectrum obtained by

S(ν − ωc) = 1

π
Re

∫ ∞

0
〈a†(t)a(0)〉e−i(ν−ωc)t dt (17)

is therefore the sum of individual Lorentzians centered at ν =
ωc + δn with a half linewidth Dn. Here, Dn is identified with
a phase diffusion constant at the fixed oscillation frequency
while δn is interpreted as a frequency shift. We note both
Dn and δn depend on n, and thereby have distributions

associated with the photon number. While the phase diffusion
Dn represents a spectral broadening by itself, the frequency
shift δn gives rise to an additional broadening by spreading out
the center frequencies of the individual Lorentzians. Note that
the contribution from each Lorentzian is weighted by npn.

In the limit of n 	 1, the real part Dn is further simplified
as

Dn 
 2ra sin2

(
g2τ

2�n

)
+ γc

4n
(18)

as shown in Appendix A. This result appears as a simple
generalization of the on-resonance result [9] by replacing
2g

√
n + 1 in the denominator of the sine term with �n.

Let us examine the imaginary part δn, which has never been
addressed in the literature. In the same limit of n 	 1, it is
simplified as (see Appendix A)

δn 
 −ra

g2�′τ
�2

n

[
1 − sin(�nτ )

�nτ

]
. (19)

Notice that, on resonance (� = 0), the frequency pulling δn

should vanish to satisfy Eq. (19). The frequency pulling is truly
a result of dispersive atom-cavity interaction, which induces an
additional optical path length other than that of the cold cavity.
The overall minus sign indicates that the sign of δn is opposite
to that of the detuning so that the oscillation frequency of the
microlaser is pulled toward the atomic resonance.

Since �n in the right-hand-side of Eq. (19) also contains
〈δn〉 in the effective detuning, Eq. (19) cannot be written in a
closed-form equation for δn. Although some of its properties
can be inferred from an analytic form as we will do below,
the exact calculation of the frequency pulling is presented by
numerical means mostly with the parameters relevant to the
microlaser experiment of Refs. [4,8] throughout this paper.
In the numerical calculation, the equivalent Gaussian mode
function is employed to be more realistic.
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FIG. 1. The characteristic function ξ (
) representing the Rabi
angle dependence of the frequency pulling.

D. Physical meaning and the conventional laser limit of the
frequency pulling

Before we proceed with systematic numerical calculations,
let us appreciate the physical meaning of Eq. (19). The mean
value of the frequency pulling is approximately equal to δn

with n 
 〈n〉. We can rearrange the terms in Eq. (19) as

〈δn〉 = −γc�
′

τ−1

N

Nth
ξ (
), (20)

where the characteristic function ξ (
) (plotted in Fig. 1) is
defined as

ξ (
) =
(

1 − sin 





)/

2. (21)

Here we used the threshold atom number Nth ≡ 2γc/(g2τ )
and the semiclassical Rabi angle 
 ≡

√
4g2〈n〉 + �′2τ ≡ �τ

assuming 〈n〉 	 1.
The first multiplicative factor in the right-hand-side of

Eq. (20) corresponds to γc�/2γp, the frequency pulling in
the conventional laser [19], if we identify the dephasing rate
of the medium γp with the transit-time bandwidth (2τ )−1. It has
a constant value determined by the relevant bandwidths of the
cavity and the gain medium, independent of the pumping rate.
In the case of the microlaser, we have additional multiplicative
factors in Eq. (20).

The factor N/Nth, equivalent to the effective pumping
parameter often denoted by θ2 = Ng2τ/2γc [22], shows
the increase of the frequency shift by pumping while ξ (
)
indicates the reduction resulting from a Rabi angle associated
with the growing laser intensity. In the conventional laser,
these opposite tendencies balance each other to result in a
constant amount of the pulling independent of the pumping.
In other words, the gain saturation approximately leads to
N ∝ 〈n〉 ∝ 
2/g2 above the threshold, while ξ (
) 
 
−2

makes Nξ (
) constant.
In the microlaser, on the other hand, the gain is oscillatory

with 〈n〉 so that we encounter the reduction of gain well above
the threshold and the corresponding saturation of 〈n〉 as a
function of N [see Fig. 10(a) below]. The pumping by the
atomic flux N is thus translated into the increase of the amount
of pulling.

The other pumping channel, the coupling constant g, brings
the mean photon number down when it is increased, and the
corresponding variation of 
2 with respect to g is rather small.
Thus, g2 behavior contained in N/Nth term is dominant also in
this case. The quadratic dependence comes from the feedback
mechanism inherent in the laser amplification process, in
which the atomic polarization induced by the cavity field via
coupling g drives the cavity field again by the same coupling.

The notable exception of the general tendency of Ng2-type
increase in the frequency pulling happens at the so-called
multiple thresholds, which are associated with the periodic
Rabi flopping [4]. In this case, 〈n〉 changes discontinuously,
and so do 
 and ξ (
), resulting in the periodic rise and
fall of the pulling with θ2. Thus, the microlaser operation
is segmented into branch solutions associated with multiple
thresholds.

The discontinuous change of the system can be explained
in terms of the coherent evolution of the atomic state. As
the system approaches the saturation regime out of the linear
regime of each branch solution, the precession of the Bloch
vector representing the internal state of the gain medium
reduces the emission probability of photon from each atom
while the phase shift per atom grows. At the transition to a
higher branch solution, the system is brought to a new steady
state by making the precession angle of the Bloch vector
exceed 2π . In the middle of such interaction, the atomic state
traces back to its initial state and starts the evolution all over
again. In doing so, the emission probability is boosted up and
results in a sudden rise of the mean photon number—also
known as a quantum jump [3]—while the phase shift per
atom diminishes. Hence, upon the multiple thresholds, the
microlaser behaves in a counterintuitive manner in the sense
that it becomes less refractive with a more dense medium
of atoms. This nontrivial pumping dependence based on the
strong atom-cavity coupling is one of the distinctive features
of the microlaser. The argument given here will be examined
in detail by numerical calculations in Sec. II G.

The result of the conventional laser can be recovered
if we average the microlaser result over a fictitious dwell
time distribution given by P (τ ) = 2γpe−2γpτ [19], which
spoils the well-defined atom-cavity coupling by introducing
stochastic interaction time. Using

∫ ∞
0 τe−2γpτ (1 − sin �τ

�τ
)dτ =

�2

4γ 2
p (4γ 2

p +�2) and assuming the pulling to be small compared to

the detuning (�′ 
 �) we have

〈δn〉 
 −ra

g2�

2γp

(
4γ 2

p + �2
) = − �

2γp

γc, (22)

where the last equality employs the steady-state condition of
the conventional laser 2rag

2

4γ 2
p +�2 = 2γc [19].

E. Spectral lineshape

The overall lineshape is given by a sum of Lorentzian curves
spread by the photon number distribution npn. The amount of
the spread δn as well as pn depends on the detuning �; thus,
we expect a significant change of the lineshape as we tune
the cavity. The overall spectral shift from the passive cavity
resonance is given by δn̄ with n̄ corresponding to a predominant
pn̄. To obtain the detailed spectral distribution, we have to take
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FIG. 2. (a) The photon number distribution pn (solid curve), the
corresponding Dn (dotted curve), and δn (dashed curve) calculated
with gτ = 0.124 and γcτ = 0.049, corresponding to the experimental
parameters of Refs. [4,8]. The tuning parameters are fixed at N =
100 and �/γc = 14.76. (b) The normalized spectrum as a result of
superposing the Lorentzian curves corresponding to different n’s. The
major spectral energy is confined in a frequency range lower than ν =
ωc. The constituent Lorentzian curves with �n = ±10 are depicted
in dashed curves for comparison. The spectrum is normalized to a
unity height.

into account both the intrinsic linewidth Dn and the distribution
of the shift δn.

Let us for now assume a single-peaked pn, as is the case for
most of the microlaser parameters. To a good approximation,
pn with a large 〈n〉 is well described by the Gaussian curve.
The constituent Lorentzian curves have little variation in their
widths Dn within the range of substantial probability pn as in
Fig. 2(a). Thus, the spectral lineshape is approximately given
by a Voigt integral centered around ωc + 〈δn〉 as in Fig. 2(b).
Of course, the lineshape exactly reduces to a Lorentzian
on resonance. The pulling-induced broadening exceeds the
linewidth of any constituent Lorentzian, even with a detuning
of several times of γc away from the atomic resonance, and
thus becomes the dominant source of decoherence for a large
part of the tuning range of the microlaser.

One may be tempted to use this n-dependent shift to
obtain information on the photon number distribution, which
is possible if the differential pulling is much larger than the
individual linewidth Dn. Unfortunately, we could not identify
a parameter set satisfying this condition because any parameter
sets we tried not only increased the differential pulling but also
the individual linewidth.

However, the photon number distribution can play a
significant role in the spectrum at some particular operating

FIG. 3. Plot of the same quantities as described in the legend of
Fig. 2 except for the tuning parameters set to a multiple-threshold
transition point, N = 367 and �/γc = 16.61. The inset in (b) shows
the weight function (n + 1)pn+1.

points. It is well known that the photon number distribution is
not single peaked if the system undergoes any of the multiple
thresholds as shown in Fig. 3(a) [3,4]. Although δn is a slowly
varying function of n, the large separation between the two
possible solutions of pn is enough to separate the spectral
peaks as depicted in Fig. 3(b). In this case, the narrower photon
number distribution in the lower branch solution near n 
 500
corresponds to a broader spectrum near ν − ωc 
 −4.25. This
is because the higher branch solution, despite the relatively
broad pn, generally corresponds to an order-of-magnitude
sharper spectral peak Dn as well as much smaller δn. In other
words, the spectral energy is redistributed according to δn

and Dn, while the ratio of the integrated area under each
peak of npn, about 1.2:1 as shown in the inset of Fig. 3(b),
is preserved in the spectral domain. In reverse, one should also
be able to obtain the binary pn distribution from the observed
dual-peak spectrum as long as Dn and δn in each peak of pn

are approximately constant.

F. Detuning dependence

The detuning dependence of the spectrum confirms that
the oscillation frequency of the microlaser is indeed pulled
toward the atomic line center as in the conventional laser. The
magnitude of the effective detuning �′ is always smaller than
that of the passive detuning �. The spectra calculated with
three different detunings are depicted in Fig. 4 with respect
to the passive cavity frequency. We note that the larger the
detuning, the farther away the center frequency of the spectra
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FIG. 4. The spectral lineshape depending on the detuning
�/γc =11.87 (solid), 23.88 (dashed), 48.29 (dotted). The system
parameters are gτ = 0.124, γcτ = 0.049, and N = 100.

moves from ωc. The lineshape transforms from a Lorentzian-
like curve to a Gaussian-like curve as the frequency excursion
induced by δn gets larger than the individual width Dn.

Let us now examine the mean 〈δn〉 and the variance �δn of
the pulling distribution systematically. Before the microlaser
reaches the second threshold, i.e., within the first branch
solution, the mean spectral shift 〈δn〉 as a function of �

follows a familiar dispersion curve [Fig. 5(a)]. The spectral
broadening �δn is accordingly maximized at the detuning,
which maximizes 〈δn〉 [Fig. 5(b)]. There we used the standard
deviation of δn as a measure of the linewidth, that is, �δn ≡√〈δ2

n〉 − 〈δn〉2. We note that the relative contribution of Dn

becomes significant on resonance, for which the contribution
of δn just vanishes. The contribution by Dn is also dominant
at far-off resonance, which corresponds to a below-threshold
regime; since the field is just the atomic emission, not a

FIG. 5. (a) The mean photon number 〈n〉 (dashed) and the
mean frequency pulling 〈δn〉/γc (solid). (b) The spectral broadening
〈Dn〉/γc (dotted) and �δn/γc (solid) as the passive cavity frequency
is tuned to near resonance. Plotted with gτ = 0.124, γcτ = 0.049,
and N = 10.

FIG. 6. Same as described in the legend of Fig. 5 except for
N = 300 to reach the saturation regime.

lasing field with feedback, filtered by the cavity, we confirm
〈Dn〉 
 γc there.

In the saturation regime within each branch solution,
on the other hand, the curve 〈δn〉 versus � turns into a
power-broadened dispersion curve (Fig. 6). The contribution
of the dispersive broadening becomes dominant almost over
the whole tuning range of the microlaser. Thus, the spectrum
cannot be explained without the notion of the frequency
pulling.

An extraordinary dispersion curve can be obtained if we
pump the system (see also Sec. II G below) harder, so that more
than one branch solution can be attained within the cavity-
tuning range. The mean photon number or the output intensity
of the microlaser as a function of the detuning is known to
form a set of discontinuous fragments of individual branch
solutions [4,23] as shown in Figs. 7 and 8. At the very point of
the transition where the fragments are connected, the system
is bistable as discussed above in Fig. 3. Note that the higher
branch, which occurs at the smaller detuning, has the larger
mean photon number. The detuning curve of 〈δn〉 is also a
discontinuous stepwise dispersion curve. The amount of the
pulling 〈δn〉 is, however, smaller for the higher branch in Figs. 7
and 8. This opposed behavior of 〈n〉 and 〈δn〉 upon the multiple
thresholds is in agreement with the qualitative explanation
previously given in Sec. II D.

G. Pumping dependence

As we increase the pumping at a fixed detuning �,
the effective detuning �′ tend to diminish monotonically.
However, it is interrupted by the aforementioned resetting of
the atomic state, which is subject to the periodic Rabi flopping.
Like other characteristics of the microlaser, such as 〈n〉 or
Mandel Q, the frequency pulling also undergoes a periodic
change as a function of pumping.

The pumping parameter of the micromaser is given by
θ = √

Nexgτ , where Nex = N/2γcτ . As discussed in Sec. II D,
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FIG. 7. Same as described in the legend of Fig. 5 except for
N = 700 to reach the second branch solution near resonance.

we expect the overall pumping dependence to be θ2 and its
periodic recurrence at the multiple thresholds. The pumping
dependence in the standard micromaser theory [21,22] is
usually presented as gτ is scanned at a fixed atomic flux,
whereas scanning Nex at fixed gτ is more relevant to the
experimental practice of the microlaser [2,4].

1. Increasing the atom-cavity coupling

We tune the coupling constant g at a fixed atom number N

in Fig. 9. The multiple thresholds are found for all depicted
variables. The mean photon number maintains its typical
feature [22] regardless of the correction by the presence
of δn. The increase of the frequency pulling in the first
branch solution is mildly nonlinear in Fig. 9(b) due to the

FIG. 8. Same as described in the legend of Fig. 5 except for
N = 1300 to reach the third branch solution near resonance.

FIG. 9. The pumping dependence in terms of the atom-cavity
coupling constant g at the fixed detuning �/γc = −15.0 and N =
250. (a) The mean photon number, (b) the mean frequency pulling,
and (c) the spectral broadening 〈Dn〉/γc (dotted) and �δn/γc (solid).
The arrow indicates the magnitude of the maximum achievable g in
the current experimental setting of the microlaser [8].

aforementioned g2 effect. The curvature slightly changes at the
first threshold of gτ 
 0.02. The amount of the pulling induced
by a small number of gain atoms is enhanced by the large
coupling constant. The spectral broadening generally becomes
larger for stronger pumping except in the multiple-threshold
regions, where it drops to a smaller value. Up to the first
branch solution, the dispersive broadening dominates over the
nondispersive one.

2. Increasing the atomic flux

The pumping by the atomic flux also brings about the
multiple thresholds as shown in Fig. 10. The mean photon
number is stepwise as verified in the previous experiments
[4,5,23]. The frequency pulling also increases here within
each branch solution. It keeps increasing overall except for
the periodic drops. The spectral broadening is dominated
by the frequency pulling for the parameters shown in
Fig. 10.
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FIG. 10. The dependence on the pumping via the atomic flux
(mean atom number N ) at the fixed detuning �/γc = −15.0 and
gτ = 0.124. (a) The mean photon number, (b) the mean frequency
pulling, and (c) the spectral broadening 〈Dn〉/γc (dotted) and �δn/γc

(solid).

III. SEMICLASSICAL THEORY

In this section, we construct a semiclassical theory for
intuitive understanding of the frequency pulling phenomena.
The source term of the Maxwell equation clarifies the origin
of the frequency shift in terms of the Bloch vector. While the
semiclassical theory of the conventional laser is composed of a
pair of equations for both intensity and oscillation frequency,
the semiclassical equations concerning the microlaser have
so far been limited to the intensity alone [24,25]. Here we
provide the other equation for the frequency shift as well
as consequential modification of the intensity equation. The
correspondence to the quantum theory is also made in the
mean frequency pulling.

A. Maxwell-Schrödinger equation

A set of coupled equations describing the microlaser is
composed of the Maxwell equation for the cavity field driven
by the induced atomic polarization and the Schrödinger
equation for the unitary evolution of the atomic state under

the electric dipole interaction. In the slowly varying envelope
approximation, the Maxwell equation reduces to

Ė(t) + γcE(t) = i
2πωc

V

∫ τ

0
P(t ′)

dt ′

τ
, (23)

and the Schrödinger equation to

Ṗ(t) − i(ωc − ω0)P(t) = −i
μ2

h̄
E(t)r(t), (24)

and

ṙ(t) = 1

h̄
Im[E∗(t)P(t)], (25)

where E and P are the slowly varying amplitudes of the cavity
electric field and the induced atomic polarization, respectively,
V is the mode volume of the cavity field, μ is the induced
atomic dipole moment, and r is the atomic population inversion
[24,25]. Whereas the previous studies left the variables E and
P complex [24,25], we find it convenient to decompose them
into an amplitude-phase form to highlight the role of the in-
phase and quadrature components of the induced dipole. With
normalization in mind we rewrite

E(t) =
√

V

8πh̄ωc

a(t)e−iφ(t), (26)

P(t) = μ[S1(t) − iS2(t)]e−iφ(t), (27)

where a(t),φ(t),S1(t), and S2(t) are all real. We rename r(t) =
S3(t) in the context of the Bloch vector. The corresponding
Maxwell equation then reads

ȧ(t) + γca(t) = Ng

∫ τ

0

S2(t ′)
2τ

dt ′, (28)

φ̇(t) = −Ng

∫ τ

0

S1(t ′)
2a(t ′)τ

dt ′, (29)

and the Schrödinger equation turns into

Ṡ1(t) − (� + φ̇)S2(t) = 0, (30)

Ṡ2(t) + (� + φ̇)S1(t) = 2gaS3(t), (31)

Ṡ3(t) = −2gaS2(t), (32)

where the atom-cavity coupling constant is given by g =
μ

h̄

√
2πh̄ωc

V
. Here the time scale involved is different for the field

variable and the atomic variables; the atomic state is transient
during a single transit through the cavity mode while the field
evolves in a longer time scale over many atomic transit events.
We observe that the amplitude of the cavity field is driven by
the quadrature component S2 of the atomic dipole, while the
frequency shift is produced from the in-phase atomic dipole
S1. The equations for the atomic variables are exactly the
optical Bloch equation except for the shifted field frequency
�′ = � + φ̇.

With the values of a and δ ≡ φ̇ held constant in the steady
state, we can readily find the solution of the equations of the
atomic variables, Eqs. (30)–(32). The result of this solution
will be used to eliminate the atomic variables in Eqs. (28)
and (29) below, arriving at the coupled equation of a and δ for
the determination of their steady-state values.

With the initial conditions, which represent the perfect
population inversion of the incident atoms, S3(0) = 1 and
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S1(0) = S2(0) = 0, the set of solutions is found as

S1(t) = 2ga(� + δ)

4g2a2 + (� + δ)2

× [1 − cos(
√

4g2a2 + (� + δ)2t)], (33)

S2(t) = 2ga√
4g2a2 + (� + δ)2

sin(
√

4g2a2 + (� + δ)2t),

(34)

and

S3(t) = 1

4g2a2 + (� + δ)2

× [4g2a2 cos(
√

4g2a2 + (� + δ)2t) + (� + δ)2].

(35)

B. Equations for intensity and frequency

The integration of Eq. (28) in the absence of δ provides
the conventionally known gain-loss equation [4,23]. In the
generalized approach given here, the dispersive correction to
the microlaser gain is made via the effective detuning �′. More
importantly, we will derive the other equation regarding δ to
complete the dual equations needed for fully describing the
intensity and frequency of the microlaser.

The coupled equations can be written in a form for
convenient interpretation. First, the integration of Eq. (28)
using Eq. (34) gives

ȧ(t) + γca(t) = N

τ

[
2g2a

4g2a2 + (� + δ)2

]

× sin2(
√

g2a2 + (� + δ)2/4τ ).

(36)

Multiplying 2a on both sides leads to the familiar rate equation

ṅ + 2γcn = N

τ

[
4g2n

4g2n + (� + δ)2

]

× sin2(
√

g2n + (� + δ)2/4τ ),

(37)

where n = a2 (equivalent to 〈n〉 in the quantum case). Note
the modification of the gain-loss description in terms of the
effective detuning �′ = � + δ. In the steady state (ṅ = 0), n

is determined by

n = N

2γcτ

[
4g2n

4g2n + (� + δ)2

]
sin2(

√
g2n + (� + δ)2/4τ ).

(38)

Let us turn to the integration of δ-equation, which is

δ = −Ng

∫ τ

0

S1(t ′)
2a(t ′)τ

dt ′

= − Ng2(� + δ)

4g2n + (� + δ)2

[
1 − sin(

√
4g2n + (� + δ)2τ )√

4g2n + (� + δ)2τ

]
.

(39)

FIG. 11. The comparison of the quantum (thick curve) and the
semiclassical (thin curve) calculations for (a) the mean photon number
and (b) the mean frequency pulling. The same parameters are used as
described in the legend of Fig. 7.

Note the exact correspondence of Eq. (39) to the quantum
result, Eq. (19). The two equations, Eqs. (38) and (39),
complete the semiclassical description to correctly give the

FIG. 12. The comparison of the quantum (thick curve) and the
semiclassical (thin curve) calculations with gτ = 0.496 and N = 0.5
for (a) the mean photon number and (b) the mean frequency pulling.
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oscillation frequency as well as the intensity. The correction
to the previous approach can be easily appreciated by the
graphical method presented in Appendix B.

Since those coupled equations cannot be separated for
individual variables, we presented the numerical calculation of
n and δ in Fig. 11. They are obtained by iterating the integration
until a converging set of (n,δ) is found. When compared to
the quantum calculation of 〈n〉 and 〈δn〉, the semiclassical
calculation is in good agreement in the example of Fig. 11 and
many others.

Of course, the semiclassical theory is limited in the
following aspects. First and obviously, the intrinsic statistical
properties such as pn or �δn are not accessible by the semi-
classical theory. Second, the semiclassical solution provides
only the possible branch solutions if the multiple thresholds
are involved. How those multiply segmented branches are
connected cannot be traced since it is the quantum phenom-
ena often modeled by the tunneling of the photon number
distribution over an effective potential barrier [22]. Last, the
possible branch solution itself may not be reliable if one
deals with small photon numbers and strong couplings as we
encounter in Fig. 12. In such a regime, the distinction between
the quantum Rabi frequency g

√
n + 1 and the semiclassical

approximation g
√

n becomes significant and makes a big
difference.

IV. CONCLUSION

We have formulated a quantum theory of the frequency
pulling in the cavity-QED microlaser by considering the effect
of the dispersive atom-photon interaction in the off-resonance
spectra. The amount of the pulling induced by a small number
of gain atoms turns out to be significant due to the strong
atom-cavity coupling, which also gives rise to a distinctive
periodic nature in the pumping dependence as contrasted to
the conventional laser. The cavity-tuning curve exhibits a
dispersion curve with notable features such as the multiple-
step dispersion. The idea of quantum frequency pulling is
introduced and it is shown that the photon-number-dependent
frequency pulling induces a spectral broadening, which can
be a major source of decoherence in this laser or maser. The
spectral lineshape deviates from a Lorentzian curve depending
on the strength of the dispersive interaction involved. The
present work can be used to obtain the theoretical spectrum of
the microlaser or micromaser over the entire tuning range.
For the microlaser, a direct measurement of the spectrum
is possible owing to the capability of photodetection in
the visible region, and such a measurement is expected to
arrive soon, in view of the recent development of high-
sensitivity heterodyne spectroscopy [26–28]. The concept in-
troduced here may also be applicable to the other cavity-QED
lasers [29–31].
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FIG. 13. (Color online) (a) The surface of N (n,δ) represented
by Eq. (B1). (b) The surface of N (n,δ) given by Eq. (B2). The
positive detuning of �τ = 0.653 as well as gτ = 0.124 and γcτ =
0.049 are used. (c) The solution curve of (n,δ) as a function
of N is given by the intersection of the two surfaces in (a)
and (b).
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APPENDIX A: DERIVATION OF Dn AND δn

We use

�n+1 =
√

4g2(n + 2) + �′2 = �n

(
1 + 4g2

�2
n

)1/2


 �n + 2g2

�n

(A1)

and

1

�n+1

 1

�n

− 2g2

�3
n

(A2)

by assuming n much larger than unity. Then the real part of Eq. (15) can be written as

Dn 
 −ra

{
1 + cos

(
�nτ

2

)[
cos

(
�nτ

2

)
cos

(
g2τ

�n

)
− sin

(
�nτ

2

)
sin

(
g2τ

�n

)]
+

(
1 − 4g4

�4
n

)

× sin

(
�nτ

2

)[
cos

(
�nτ

2

)
sin

(
g2τ

�n

)
+ sin

(
�nτ

2

)
cos

(
g2τ

�n

)]}
− 2γc

√
n(n + 1) + γc(2n + 1)


 ra

[
1 − cos

(
g2τ

�n

)]
+ γc

4n
= 2ra sin2

(
g2τ

2�n

)
+ γc

4n
, (A3)

while the imaginary part δn reads

δn = −ra

[
�′

�n+1
cos

(
�nτ

2

)
sin

(
�n+1τ

2

)
− �′

�n

cos

(
�n+1τ

2

)
sin

(
�nτ

2

)]


 −ra

{(
�′

�n

− 2g2�′

�3
n

)
cos

(
�nτ

2

)[
g2τ

�n

cos

(
�nτ

2

)
+ sin

(
�nτ

2

)]

− �′

�n

[
cos

(
�nτ

2

)
− g2τ

�n

sin

(
�nτ

2

)]
sin

(
�nτ

2

)}

 −ra

g2�′τ
�2

n

[
1 − sin(�nτ )

�nτ

]
, (A4)

taking the terms up to the order of (g/�n)2.

APPENDIX B: GRAPHICAL DETERMINATION OF THE
STEADY-STATE INTENSITY AND FREQUENCY

To appreciate the effect of the newly found variable δ, let
us introduce a graphical method for the determination of the
steady-state solution (n,δ). Equations (38) and (39) can be
rewritten as the mean atom number N represented in (n,δ)-
space as

N = 1

2
γcτ

4g2n + (� + δ)2

g2

1

sin2(
√

4g2n + (� + δ)2τ/2)
(B1)

and

N = − δ

δ + �

4g2n + (� + δ)2

g2

×
[

1 − sin(
√

4g2n + (� + δ)2τ )√
4g2n + (� + δ)2τ

]−1

, (B2)

respectively. From these two surfaces of N we can construct
the evolution of (n,δ) as a function of the pumping as in Fig. 10.

An example is shown in Fig. 13 for a blue detuning (� > 0).
The surface in Fig. 13(a) basically represents a multibranch
solution of n, here depicted up to the second branch as a
function of N . The mean photon number or the intensity
n does not change much for the range of δ considered in
Fig. 13(a), in contrast to its marked variation with N . Thus,
the traditionally accepted solution obtained by taking the line
of δ = 0 is good enough for qualitative understanding of n.
Determination of the actual nonzero δ and its corresponding
n requires the consideration of Eq. (B2) as in the surface in
Fig. 13(b). Only at the very bottom of the surface (N = 0),
the solution reduces to the δ = 0 line. This surface shows the
qualitative feature of the pulling. For example, it is bent toward
negative δ as N is grown. The direction of bending is the
opposite for red detuning (� < 0), although not shown.

The solution is then given by the intersection of the two
surfaces as shown in Fig. 13(c). The dependence of n (or δ) on
the pumping via the atomic flux is obtained by projecting the
intersection onto n (or δ) plane as we increase N vertically.
The intensity n does increase as expected, but the bending
toward the negative δ leads to slightly increased n compared
to that of δ = 0 case. This is understandable since δ reduced
the effective detuning �′ = � + δ. Owing to the periodicity
in the surface given by Eq. (B1), the solution is also periodic.
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