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Abruptly autofocusing and autodefocusing optical beams with arbitrary caustics

Ioannis D. Chremmos,1,* Zhigang Chen,2 Demetrios N. Christodoulides,3 and Nikolaos K. Efremidis1

1Department of Applied Mathematics, University of Crete, Heraklion 71409, Crete, Greece
2Department of Physics and Astronomy, San Francisco State University, San Francisco, California 94132 USA

3CREOL/College of Optics, University of Central Florida, Orlando, Florida 32816 USA
(Received 10 November 2011; published 22 February 2012)

We propose a simple yet efficient method for generating abruptly autofocusing optical beams with arbitrary
caustics. In addition, we introduce a family of abruptly autodefocusing beams whose maximum intensity suddenly
decreases by orders of magnitude right after the target. The method relies on appropriately modulating the phase
of a circularly symmetric optical wavefront, such as that of a Gaussian, and subsequently on Fourier-transforming
it by means of a lens. If two such beams are superimposed in a Bessel-like standing wave pattern, then a complete
mirror-symmetric, with respect to the focal plane, caustic surface of revolution is formed that can be used as an
optical bottle. We also show how the same method can be used to produce accelerating 1D or 2D optical beams
with arbitrary convex caustics.
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I. INTRODUCTION

Recently, a family of optical waves was introduced with
abruptly autofocusing (AAF) properties [1]. The new waves
[also termed circular Airy beams (CABs)] have a circularly
symmetric initial amplitude that oscillates outward of a dark
disk, like an exponentially truncated Airy function. By virtue
of the two outstanding features of finite-power Airy beams
[2,3], namely their self-acceleration and their resistance to
diffraction, this eventually results in light beams that can prop-
agate over several Rayleigh lengths with minimum shape dis-
tortion and almost constant maximum intensity, until an abrupt
focusing takes place right before a target, where the intensity is
suddenly enhanced by orders of magnitude. These theoretical
predictions were subsequently verified by experimental obser-
vations [4,5]. These observations also demonstrated that AAF
beams could outperform standard Gaussian beams, especially
in settings where high-intensity contrasts must be delivered
under conditions involving long focal-distance-to-aperture
ratios (f numbers) [4]. In addition, this “silent” or low intensity
mode, at which AAF waves approach their target, makes them
ideal candidates for medical laser applications where collateral
tissue damage is supposed to be kept at a minimum. Other
possible applications include laser waveguide writing in bulk
glasses and particle trapping and guiding [5].

The focusing mechanism of AAF beams is fundamentally
different from that of Gaussian beams. In the latter case, the
wave’s constituent rays form a sharpened pencil that converges
at a single point, the focus. As the beam’s cross-sectional
area gradually decreases, the maximum intensity over the
transverse plane increases in a Lorentzian fashion, centered
at the focus. In the case of AAF beams, however, the rays
responsible for focusing are emitted from the exterior of a dark
disk on the input plane and stay tangent to a convex caustic
surface of revolution (SOR) that contracts toward the beam
axis [1]. By virtue of its Airy transverse amplitude profile, this
caustic is intrinsically diffraction-resisting, therefore keeping
its maximum intensity almost constant during propagation and
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its interior almost void of optical energy. Focusing occurs as a
result of an on-axis collapse of this SOR and is as abrupt as the
transition from the dark to the lit side of an optical caustic. At
the point of “collapse,” the rays emitted from a certain circle
on the input plane interfere constructively and the gradient of
the field amplitude is maximized.

Building on the concept of a collapsing caustic SOR, the
AAF wave family was recently broadened to include general
power-law caustics that evolve from a sublinearly chirped
input amplitude [6]. In this latter work, we showed that a
νth-power caustic requires the input amplitude to oscillate
with a chirp of the order β = 2 − ν−1, which generalizes the
case of CABs, whose parabolic trajectory is a result of the
3/2 chirp of the Airy function itself. Although they are not
non-diffracting as ideal CABs, these pre-engineered beams
were shown to exhibit attractive features, such as enhanced
focusing abruptness, larger intensity contrasts, and suppressed
post-focal intensity maxima.

To benefit from the attractive properties of AAF waves,
it is crucial to generate them efficiently. This is generally
a nontrivial task, since these waves evolve from initial
amplitudes that are not easy to implement directly, such as
concentric Airy rings. A possible alternative is to generate
the Fourier transform (FT) of the initial condition first and
then inverse-Fourier transform it by means of a lens. A similar
approach was adopted in the first demonstration of CABs [4],
where the initial wavefront was produced by encoding both
amplitude and phase information on a phase-only filter. The
FT technique was also employed in Ref. [7], where a hologram
of the FT was produced. In addition in this latter work, the FT
of CABs was treated analytically and found to behave like a
Bessel function whose argument is enhanced by a cubic phase
term, i.e., a quadratic chirp. By tuning the strength of the chirp
relative to the lens’ focal distance, it was possible to generate
AAF beams with two foci, the one being defocusing while the
other one focusing, thereby defining the ends of an elegant
paraboloid optical bottle [7].

From the above it is clear that producing AAF beams can
be equally difficult, either in the real or in the Fourier space,
since, in both cases, a complicated initial condition, varying
both in phase and in amplitude, must be produced. However,
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when the requirement for the exact generation of a specific
AAF wave can be relaxed, the implementation procedure
can be significantly simplified. Indeed, having explained the
AAF mechanism through both ray and wave optics [1,6], one
realizes that the critical phenomenon is the formation of the
caustic and depends primarily on the phase modulation of
the input wavefront and secondarily on the envelope of its
amplitude. This fact has already facilitated the generation of
arbitrary convex 1D or 2D beams, by applying the appropriate
1D or 2D phase mask on a plane wave [9] or on a Gaussian
beam [10]. This is perhaps the most obvious way to directly
produce accelerating 1D or 2D caustics. However, in some
applications, it could be more advantageous to apply the same
concept in the Fourier space. A major reason is that the FT lens
provides an additional degree of freedom for easily targeting
and sizing the generated beam [7]. Indeed, as noted in the
latter paper, the optical bottles produced with the FT method
can be arbitrarily scaled without losing their symmetry or
having to modify the input condition, by simply changing
the lens’ focal distance. This is a true advantage of the FT
approach compared to the direct (real-space) approach, which
requires that all beam characteristics must be prescribed on the
phase mask, while even a simple scaling of the beam requires
redesign of the phase modulation. In addition, the lens offers
a physical 2f separation between object and image planes,
which could be useful in applications when the phase mask
cannot be positioned very close to the target.

In this work, we present a simple yet general method for
generating in the Fourier space AAF or abruptly autodefocus-
ing (AADF) optical beams with pre-engineered caustic SOR.
From a certain viewpoint, this generalizes our previous work
on CABs and their parabolic caustics [7] to AAF waves with
arbitrary convex caustics. We hereby show that such beams
can be produced efficiently by simple means of a circularly
symmetric phase mask and a FT lens, acting successively on
an optical wavefront with no particular amplitude information.
The required phase is the sum of a linear and a nonlinear
term. The linear term is responsible for creating an annular
focusing pattern on the image plane, while the nonlinear
term is responsible for transforming this pattern into an Airy
pattern, thus determining the shape of the caustic produced
before or after that plane. Special attention is paid to the
case of power-law caustics, for which analytical results are
readily obtained and reported. In particular, we find that a
νth-power caustic requires an nth-power phase with the orders
being related as n = (2ν − 1)/(ν − 1). Counterintuitively, for
a given ν, the stronger the nonlinear phase is, the weaker the
acceleration of the caustic, hence, the longer the distance from
the image plane to the target. The linear phase and the lens’
focal plane determine the size of the produced AAF beam in
terms of its width at the image plane and also in terms of the
distance from that plane to the target.

In Sec. II, we describe the proposed method analytically,
and subsequently, in Sec. III, we support it with numerical
calculations that demonstrate the generation of AAF and
AADF beams and also that of optical bottles with sinusoidal
shape. Although our focus is on AAF waves, we complete this
paper by showing that the same method can actually be used
to produce accelerating 1D or 2D beams with arbitrary convex
trajectories.

II. ENGINEERING AAF AND AADF WAVES IN THE
FOURIER SPACE

To begin, consider the amplitude of a phase-modulated
circularly symmetric wavefront

u0(r) = A(r) exp [i�(r)] = A(r) exp [iar + iq(r)] , (1)

where r is the polar distance normalized by an arbitrary
length, say x0, A(r) is a real envelope, and �(r) is the phase
consisting of a linear term with slope a > 0 and a nonlinear
(e.g., power-law) term q(r). Such an initial condition can be
easily realized by reflecting a plane wave or a collimated
Gaussian beam on the face of a spatial light modulator (SLM)
programmed with a phase �(r). Subsequently, let us examine
the evolution of this wave through the single-lens FT system
of Fig. 1 under the validity of the paraxial approximation
2uz = i∇2

t u, where subscript t stands for transverse and z is
the propagation distance normalized by 2πx2

0/λ, λ being the
optical wavelength. Propagating the waves before and after the
lens according to the Fresnel diffraction integral [6], and taking
into account the quadratic phase exp(−ir2/2f ) imprinted on
the wave transmitted through the lens, it can be shown that the
optical field on the image plane (z = 2f, where f is the focal
length) reads

u(r,z = 2f ) = −(i/f )U0(r/f ), (2)

where

U0(k) =
∫ ∞

0
u0(ρ)J0(kρ)ρdρ (3)

is the Hankel transform of the object wavefunction u0(ρ).
Obviously, Eq. (2) expresses the FT property of the lens.
Substituting Eq. (3) into Eq. (2) and using the familiar integral
representation of Bessel function

J0 (x) = 1

2π

∫ 2π

0
exp(−ix cos ϕ)dϕ, (4)
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FIG. 1. (Color online) Schematic of a ray traveling through a
single-lens FT system. The lens is positioned at z = f. The red
(convex) curve indicates the caustic formed beyond z = 2f.
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we obtain

u(r,z = 2f ) = − i

2πf

∫ ∞

0

∫ 2π

0
A(ρ)

× exp

(
iaρ + iq(ρ) − i

ρr

f
cos ϕ

)
ρdρdϕ,

(5)

where u0 was substituted from Eq. (1). Even in its simplified
form of Eq. (3), this integral cannot be evaluated analytically
for a general function q(ρ). Hence, it is reasonable to resort to a
stationary-phase (SP) computation, which is justified by the os-
cillatory nature of the integrand. Assuming that q ′(ρ) > 0 for
all ρ > 0, where the prime denotes the derivative with respect
to the argument, it is readily seen that there is only one station-
ary point (ρs,ϕs) = (r0,0), where r0 is the solution of equation

a + q ′(r0) = r/f. (6)

After some algebra, the result of integration in the neigh-
borhood of (ρs,ϕs) is

uSP(r,z = 2f ) =
√

r0

f q ′′(r0)r
A(r0)

× exp

(
iar0 + iq(r0) − i

r0r

f

)
. (7)

The last two equations lead to two important conclusions:
First, Eq. (6) implies r > af, which means in essence that
only points on the image plane lying outside that disk have
appreciable amplitude. Second, since r0 is a function of the
observation point r , Eq. (7) shows that the wave amplitude
on the image plane is also nonlinearly phase-modulated.
Differentiating the phase of Eq. (7) with respect to r and using
Eq. (6), one obtains −r0/f < 0; i.e., the phase modulation is
of converging nature. Therefore, the wave on the image plane
satisfies the preconditions for evolving into an AAF wave.
If the phase of Eq. (7) is properly designed, then an inward
bending caustic SOR with initial width 2af will be formed and
eventually focus abruptly somewhere in the half-space z > 2f.

Further understanding of this process can be gained through
a ray optics interpretation of the propagation dynamics.
Referring to Fig. 1, let us follow the path of the ray starting
from point (r0,0) on the input plane. According to Eq. (1),
this ray travels at an angle θ0 with the z axis and reaches the
surface of the lens (which is assumed to be infinitesimally thin)
at (r1,f

−) where r1 = r0 + f s0 and

s0

= tan θ0 = �′(r0) (8)

is the corresponding slope. Passing through the lens, the
ray deflects inward and emerges from point (r1,f

+), with

a modified slope s1

= tan θ1 = s0 − r1/f. The transmitted ray

crosses the image plane at r2 = r1 + f s1 with a slope tan θ2

=

s2 = s1. Combining the above we obtain the equations

r2 = f s0, s2 = −r0/f, (9)

connecting the exit position and slope of a ray (r2,s2) to the
input values (r0,s0). Equations (9) are equivalent to the conclu-
sions reached previously, noting that the point here named r2 is
the observation point r of Eqs. (6) and (7). As (r0,s0(r0)) vary
continuously along the input plane, the transmitted rays form

a caustic that is expressed with coordinates (rc,ξc), where rc is
the radial distance, ξc = z − 2f is the distance from the image
plane, and (rc,ξc) is interpreted as the point at which ray (r2,s2)
touches the caustic. From Fig. 1, the following equations are
also obvious:

s2 = r ′
c(ξc), rc = r2 + ξcs2. (10)

Differentiating the second of Eqs. (10) with respect to ξc

and using Eqs. (9), it can be shown that the caustic is expressed
in terms of the input ray characteristics as

(rc,ξc) = (f s0(r0) − f r0s
′
0(r0),f 2s ′

0(r0)), (11)

where r0 serves as a parameter and s0(r0) is given by Eq. (8).
Equations (8) and (11) provide the means for a direct design
approach, namely to determine the caustic resulting from a
given input phase modulation. Alternatively, one could work
inversely and find the input ray parameters associated with a
desired caustic (rc(ξc),ξc). Again, from Eqs. (9) and (10) we
obtain directly

(r0,s0) =
(

−f r ′
c(ξc),

1

f
[rc(ξc) − ξcr

′
c(ξc)]

)
, (12)

where the parameter now is ξc. From Eq. (12) it is evident that,
for r ′′

c (ξc) < 0, i.e., for a convex caustic, we have r ′
0(ξc) > 0,

which ensures that the rays touching the caustic at different
points do not overlap on the input plane. This allows us to invert
function r0(ξc) and determine the phase �(r0) associated with
ray characteristics (r0,s0). Integrating Eq. (8) by introducing
the new variable ξc one gets

�(r0) =
∫ ξc(r0)

0
s0(ξ )r ′

0(ξ )dξ

=
∫ ξc(r0)

0
[ξr ′

c(ξ ) − rc(ξ )]r ′′
c (ξ )dξ, (13)

where ξc(r0) is the inverse of function r0(ξc), and functions
s0(ξ ),r0(ξ ) were obtained from Eqs. (12) by substituting ξ for
ξc. Using Eq. (13), one can determine the phase �(r0) that must
be programmed into the SLM to produce the desired caustic
SOR rc(ξc).

A characteristic case is that of a power-law phase q(r),
which leads to a power-law caustic also. Setting q(r) = brn

and eliminating r0 from Eqs. (11), the equation of the caustic
rc(ξc) reads

rc = f [a − d(ξc/f
2)ν], (14)

where d = ν−1[n(n − 1)b]1−ν, ν = (n − 1)/(n − 2), and ξc >

0. For n > 2, we have ν > 1, and hence a convex caustic
SOR with a waist that starts from a maximum 2af at ξc = 0

to vanish on axis at ξc = f 2(a/d)1/ν 
= L. As was shown in
Ref. [6], the point ξc = L, at which the caustic collapses, is an
inflection point for the wave amplitude, i.e., a point where the
amplitude gradient along the beam axis has a local maximum.
Being very close to the focus, this point also determines
approximately the distance between the image plane and the
target. Therefore, the range of the beam and its maximum waist
size can be adjusted through the lens’ focal length f , which is
one of the advantages of the FT approach, as mentioned in the
introduction. Equation (14) also shows that, for a given power
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ν, a larger b, i.e., a stronger nonlinear phase modulation, results
in a smaller d, i.e., a weaker accelerating caustic. This is a
rather counterintuitive property stemming from the FT relation
between object and image waves. Also counterintuitively, the
order of the caustic ν is a decreasing function of the order n

of the nonlinear phase term; as a result, the required phase
for higher-power caustics (ν = 3,4,5,...) is of subcubic order
(n = 5/2,7/3,9/4,...).

Here we would like to comment on the role of the linear
phase component in Eq. (1). As indicated by Eqs. (6) and (14),
this term is responsible for the formation of the dark disk on
the image plane. Indeed, in the absence of q(r), the problem
reduces to Fourier-transforming a wave with a linear radial
phase, a situation encountered when, for example, working
with Bessel beams. In this case, no caustic is formed, but rather
all rays leave the object plane in parallel and are focused by
the lens on a circle on the image plane where a thin bright
annulus appears (a circle for idealized Bessel beams). The
inclusion of the nonlinear phase component subtly disturbs
this perfect ray focusing, in such a way that a smooth convex
caustic is formed and the AAF phenomenon is generated. The
single bright annulus on the image plane then transforms to
the pattern of concentric Airy rings. In conclusion, the linear
term is needed to obtain a circular focusing pattern, which
the disturbance of the nonlinear phase transforms to a CAB-
like pattern that evolves into an AAF wave. A closed-form
approximation of the beam amplitude close and exactly on
the caustic SOR can be obtained by a SP computation of the
Fresnel integral of Eq. (7). As happens in other families of
AAF waves [6], the field near the caustic is contributed by
two close stationary points on the input plane (z = 0), which
collapse into a single second-order stationary point when the
field is observed exactly on the caustic. The result is an Airy
amplitude profile. The same method can be used to find the
field at the focus, which is now contributed by a continuum of
points lying on a circle on the input plane. In the Appendix,
an outline is given of how analytical expressions for the field
in different regions can be obtained.

Returning to Eq. (14), it is interesting to note that AAF
beams with parabolic caustics (ν = 2) require the input
wavefront to be modulated with a cubic phase (n = 3). This
is not a surprise if one takes into account our recent analytical
results on the FT of CABs [7]. In this work, the FT (expressed
as a Hankel transform) of the CAB Ai(R − r), was found to
behave as B(k)J0(kR + k3/3), where B(k) is a complicated
super-Gaussian envelope. From the asymptotic behavior of
Bessel function, it follows that, for large k, the FT behaves
proportionally to cos(kR + k3/3), i.e., as a real envelope
modulated with a cubic phase. Hence, from the viewpoint of
the present work, the parabolic body of a CAB is a by-product
of the cubic phase modulation of its spectrum, which can be
considered as the analogue of the same FT property of 1D Airy
beams [3].

The caustic SOR of Eq. (14) develops in the half-space z >

2f and the generated beam is AAF with its focus occurring
on axis shortly after z = 2f + L.This is a result of the phase
modulation in Eq. (1) being of diverging nature. If, instead,
the complex conjugate initial condition u∗

0(r) is assumed
(converging phase modulation), then the entire field in the half-
space behind the lens becomes −u∗(4f − z); i.e., it is mirrored

with respect to the focal plane and the mirror-symmetric of
Eq. (14) caustic is formed in f < z < 2f. Moreover, as a result
of the converging phase modulation itself, another caustic SOR
is formed before the lens (z < f ), having the expression rc =
z(dz−ν − a). This caustic is asymptotic (varies as z1−ν) to the
input plane and, after passing through the lens, it experiences
an inward slope discontinuity and transforms into a power-law
caustic. If additionally the beam parameters are chosen so that
L < f ⇔ d > af ν, then the transmitted power-law caustic
collapses at z = 2f − L, a point of maximum but negative
amplitude gradient, thus imparting to the transmitted beam an
AADF character. In the spirit of our previous work [7], we
term this condition as the weak-chirp regime. On the other
hand, when L > f ⇔ d < af ν, the chirp is strong enough to
make the caustic collapse before the lens at z = (d/a)1/ν and
no focus occurs after the lens.

As shown in Ref. [7], if the input amplitude is properly
engineered, the generated CAB can have two foci, the first
being AADF and the second AAF. As a result, an elegant,
perfectly mirror-symmetric optical bottle is formed between
the two foci, which can be used as an optical trap. Optical
bottles can also be built by the approach presented here,
however, with some additional effort, by letting the input
beams u0(r) and u∗

0(r) interfere in a standing wave pattern
of the form A(r) cos[�(r)]. In that case, each of the two
components creates half of the full caustic. The parameters
should, of course, be tuned in the weak-chirp regime, so that
the bottle lies entirely behind the lens. An illustrative example
is given in Sec. III for an optical bottle with sinusoidal shape.

III. NUMERICAL EXAMPLES

To illustrate our analytical arguments, we devote this
section to numerical simulations. Note that, in all of the
following figures, the spatial coordinates are normalized. To
give a sense of the beam’s actual extent, typical values for
the length scales can be x0 = 50 μm in the transverse and
2πx2

0/λ = π cm in the longitudinal direction, at a wavelength
around λ = 500 nm.

Let us first demonstrate the AAF and AADF mechanisms
through the ray optics picture. Figure 2(a) presents the results
of ray tracing for a wave with the phase modulation of Eq. (1)
and the parameters n = 3, a = 1, b = 1/3000, being Fourier-
transformed by a lens with f = 10 (also in 2πx2

0/λ units).
The chirp parameter has been chosen to satisfy b = 1/(3f 3),
resulting in the formation of the parabolic caustic rc = 10 −
ξ 2
c /4 (indicated with a dashed curve), which is familiar from

1D Airy beams [3]. In Fig. 2(b), the corresponding ray pattern
is depicted for a beam with the same parameters but with
the complex conjugate input amplitude. Note how the exactly
symmetric caustic now develops in f < z < 2f, and also the
caustic rc = z(250z−2 − 1) developing in 0 < z < f. The two
curves meet at the lens’ plane with different slopes, as a result
of the lens’ focusing action.

Wave simulations of the two previous configurations are
shown in Figs. 3 and 4, respectively, as obtained by numerically
solving the paraxial equation of propagation. In both cases,
the envelope of the input beam has been assumed to be the
Gaussian A(r) = exp(−r2/452).The results clearly verify our
expectations from the ray-optics approach. In Fig. 3(a), the
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(a)

(b)

FIG. 2. (Color online) Ray patterns on a vertical plane for a beam with input phase: (a) αr + brn and (b) −αr − brn, with parameters
n = 3, a = 1, b = 1/3000, and a lens with f = 10. The red curves (ray envelopes) are the caustics, while the dashed horizontal lines indicate
the lens’ plane (z = f ) and the image plane (z = 2f ).

wave initially expands due to the diverging phase modulation;
however, after passing through the lens, it starts to converge and
it eventually forms an evident caustic SOR beyond the image
plane. The superposed analytical curve of Eq. (14), drawn
with a dashed line, confirms the expected parabolic profile
of this caustic. Figure 3(b) depicts the maximum intensity
over the transverse plane versus the propagation distance in
logarithmic scale. The onset of the AAF phase is signified by
an evident knee in the Imax curve (indicated with an arrow)
that occurs at z � 25.8. Shortly after, at z = 2f + L � 26.3,
the caustic collapses and the wave amplitude (I1/2

max) has an
inflection point, i.e. its gradient is maximum. The abruptness of
focusing can be appreciated by the jump in the rate of increase
of log10(Imax), which is, on average, 0.22 (per z unit length)
before and 2.3 after the knee. A reversed, defocusing behavior
is obtained in Fig. 4, where the opposite phase modulation
has been applied on the same Gaussian wavefront. Now the
wave before the lens converges and forms a caustic that is
well fitted by the equation rc = z(250z−2 − 1)(dashed line),
which was predicted by ray-optics. Passing through the lens,
this caustic experiences an inward slope discontinuity and
transforms into the part of the parabola rc = 10 − ξ 2

c /4 for
ξc < 0. As this caustic SOR contracts, Imax, shown in Fig. 4(b),
exhibits a series of maxima with gradually increasing strength.
The last maximum, located at z � 13.4, signifies the onset
of the AADF phase that continues up z � 14.2 with a large
negative slope for log10(Imax) around -2.3 on average. At this
point, the Imax curve has a knee (indicated by an arrow), which
introduces a phase of slow defocusing with a slope -0.22 for
log10(Imax). Between the maximum and the knee, an inflection
point occurs at z � 13.7 as a result of the collapse of the
caustic. The caustic extends up to the focal plane, beyond
which the wave is completely diffracted.

As another example, we wish to produce an optical bottle
beam with the sinusoidal caustic rc = af cos(κξc). Parameter
κ determines the length of the bottle along the z axis, i.e.,
approximately π/κ. Inserting this equation into Eq. (13) and

completing the algebra, the required phase is

�(r) = κa2f 2

4
[(2x2 + 1)sin−1(x) + 3x

√
1 − x2], (15)

where x = r/(κaf 2) is a normalized radius. Equation (15)
is valid for x � 1, i.e., for points on the input plane with
r � κaf 2 . Rays emitted from that disk create the half-
period of the sinusoidal caustic (|ξc| � π/2κ). For r > κaf 2,

�(r) is chosen so that the caustic is continued smoothly
for |ξc| > π/2κ. Among infinite possibilities, we here opt
for a parabolic continuation, which is expressed by rc =
(af/4π )(π2 − 4κ2ξ 2

c ). Substituting again into Eq. (13), the

r
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FIG. 3. (Color online) (a) Amplitude evolution of a beam with
Gaussian input envelope with e−1 radius w = 45 and the phase
modulation parameters of Fig. 2(a). The dashed curves are the caustics
of Eq. (11). (b) Maximum intensity versus propagation distance. The
arrow indicates the point where the AAF starts. The dashed vertical
lines indicate planes z = f and z = 2f.
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FIG. 4. (Color online) (a) Amplitude evolution of a beam with the
same parameters with Fig. 3 but with the complex conjugate input
amplitude. The dashed curves indicate the caustics. (b) Maximum
intensity versus propagation distance. The arrow indicates the point
where the AADF ends. The dashed vertical lines indicate planes
z = f and z = 2f.

corresponding extension of the phase is found

�(r) = κa2f 2π

24
(2x3 + 6x + 1), x > 1. (16)

Figure 5 shows the simulation results for the parameters
κ = π/12, a = 1, f = 10. The input amplitude is the standing
wave u0(r) = exp[−(r/45)2] cos[�(r)] that is needed to form
the complete caustic. The results verify the formation of the
optical bottle with a shape that agrees well with the superposed
sinusoidal curve [Fig. 5(a)]. In the Imax(z) curve of Fig. 5(b),
the AADF and AAF phases defining the ends of the bottle
are evident. Notice also in the inset of the same figure the
characteristic Airy-like pattern of concentric rings developing
on the image plane.
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FIG. 5. (Color online) (a) Amplitude evolution of a beam with
input amplitude exp[−(r/45)2] cos[�(r)], where � is given by
Eqs. (14) and (15) for κ = π/12,a = 1,f = 10. The dashed curves
indicate the sinusoidal part of the caustic. (b) Maximum intensity
versus propagation distance. The dashed vertical lines indicate planes
z = f and z = 2f. The inset shows the amplitude distribution on the
image plane.
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FIG. 6. (Color online) (a) Amplitude evolution of a 1D beam with
parameters n = 5/2, a = 0, b = 0.00253, a Gaussian input envelope
with e−1 width 90 and a lens with f = 10. The envelope curve is the
caustic, while the dashed horizontal lines indicate the lens and image
planes. (b) Corresponding ray pattern.

We conclude by noting that the proposed FT method is
perfectly applicable for producing accelerating 1D or 2D
beams with pre-engineered trajectories. Indeed, the results of
Sec. II are valid for (1 + 1)D beams evolving in Cartesian
coordinates x-z and being Fourier transformed by a cylindrical
lens. Then, in analogy to Eq. (1), the 1D input condition is
u0(x) = A(x) exp[i�(x)], where the phase modulation now
reads

�(x) = ax + q(x), (17)

with x running from −∞ to +∞. For a given function
q, the equation of the 1D caustic is again found from
Eq. (11), replacing rc with xc and r0 with x0, and s0(x0) =
�′(x0) in analogy to Eq. (8). Inversely, for a desired caustic
xc(ξc),the required phase is found from Eq. (13) with the
same substitutions. For example, one finds that in order to
produce the power-law caustic of Eq. (14), the nonlinear
phase term should be q(x) = sgn(x)b|x|n, where sgn(x) is
the sign function. The linear term (ax) can now be freely
tuned, and even be negative or zero, to shift the beam laterally.
An example is shown in Fig. 6(a) for a configuration with
the parameters n = 5/2, a = 0, b = 0.00253, f = 10 and the
Gaussian envelope A(x) = exp[−(x/45)2]. The resulting 1D
beam trajectory agrees very well with the superposed third-
order caustic rc = −ξ 3

c /27. Note also in the corresponding
ray tracing result of Fig. 6(b) that the two symmetric parts of
the caustic, before and after the image plane, are formed by
rays emitted from half-planes x < 0 and x > 0 of the input
wavefront, respectively.

Using separation of variables, the above can be readily
generalized in 2D beams. For example, the beam with in-
put amplitude u0(x,y) = A(x)A(y) exp[i�(x) + i�(y)] will
produce a caustic that accelerates along the x = y direction.
An example is shown in Fig. 7, for the envelope and phase
functions of the previous example.
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FIG. 7. (Color online) Transverse amplitude at different z planes
of an accelerating 2D beam produced by Fourier-transforming
the input wavefront u0(x,y) = A(x)A(y) exp[i�(x) + i�(y)], with
A(u) = exp[−(u/45)2] and �(u) = 0.00253sgn(u)|u|5/2. (a) z = 20,
(b) z = 23, (c) z = 26. The lens has f = 10.

IV. CONCLUSIONS

We have proposed a simple yet general method for produc-
ing in the Fourier space AAF and AADF optical beams with
arbitrary convex caustic SOR. The method involves the radial
modulation of a simple optical wavefront with an appropriately
designed nonlinear phase structure and, subsequently, a FT
operation by means of a lens. The required phase is the sum of
a linear and a nonlinear term, with the second being responsible
for the shape of the caustic. Through both wave and ray optics
we showed how arbitrary power-law caustics can result from
a power-law nonlinear phase component. In particular, for
second-order caustics, we realized that the parabolic shape is
a result of the cubic phase modulation of the beam’s spectrum,
a conclusion that we have previously reached specifically for
CABs.

The FT method proposed here is expected to offer certain
advantages over the direct generation of AAF beams using
phase masks only, such as the ability to easily control the
size and range of the produced beams through the lens’ focal
strength. In addition, perfectly symmetric optical bottles can
be created and scaled at will. Our procedure can also be used
for producing 1D or 2D beams with arbitrary convex caustics,
thus providing a versatile tool for all kinds of accelerating
waves.
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APPENDIX

Here we briefly outline how the field amplitude of the AAF
wave can be approximately derived in analytic form. Referring
to Fig. 2 (a), the field beyond the image plane (ξ > 0) is written

u(r,ξ ) = 1

iξ

∫ +∞

0
u(ρ,ξ = 0) exp

(
i
ρ2 + r2

2ξ

)

× J0

(
ρr

ξ

)
ρdρ, (A1)
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FIG. 8. (Color online) Regions for ray optics computations of the
field of an AAF wave. The regions are characterized by the number
of rays contributing to the field at any point.

where the field on the image plane is given by Eq. (2). As
implied by Eq. (7), the latter field can be expressed as an
envelope modulated with a nonlinear phase

u(ρ,ξ = 0) = B(ρ) exp [−iQ(ρ)] , (A2)

with the negative sign of the phase indicating focusing. For
AAF waves with power-law caustics, the phase is of the
form Q(ρ) ∝ (ρ − af )β , with 1 < β < 2, as can be deduced
from Eq. (7). Since the above integral cannot be computed
analytically, a SP approximation is usually employed. From
the ray-tracing result of Fig. 2(a), it can be shown that one must
distinguish between four regions, which are defined from the
caustic SOR and the cylinder r = af. The regions are shown in
Fig. 8. In region 1, which lies in r > af and outside the caustic
SOR, the field at each point is contributed by a single ray. In
region 2, which lies in r < af and outside the caustic SOR,
two rays meet at each point. In region 3, which lies in r > af

and inside the caustic SOR, three rays meet at each point
(one coming from the right and two from the left half-plane).
Finally, in region 4, lying in r < af and inside the caustic
SOR, four rays (two from either side) contribute to the field
observed at each point. The above are valid off axis. On axis
a continuum of rays, emerging from a circle (on focus) or
two circles (off focus), intersect at each point and a different
approach is applicable, as explained in the following.

Now, let us see what the appropriate numerical treatment for
each region is. In regions 1 and 3, where r > af, the argument
of J0 in Eq. (A1) is large enough to yield oscillations. Then
one substitutes Eq. (4) into Eq. (A1), also using Eq. (A2), to
obtain the double integral

u(r,ξ ) = 1

i2πξ

∫ +∞

0

∫ 2π

0
B(ρ)

× exp

(
i
ρ2 + r2 − 2ρr cos ϕ

2ξ
− iQ(ρ)

)
ρdρdϕ,

(A3)
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which is subsequently treated with the SP method
for two variables. The stationarity conditions Q′(ρ) =
(ρ ∓ r)/ξ and ϕ = 0,π, have one solution (ρ1,0)
in region 1 and three solutions (ρ1,0),(ρ2,3,π ) in
region 3.

The above approach can also be applied in regions 2 and 4,
provided that the point is not too close to the axis. Note also
that, in region 2, as the caustic is approached before its col-
lapse, the two first-order stationary points merge to a second-
order one and a third-order expansion of the phase leads to the
familiar Airy dependence of the field amplitude (the “fold,”
using terminology of catastrophe theory). Note that such an
expansion is always possible since Q′′′(ρ) ∝ (ρ − af )β−3,

with β < 2, hence the third derivative of the phase is never
zero.

Finally, for points near and exactly on axis, the Bessel
function factor in Eq. (A1) varies slowly and can be absorbed
in the envelope. Then one can apply the standard SP method
to the integral

u(r,ξ ) = 1

iξ

∫ +∞

0
B(ρ)J0

(
ρr

ξ

)

× exp

(
i
ρ2 + r2

2ξ
− iQ(ρ)

)
ρdρ, (A4)

as was done in Ref. [6]. The stationarity condition Q′(ρ) =
ρ/ξ yields two first-order stationary points, which merge
into a second-order one as the collapse point (the caustic) is
approached from above. By third-order expanding the phase,
one again finds that the on-axis amplitude near the focus is
proportional to an Airy function.
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