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Hard and soft excitation regimes of Kerr frequency combs
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We theoretically study the stability conditions and excitation regimes of hyperparametric oscillation and Kerr
frequency comb generation in continuously pumped nonlinear optical microresonators possessing an anomalous
group velocity dispersion. We show that both hard and soft excitation regimes are possible in the microresonators.
Selection between the regimes is achieved via change in the parameters of the pumping light.
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I. INTRODUCTION

The phenomenon of four-wave mixing (FWM) results
in hyperparametric oscillation [1,2] and frequency comb
generation [3–5] in solid-state optical microresonators. The
oscillation is similar to modulation instability lasing [6–9]
and parametric oscillation in optical fibers [10–14]. The
nonlinear process can be described using externally driven
damped nonlinear Schrödinger equation (NLSE) with period-
ical boundary conditions [15] and, hence, is closely related to
the nonlinear phenomena observed in a variety of physical sys-
tems [16–19], including dipolar excitations in one-dimensional
condensates [20], optical soliton propagation in a dispersive
ring cavity in the presence of an input forcing beam [21],
a long Josephson junction in a periodic field [22], easy-axis
ferromagnets in a rotating magnetic field perpendicular to the
easy axis [23,24], and plasmas driven with radio-frequency
radiation [26].

Four wave mixing in optical microresonators results in
the generation of frequency sidebands in the light leaving
the resonator. The sidebands are separated approximately
by integer numbers of free spectral range (FSR) of the
resonator and are always equidistant (ω̃+ − ω = ω − ω̃−).
This is because the oscillation results from the four-photon
process h̄ω + h̄ω → h̄ω̃+ + h̄ω̃−, where ω, ω̃+ and ω̃− are the
frequencies of the pump light and the generated sidebands,
respectively. Multiple sidebands are generated and the Kerr
frequency comb is produced as the power of the pump light is
increased [3].

The efficiency of the FWM process depends on the group
velocity dispersion (GVD) of the resonator. A resonator with
nonzero GVD does not have an equidistant spectrum, since
2ω0 − ω+ − ω− � cβ2ω

2
FSR/n0, where β2 is the GVD (by

definition, normal dispersion corresponds to β2 > 0); n0 is
the refractive index of the material, assumed to be constant in
the calculations; c is the speed of light in vacuum; 2ωFSR ≈
ω+ − ω− is the FSR of the resonator; and ω0, ω+, and ω− are
the eigenfrequencies of consecutive modes.

In addition to dispersion, the spectrum of the resonator
is influenced by self- and cross-phase modulation resulting
from the nonlinearity of the material. In the case of anomalous
GVD and positive cubic nonlinearity, these effects compensate
each other so the spectrum of the resonator becomes locally
equidistant for a particular power and wavelength of light
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within the resonator. The frequency difference between the
modes of the pumped resonator influences the FWM and
impacts the spectrum and threshold of the hyperparametric
oscillation and frequency comb generation.

The Kerr frequency combs excited in optical microres-
onators are promising for many practical applications since
their spectral width can span an octave [27,28], and their
frequency stability is extremely high [5]. Understanding the
fundamental properties of these combs is necessary to achieve
their optimal performance. This is why, in addition to multiple
experimental investigations, the resonant FWM and Kerr comb
generation have been studied theoretically. For example, it
was shown that additive modulational instability ring lasers
can operate in both normal and anomalous GVD regimes [7].
This result was adjusted to describe the nonlinear processes
in microresonators [29–31]. Theories supporting the idea of
preferred generation of the optical Kerr comb in resonators
possessing anomalous GVD were developed [32,33]. An
analytical expression describing the optical pulses generated
in resonators with anomalous GVD was derived [15]. Finally,
generation of Kerr frequency combs was investigated via
numerical simulations [34,35].

The aim of this article is to analyze the dependence of
the excitation dynamics of the hyperparametric oscillation and
Kerr frequency combs on the power and frequency of the
external continuous wave pump. The dynamics of Kerr comb
formation was studied previously [35] with approximation
of low amplitudes of the comb frequency harmonics. This
assumption allowed modeling the soft regime of the comb
excitation. In this work we solve the problem without such an
approximation, analyze the oscillation onset in the microres-
onators, and show that both hard and soft excitation of the
oscillation is possible.

The soft oscillation onset is reached when pump photons
are not initially present in the resonator. Here, the growth of
the oscillation sidebands occurs adiabatically. The hard onset
of the oscillation occurs with a discontinuous jump of the
intensity of oscillation sidebands to a certain finite level, at
the threshold. The hard excitation occurs only when pump
photons are initially present in the resonator. The steady-
state solution corresponding to the hard excitation cannot be
reached adiabatically. In other words, slow modifications of
any parameter of the resonator or the pump cannot bring the
system to a stable solution requiring hard excitation. Here
slow means a time shorter than the time of the comb growth,
which can be much longer compared to the lifetime of the light
confined in the resonator [35].
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We solve the set of nonlinear differential equations describ-
ing the hyperparametric oscillation [29] and frequency comb
generation [35] in the steady state and analyze the stability of
the solutions in a microresonator possessing a net anomalous
GVD. While the first-order hyperparametric oscillation (only
the continuous-wave optical pump and the first pair of
sidebands are involved in the process) is described analytically,
the higher order oscillations are simulated numerically.

We find that oscillation sidebands can be much smaller
than the pump in the case of soft excitation, while they are
comparable with the pump in the case of hard excitation. The
sidebands generated in the case of hard excitation produce
optical pulses that travel in the resonator, while the sidebands
generated in the case of soft excitation are too small to form
a pulse. We also find that hard excitation is observed when
the frequency of the pumping light differs significantly from
the frequency of the pumped mode, while soft excitation is
observed for the nearly resonant pumping. We compare the
results of our numerical simulations with the predictions of
the analytical model developed for the comb description [15]
and find that the simulation predicts the formation of wider
frequency combs and shorter optical pulses relative to the
values found analytically. The numerical simulations also
show that the comb spectral width grows more slowly than the
linearized simulations predict [36]. We show that the frequency
comb harmonics form nearly Gaussian optical pulses in the
time domain.

II. THREE-MODE MODEL OF HYPERPARAMETRIC
OSCILLATION

Let us consider the FWM process that involves only three
resonant modes. The evolution of the mode amplitudes is
described by the equations [29]

Ȧ + �0A = ig[|A|2 + 2|B+|2 + 2|B−|2]A

+ 2igA∗B+B− + F0, (1)

Ḃ+ + �+B+ = ig[2|A|2 + |B+|2 + 2|B−|2]B+ + igB∗
−A2,

(2)

Ḃ− + �−B− = ig[2|A|2 + 2|B+|2 + |B−|2]B− + igB∗
+A2,

(3)

where �0 = i(ω0 − ω) + γ0 and �± = i(ω± − ω̃±) + γ±; g =
h̄ω2

0cn2/(Vn2
0) is the coupling parameter [29]; V is the

mode volume; n2 is the nonlinearity; F0 = [2γ0P/(h̄ω0)]1/2

describes the amplitude of the continuous-wave external pump;
P is the pump power; and A, B+, and B− are the slow
amplitudes of the pump and sidebands, respectively. Decay
rates γ0, γ+, and γ− reflect both coupling and intrinsic losses
of the modes. We assume that the modes are overloaded; i.e.,
the loss results primarily from the coupling.

To keep a connection between our mathematical models and
the real physical system, we consider oscillations in a mag-
nesium fluoride whispering gallery mode resonator of 340-μm
radius (∼100-GHz FSR), similar to the resonator studied
in [37]. The fundamental TE mode of the resonator is pumped
with 1721 nm light. The modes of the resonator have a 200-kHz
loaded full width at half-maximum, and the GVD of the

modes results in the condition 2ω0 − ω+ − ω− = −γ0. The
cubic nonlinearity is n2 = 10−16 cm2/W, and the refractive
index is n0 = 1.38. The mode volume is V = 1.3 × 10−7 cm3,
which corresponds to the coupling constant g = 1.47 ×
10−3 s−1. By selecting the pump power P = 0.235 mW,
we obtain (F0/γ0)(g/γ0)1/2 = 4 for the normalized pumping
constant. It is worth noting that the selected value of the pump
power is 16 times larger than the threshold value needed for
the hyperparametric oscillation to start.

We solve the set (1)–(3) in the steady state; con-
sider a symmetric case, i.e., put γ+ = γ− = γ0, so that
|B+| = |B−| = |B|; and present the slow amplitudes of
the fields as A = |A|(1 + δA) exp[i(φ0 + δφ0)] and B± =
|A|(B + δB±) exp[i(φ± + δφ±)], where δA, δB+, and δB−
stand for the amplitude deviations of the fields related to
the drive amplitude, and δφ0, δφ+, and δφ− stand for the
phase deviations of the fields. We substitute these expressions
into (1)–(3), linearize the set of equations in the vicinity
of the steady-state solution, and study its eigenvalues. The
steady-state solution is considered to be stable if all the
eigenvalues are negative.

The results of calculations are shown in Figs. 1 and 2.
We found that there are two regions where the stable
hyperparametric oscillation exists. One solution occurs in the
vicinity of the peak of the resonant curve, shifted due to the
self-phase modulation effect. The oscillation belonging to this
branch can be excited adiabatically if one slowly reduces the
frequency of the pump laser approaching the optical resonance.
It also can be excited if one fixes the laser frequency at the
red wing of the resonance and then reduces the power of the
pump (Fig. 2). The oscillation sidebands are much smaller
than the pump amplitude for this solution. The numerical
solution of (1)–(3) shows that the oscillation is excited when
all the initial conditions are 0. Therefore, we conclude that the
stability branch corresponds to the case of soft excitation.

FIG. 1. (Color online) Normalized amplitude of the light within
the optically pumped mode and relative amplitude of the oscillation
sidebands vs pumping frequency. Stability regions corresponding to
soft (S) and hard (H) excitation are shown by solid green lines.
Unstable solutions are depicted by solid red lines. The amplitude
of the field within the optically pumped mode with no sidebands
generated (B ≡ 0) is shown by the solid blue line and dashed (red)
line. The dashed line represents the unstable solution for the amplitude
of the pumped mode when the modulation sidebands are absent.
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FIG. 2. (Color online) Normalized amplitude of the light within
the optically pumped mode and the relative amplitude of the
oscillation sidebands vs normalized amplitude of the pumping light.
The detuning of the pumping light from the corresponding optical
mode is fixed at ω = ω0 − 4.7γ0 (the mode is pumped at its red wing).
The dashed (blue) line represents the undisturbed solution for the light
accumulated in the pumped mode, B ≡ 0. Red and green solid lines
describe unstable and stable-steady state solutions respectively.

The other stable solution exists when the oscillation
sidebands have fixed nonzero power. The stability region is
localized in the space of parameters and does not cross the
region of stable solution for B ≡ 0. Only nonadiabatic change
of the parameters of the system allows reaching the localized
stability region. A solution of the initial value problem, (1)–(3),
in the approximation of zero initial conditions does not reveal
the stability region. Hence, this stable branch describes
the oscillation with hard excitation. The localized stable
attractor, corresponding to the hard excitation regime, cannot
be discovered if the original set of equations describing the
oscillation is solved in the approximation of small sidebands.

The analysis that involves only two generated optical
sidebands is not entirely valid for the description of hy-
perparametric oscillations in realistic resonators, since a
nonlinear interaction of multiple modes should be taken
into account. Only the soft excitation regime that produces
small oscillation sidebands can be simulated using a limited
number of interacting modes, as the higher order oscillation
sidebands are expected to have an even lower power. The hard
excitation regime, in which the oscillation sidebands can be
more powerful than the light confined in the pumping mode,
cannot be strictly understood from the three-mode model.

III. MULTI-MODE MODEL OF HYPERPARAMETRIC
OSCILLATION

To handle this problem we have analyzed the multimode
regime numerically, deriving a set of equations, similar to
(1)–(3), for many interacting modes [35,38] and solving this
set in the steady state. Generation of optical frequency combs
with fewer than 21 mutually interacting optical modes can
be described with our computing capability. To take the
GVD into account we assumed that, for any pair of sideband
modes symmetric with respect to the optically pumped mode

FIG. 3. (Color online) Normalized amplitude of the optically
pumped mode and relative amplitude of the oscillation sidebands vs
pumping frequency found for the same conditions as used in Fig. 1.
Frequency combs shown were generated when the parameters of the
system corresponding to points H and S were selected.

(ω0 − ω− ≈ ω+ − ω0), the mode unequidistance is defined
by 2ω0 − ω+ − ω− = cβ2(ω+ − ω−)2/4n0. The numerical
solution revealed excitation regimes similar to those found for
the case of two optical sidebands (see Figs. 3 and 4). A broad
frequency comb is generated in the case of the hard excitation
regime. The comb harmonics have spacings equal to a single
FSR of the resonator. The frequency comb resulting from soft
excitation has harmonics separated by three FSRs. There is
no single-FSR comb characterized with soft excitation for the
selected pump power. It is possible to generate the frequency
comb with harmonics separated by double or single FSR if a
lower optical power is selected.

There is a difference between the three-mode hyperpara-
metric oscillation and the frequency comb generation. Soft
excitation of the comb occurs in the region of parameters where

FIG. 4. (Color online) Normalized amplitude of the light within
the optically pumped mode and relative amplitude of the oscillation
sidebands vs normalized amplitude of the pumping light. The
detuning is (a, b) ω = ω0 − 15γ0 (hard excitation) and (c, d) ω =
ω0 + 0.92γ0 (soft excitation). The power for the first sideband is
taken from the carrier.
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FIG. 5. (Color online) Phase diagram for the pump and the first
oscillation sideband in the case of soft excitation. The dashed (blue)
line corresponds to nonzero initial conditions, and the solid (red)
line to zero initial conditions. The system converges to the same
steady-state solution with different phases of the oscillation sideband.

the pumped mode is dynamically stable, while hard excitation
can be achieved in the multistability region of the pumped
mode. The hyperparametric oscillation, with both hard and
soft excitation, occurs only in the region of multistability for
the pumped mode.

To demonstrate the hard and soft excitation regimes of the
oscillation we studied the dynamical behavior of the light
in the optical modes for zero and nonzero initial conditions
(see Figs. 5 and 6). The outcome of the calculation (the
steady-state solution) is the same for the case of soft excitation
(Fig. 5). The oscillation characterized with the hard excitation
regime occurs only for nonzero initial conditions (Fig. 6), for
both abrupt and adiabatic switching of the pump.

Since we can find the phase and the amplitude of the
oscillation sidebands, we are able to calculate the temporal
behavior of the field within the resonator. We do this for
a broad-frequency comb and compare the result with pre-
dictions of the analytical method described in [15] (Fig. 7).
As expected, the generated harmonics create optical pulses
traveling within the resonator. The numerical modeling and

FIG. 6. (Color online) Phase diagram for the pump and the first
oscillation sideband in the case of hard excitation. The system does
not oscillate if the initial field in the pumped mode is 0 (red line). The
oscillation is excited if the initial value of the pump is not zero.

FIG. 7. (Color online) Temporal behavior of the normalized
optical field within the resonator. Subpicosecond optical pulses are
formed. Inset: Optical pulse envelope found from the analytical
expression presented in [15].

the analytical theory predict slightly different behaviors
for the system. The reason is that the analytical model does
not take into account the finite length of the path of the pulse
in the resonator and requires that the pulse should be generated
at the specific detuning ω = ω0 − 5.3γ0. The numerical
solution is unstable at this point and, instead, is stable in a
neighboring region of detuning values (Fig. 3).

The solutions analyzed here have a certain correspondence
with the solutions of the driven damped NLSE with periodic
boundary conditions. The soft excitation regime corresponds
to the localized stability windows in the unstable region of
parameters of the NLSE [16]. The stability windows occur due
to the presence of the boundary conditions [17], while the hard
excitation regime is related to the stable mode-locked regime
of the driven damped NLSE on an infinite line [17]. Further
mathematical analysis is required to map the whole region of
parameters and to find both local and global attractors for the
equation.

IV. CONCLUSION

We have developed an analytical model and numerical
simulations to study the influence of parameters of the pump
light on the dynamics of Kerr frequency comb generation.
We have found that hyperparametric oscillation and optical
frequency comb generation in optical nonlinear resonators can
have both hard and soft excitation regimes. We present several
examples of such behavior and show that the hard excitation
regime leads to the formation of short optical pulses in the
resonator.
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