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Reversible absorption of weak fields revealed in coherent transients
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It is shown that the absorbtion of a weak field in a thick resonant absorber is a reversible process even in the
case of the homogeneous broadening of the absorption line. As an example, the propagation of a long rectangular
pulse with sharp edges in an optically dense resonant medium is studied theoretically in the linear response
approximation. Transient nutation (TN), free induction decay (FID), and transients, induced by the phase switch
of the incident pulse, are considered. It is shown that in exact resonance the amplitude of FID increases with the
length of the medium. FID arises due to the scattered radiation field (dipoles ringing). In a thick medium the
scattered field is almost of the same amplitude but opposite in phase with the incident radiation field. Both fields
interfere destructively to produce what is seen as radiation damping at the output of the medium. The scattered
field needs time to develop. Therefore, the leading edge of the pulse is not absorbed, demonstrating temporal
transparency followed by TN. Phase shift (180◦) of the pulse brings the incident pulse in phase with the scattered
radiation. Constructive interference of the pulse with the scattered radiation field produces a short pulse with an
amplitude that is two times larger than the amplitude of the incident pulse. If the input pulse is detuned from
resonance, for a particular detuning and optical thickness of the medium the amplitude of the transient pulse,
induced by the phase shift, is nearly three times larger than the amplitude of the incident pulse. This is explained
by the interference of the scattered field, the phase-shifted input field, and the slowly propagating part of the
pulse, developed before the phase shift.
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I. INTRODUCTION

Optical transients such as free induction decay (FID) [1],
transient nutation (TN) [2,3], and rotary echo, induced by
the phase switch of the exciting pulse, [4] are generally
observed in optically thin samples with strong inhomogeneous
broadening of the absorption line. The main features of these
transients are determined by ringing of individual dipoles
with their own frequencies, which are different due to the
inhomogeneous broadening. In thin samples these transients
provide information about the homogeneous dephasing time
T2 of the dipoles, spectral diffusion, and the lifetime T1 of the
excited state.

In thin samples these transients regenerate only a small frac-
tion of the energy contained in the exciting pulse because of the
small number of particles interacting with the field. Therefore,
thin samples are inapplicable to produce a noticeable pulse
transformation or pulse shaping. Meanwhile, it is known that
optically thick samples strongly modify the shape of the pulse
at the output. For example, a rectangular pulse is split into the
Sommerfeld precursor whose front arrives at time ts = L/c,
followed by a rapidly decaying part, and a delayed steady-state
response, which is built up at tg = L/vg , where L is the sample
length and vg is the group velocity at the carrier frequency ωc of
the pulse (see, e.g., Refs. [5,6]). Another example of the pulse
compression is a train of pulses of the same amplitude and
different durations, applied at the appropriate time sequence.
In a thick sample it generates a pulse of amplitude significantly
larger than that of the input field [7]. It is important to notice
that this kind of pulse transformations is performed in a linear
propagation regime, which is even applicable to an extremely
weak radiation field containing only one photon (see, e.g., Ref.
[8]). Thus, thick samples are capable of modifying strongly the

shape of the pulse, its duration, and amplitude, with no need
of high input power.

In regard to practical applications, in addition to pulse
compression, just the formation of the Sommerfeld precursor
itself has been suggested for use for deeper penetration
into a material, which may be applied to underwater com-
munication [9] or imaging through biological tissue [10] .
The penetration capability of the precursor is explained as
a result of a slow reaction of the material to the exciting
field, which takes time to build up the refractive index,
and so the pulse front escapes out of the material without
interaction [6]. Experimentally, precursors were observed in
the microwave domain with waveguides whose dispersion is
similar to that of the resonantly absorptive medium [11], in
sound propagation measurements in superfluid 3He [5], in
propagation of optical pulses through semiconductors close
to excitonic resonances [12,13], and in deionized water [9].
Recently the optical precursor was also directly observed in
a cloud of cold potassium atoms in a region of anomalous
dispersion [14].

Fast switch-off of the weak input radiation field, exciting
a thick sample, also generates a short pulse of an appreciable
intensity at the output of the sample [15]. This radiation field
is FID, generated by a linear response polarization, induced
in the absorber just before the field switch-off. The radiation
field, generated by the medium, is in antiphase with the input
wave, and hence both fields interfere destructively to produce
what is seen as the field attenuation (absorption) [16]. If the
pulse is suddenly switched off, the induced polarization will
continue to radiate. This is seen as a sudden rise of intensity
of the radiation, generated by the medium, which is no more
compensated by the input field. Sudden rise of the radiation
amplitude at the output of the absorber can be achieved also by
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the instantaneous 180◦ phase shift of the input field [17], which
brings it in phase with the field, generated by the medium.

In this paper the formation of the Sommerfeld precursor,
FID, and TN, induced by the 180◦ phase shift of the
input field, in a thick absorber are studied for the radiation
whose frequency is detuned from resonance. It is shown
that depending on the optical thickness of the absorber and
detuning from resonance the transients can be appreciably
enhanced or quenched. This study opens new perspectives to
generate strong pulses in a linear regime. Moreover, one can
use weak radiation pulses, which are strongly attenuated in a
thick resonant medium. If the attenuation level is such that the
output radiation is not observable, then sudden switch-off of
the input field, for example, by a shutter or deflector, and/or
sudden change of the phase of the input field may produce
a radiation field of the detectable intensity at the output of
the absorber. Such pulses could be used for the information
transmission at the low cost of the radiation power. In this
proposal the radiation power is accumulated in the thick
absorber. Then, accumulated power is immediately released
on demand by the phase shift or shutting of the weak, feeding
radiation field. So, the information is transmitted (or coded)
by these events (i.e., by the radiation spikes). This idea was
inspired by the experiments reported in Refs. [18–20].

II. GENERAL EQUATIONS FOR THE PULSE
PROPAGATION IN ABSORPTIVE MEDIUM

In this section general formulas describing the pulse prop-
agation in the slowly varying amplitude (SVA) approximation
are presented. We consider only the linear regime, which is
well described by the linear response (LR) approximation for
the density matrix ρmn of resonant atoms in the absorber. The
population change of the ground (g) and excited (e) states of the
atom is neglected in LR approximation and only the equation
for the nondiagonal element, ρeg = σeg exp(−iωst + iksz), is
considered in the form,

σ̇eg = (i� − γ )σeg + i�(z,t), (1)

where ωs and ks are the frequency and the wave number of the
input radiation field, z is the distance, counted from the input
face of the absorber inside, γ is the decay rate of the atomic
coherence, � = ωs − ω0 is the detuning from the resonant
frequency ω0 of atoms, �(z,t) = degEs(z,t)/2h̄ is the Rabi
frequency, deg is the matrix element of the atomic dipole,
induced in the transition e − g, and Es(z,t) is the slowly
varying amplitude of the radiation field. The LR approximation
is valid if �2(z,t) � γ γe, where γe is a decay rate of the
excited state e. Then saturation of the atomic transition and
large excursion of the Bloch vector do not happen.

In SVA approximation the wave equation is reduced to

L̂Es(z,t) = ih̄ασeg(z,t)/deg, (2)

where L̂ = ∂z + c−1∂t , α = 4πωsN |deg|2/h̄c is the coupling
constant, and N is the density of resonant atoms in the
absorber. The coupling constant α is related to the Beer’s
law absorption coefficient as αB = α/γ . αB is usually defined
for a monochromatic radiation tuned in resonance. Below we

use the wave equation in the form L̂�(z,t) = iασeg(z,t)/2. By
means of the Fourier transform,

F (ν) =
∫ +∞

−∞
f (t)eiνtdt, (3)

Eqs. (1) and (2) are reduced to

σeg(z,ν) = − �(z,ν)

ν + � + iγ
, (4)[

∂

∂z
− iν

c
+ A(ν)

]
�(z,ν) = 0, (5)

where

A(ν) = iα/2

ν + � + iγ
. (6)

The solution of Eq. (5) is

�(z,ν) = �(0,ν) exp[(iνz/c) − A(ν)z], (7)

whose inverse Fourier transform gives the familiar expression
for the development of the radiation field in the resonant
absorber in SVA and LR approximations, that is,

�(z,t) = 1

2π

∫ +∞

−∞
�(0,ν) exp[−iν(t − z/c) − A(ν)z]dν.

(8)

In some references (see, e.g., Refs. [6,14,21,22]), this integral
is calculated by the method of contour integration, and the
result is expressed in terms of the infinite sum of the Bessel
functions of ascending order, multiplied by the complex
coefficients, depending on the parameters α, �, γ , and t .
Actually, there are two such expressions, one is for αz/2γ <

�t [6] (or αz/2γ < γ t in exact resonance [14]) and the other is
for αz/2γ > �t [6] (or αz/2γ > γ t in exact resonance [14]).
Both expressions converge very slowly and, for example, if the
resonant detuning is large one has to take many terms (between
50 and 100) of these sums to obtain an accurate approximation
of the integral in Eq. (8).

To simplify calculation of the integral in Eq. (8) it is usually
reduced with the help of the convolution theorem to (see, e.g.,
Refs. [5,7,18,19,23])

�(z0,t) =
∫ +∞

−∞
�(0,t − τ )R(z0,τ )dτ, (9)

where R(z0,τ ) is the output radiation from the absorber of
length z0, if the input radiation is a very short pulse whose
shape is described by the Dirac delta function, δ(t) [i.e.,
R(z0,τ ) is a response function of the absorber of thickness
z0 to a very short pulse]. This function is [5,7,18,19,22–25]

R(z0,t) = δ(t) − e(i�−γ )t�(t)

√
b0

t
J1(2

√
b0t), (10)

where �(t) is the Heaviside step function, J1(x) is the first-
order Bessel function, and b0 = αz0/2 = αBz0γ /2. It should
be noted that for � �= 0 the response function of the form,
Eq. (10), is found only in Refs. [5,18,25].

The response function R(z0,t) is a sum of the input field δ(t)
and FID (i.e., dipoles ringing, induced by the short pulse). It
is educative to derive the FID part of the response function
from qualitative arguments. The short pulse δ(t) induces
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single-sided exponential ringing of the dipoles in the absorber.
It is described by the solution of Eq. (1) for the nondiagonal
element of the density matrix with �(z,t) = δ(t − z/c), which
gives σeg(z,t) = i�(t − z/c) exp[(i� − γ )(t − z/c)], where
z is a coordinate of a particle in the absorber. Below for
simplicity of notations we disregard a small value z/c in the
mathematical expressions.

After short-pulse excitation each dipole in the absorber
can be considered as a radiation source. According to the
solution of the wave equation [Eq. (2)] the field, emitted
by a very thin layer of atoms at the front face of thickness
dz, emits a field �exp(0,t) = −(α/2)�(t) exp(i�t − γ t)dz.
Here an exponential factor exp(i�t) appears because dipoles
oscillate with their own frequency ω0 not equal to the carrier
frequency ωs of the exciting pulse. The field, which is emitted
by dipoles, located at the front face of the absorber, is resonant
for all other atoms in the absorber. Due to multiple scattering
on the other atoms this field transforms at the output z0 of a
thick absorber to (see Ref. [21])

�exp(z0,t) = −α

2
�(t)e(i�−γ )t J0(

√
2αz0t)dz. (11)

This result is obtained in Ref. [21] by calculating the integral in
Eq. (8) for the single-sided exponential input field �exp(0,t).
Dipoles, located at distance +z from the front face of the
absorber in a thin layer of thickness dz, produce a field,

�exp(z0 − z,t) = −α

2
�(t)e(i�−γ )t J0(

√
2α(z0 − z)t)dz, (12)

at the output z0 of the absorber. In LR approximation the fields
emitted by different particles do not interact and they only
interfere at the output. The result of the interference of the
fields, produced by all particles of the absorber, is �exp(z0,t) =
〈�exp(z0 − z,t)〉z, where

〈�exp(z0 − z,t)〉z
= −α

2
�(t)e(i�−γ )t

∫ z0

0
J0(

√
2α(z0 − z)t)dz. (13)

The integration (see Ref. [26]) gives

�exp(z0,t) = −�(t)e(i�−γ )t

√
αz0

2t
J1(

√
2αz0t). (14)

This result is identical to the FID part of Eq. (10). It is important
to notice that the phase of FID is 180◦ shifted with respect to
the phase of the incident field.

III. RESONANT EXCITATION

Physical processes, which take place in TN, induced by a
step pulse, FID following a rectangular pulse, and transient
nutations, induced by a phase switch of the input field, can all
be easily understood just from the analysis of the propagation
of the step pulse. This is a basic element, whose interaction
with a thick absorber contains all the processes actual for the
listed phenomena. This is because (i) the rectangular pulse of
the duration tp, that is, �R(0,t) = �0[�(t) − �(t − tp)] can
be considered as a sum of two infinite step pulses ��(0,t) and
−��(0,t − tp), which are in antiphase, and they are applied at
different moments of time, where ��(0,t) = �0�(t), and
(ii) the field whose phase suddenly changes by π at time td can

be considered as a sum of two infinite step pulses ��(0,t) and
−2��(0,t − tp), which are in antiphase and the amplitude of
the second pulse is doubled with respect to the first one.

Moreover, since we consider the atom-field interaction in a
linear response approximation, knowledge of the amplitude of
the step pulse at the output of a thick absorber, ��(z0,t), may
give us the amplitude of the scattered field at the output in a
very simple way.

To estimate the amplitude of the scattered field one
can address the argument given in Feynman lectures [16].
According to Feynman, the light, transmitted by any sample,
can be considered as a result of the interference of the
input wave, as if it would propagate in vacuum, with the
secondary wave radiated by the linear polarization induced
in the medium. Then, following literally this argument, one
can express the output field for the input step pulse as
follows ��(z0,t) = ��(0,t) + �sc

� (z0,t), where �sc
� (z0,t) is

the scattered field, which is

�sc
� (z0,t) = ��(z0,t) − ��(0,t). (15)

This field is just FID, observed at the end of the rectangular
pulse. Also knowledge of the amplitude and phase of the
scattered field helps to estimate the first maximum of the
transients induced by the phase switch of the input field.

A. Rectangular pulse

In this subsection we consider transients, induced by a weak
rectangular pulse with sharp edges if the pulse is in exact
resonance, � = 0. According to Eq. (9) the front of the pulse,
which is the step pulse, ��(0,t), is transformed at the output to

��(z0,t) = �0�(t)

[
1 −

∫ t

0
e−γ τ

√
b0

τ
J1(2

√
b0τ )dτ

]
.

(16)

Integration by parts, the integral in Eq. (16) reduces this
expression to

��(z0,t) = �0�(t)

[
e−γ tJ0(2

√
b0t)

+γ

∫ t

0
e−γ τ J0(2

√
b0τ )dτ

]
. (17)

As it is shown in Ref. [5] this representation of the output
amplitude simplifies the analysis. The amplitude consists of
two components, the first is a function decaying to zero and
the second has the asymptote (see Ref. [26]),

lim
t→+∞

[
γ

∫ t

0
e−γ τ J0(2

√
b0τ )dτ

]
= e−b0/γ . (18)

The power of exponent in the right-hand side of Eq. (18)
is b0/γ = αBz0/2. This exponent describes the Beer’s low
attenuation of the amplitude of the step pulse to the value
�0 exp(−αBz0/2) at t → +∞.
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FIG. 1. Time evolution of the output pulse (thick solid line) for
different values of the absorber thickness, αBz0, which is 1 for (a),
2 for (b), and 6 for (c). Input pulse is shown by dots. Dash-dotted
line shows the Beer’s law attenuation level. Thin solid line shows the
asymptote of the scattered field amplitude, Eq. (20). The amplitude
is normalized to �0.

Knowledge of the output for the step pulse from a thick
resonant absorber allows one to find the output for the
rectangular pulse, which is

�R(z0,t) = ��(z0,t) − ��(z0,t − tp). (19)

Figure 1 shows time evolution of the output pulse (thick solid
line) for different values of optical thickness of the absorber,
αBz0, which is equal to 1 for (a), 2 for (b), and 6 for (c). It
is worth the reader’s attention that the leading edges of the
pulses, shown in Figs. 1(a) and 1(b), look very similar to the
experimentally observed optical precursors in Ref. [14] (see
Fig. 1 in this reference).

The plots clearly show that the sharp front of the rectangular
pulse (whose shape is shown by dots in Fig. 1) escapes
out of the absorber without interaction. This is because the
polarization of the absorber, which is P (z,t) = Ndgeρeg(z,t),
needs time to build up. Then, with time inversely proportional

to b0 this polarization rises producing a scattered field (or
dipoles ringing), which is in antiphase with the input field
[16] [see Eq. (15)]. Destructive interference of the input and
scattered fields reduces the amplitude of the output field.
Development time and the amplitude of the scattered field
depend on the optical thickness of the absorber. The thicker
the sample, the shorter the time and the larger the amplitude
of the scattered field are.

The development rate of the scattered field is defined by the
parameter b0. The amplitude of the scattered field is zero for
t = 0. With time this amplitude tends to the value,

�sc
� (z0, + ∞) = �0[exp(−αBz0/2) − 1], (20)

and the amplitude of the output field tends to asymptote
�0 exp(−αBz0/2), shown by the dash-dotted line in Fig. 1.
At t = tp, when the field is switched off only the scattered
field, �sc

� (z0,t), is seen at the output. The asymptote of the
amplitude of the scattered field, Eq. (20), is shown in Fig. 1 by
the thin solid line.

As seen from Fig. 1(c), for a thick absorber the output field
just before t = tp is almost zero. This observation tells us that
the field is completely absorbed by the sample and we usually
assume that this process is irreversible if the dephasing of
the dipoles (dgeρeg), induced in the absorber, is irreversible.
However, fast switch-off of the field is followed by the FID
pulse whose amplitude is nearly the same as the amplitude
of the input pulse if the absorber is very thick. Thus, the
absorption is not an irreversible process and FID regenerates
the field energy accumulated in the absorber in a form of the
scattered field or dipoles ringing. In the next section another
transient is considered whose amplitude is even greater.

Approximate expressions for ��(z0,t) simplifying the
analysis of the output field features and conventional deriva-
tions of the expression for �R(z0,t), which are different from
the response function technique, Eq. (9), are given in the
appendix, Secs. A and B. These derivations clarify the physics
of the scattered field development, give the distribution of
the polarization along the absorber, and help to propose new
experiments in thick samples.

It should be noted that the approximation of ��(z0,t), given
in the appendix, Eq. (A6), is expressed as a sum of three terms
proportional to the Bessel functions of the zero, first, and
second orders. In many other papers on this topic the solution
for the step pulse, ��(z0,t), is given in a form of an infinite
sum of the Bessel functions of ascending integer order. Even
in the case when this solution is expressed via two Lommel’s
functions (see Ref. [5]), finally they are again expressed as
the infinite sums of the Bessel functions with the coefficients
sn

0 (t/b0)n/2 exp(−s0t) or (−s0)−n(t/b0)−n/2 exp(−s0t), where
s0 = γ − i� and n is the order of the Bessel function. This is
because the Lommel’s functions have the only representation
via the expansion in terms of the Bessel functions.

B. Instantaneous phase shift of the incident field

We consider the propagation of the step pulse and assume
that its phase ϕ (ϕ = 0) suddenly changes to π at time td > 0.
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FIG. 2. Time evolution of the output step field, whose phase is
shifted to π at td = 3T2 (a), and td = 1.2T2 (b). Solid line is for the
absorber with αBz0 = 1, dash-dotted line is for αBz0 = 2, and dotted
line is for αBz0 = 6. The insert in (a) is zoom-in of the domain of the
burst. The intensity is normalized to I0.

The amplitude of such a field at the input of the resonant
absorber can be described by the expression,

�pi(0,t) = ��(0,t) − 2��(0,t − td ). (21)

Then, with the help of the response function technique, one
can easily derive the expression for the output field,

�pi(z0,t) = ��(z0,t) − 2��(z0,t − td ), (22)

where ��(z0,t) is defined in Eq. (17).
Figure 2 shows the time evolution of the output intensity

Ipi(z0,t) = |�pi(z0,t)|2 of the step pulse experiencing instan-
taneous π shift of its phase at t = td . This phase shift induces
a radiation burst whose maximum intensity is even larger than
the intensity of the input field, I0 = |�0|2. If td is relatively
long with respect to the dephasing time of the atomic coherence
T2 = 1/γ , for example, it is equal to 3T2 as in Fig. 2(a), then
the maximum amplitude of the transient nutation, induced by
the phase shift, is estimated as follows. A shift of the field
phase by π can be considered as a sudden switch-off of the
field ��(0,t) and simultaneous switch-on of the field with the
opposite phase and the same amplitude [i.e., −��(0,t − td )].
For large td the first process produces FID with maximum
amplitude �0[exp(−αBz0/2) − 1] at t = td . The field, which
is switched on at td , is not absorbed in the very beginning and
hence the amplitude of the radiation burst, �max, is

�max = �0[exp(−αBz0/2) − 2], (23)

and its intensity is Imax = I0[exp(−αBz0/2) − 2]2. For a
thick absorber (αBz0 	 1) the intensity of the radiation
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3
(b)

0 2 4 6 8 10
0
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4
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(c)

γ

FIG. 3. Pulse train of the output field, induced by the sudden
change of the phase of the input field at time intervals multiple to
td = 2T2. The optical thickness is 1 for (a), 2 for (b), and 6 for (c).
The intensity is normalized to I0.

burst exceeds nearly 4 times the intensity of the input field.
The radiation enhancement arises due to the constructive
interference of the phase-shifted field with the scattered field,
produced by the field just before its phase shift. Both fields
have phase π .

For shorter time td [see Fig. 2(b)] and for relatively thick
samples (e.g., for αBz0 = 6) the maximum intensity of the ra-
diation burst is slightly more than 4 times larger with respect to
I0. This is because the amplitude of the scattered field �sc

� (z0,t)
for αBz0 = 6 and at td = 1.2T2 slightly exceeds the amplitude
of the input field, �0. Since they have opposite phases, their
interference is seen as a small negative dip in Fig. 1(c).

It is interesting to notice that a train of successive phase
shifts of the input field is capable of producing a train of
spikes. If, for example, at the end of each time interval td
the phase of the input field suddenly increases by π , then the
output field amplitude changes as follows,

�tr (z0,t) = ��(z0,t) + 2
n∑

k=1

(−1)k��(z0,t − ktd ), (24)

where n is the number of phase shifts. The plots for the intensity
of the output field, Itr (z0,t) = |�tr (z0,t)|2, if td = 2T2 are
shown in Fig. 3 for the absorbers with optical thickness 1 (a),
2 (b), and 6 (c). For thick absorbers it is possible to use even a
shorter time interval td (see Fig. 4), where td is T2 for (a) and
T2/2 for (b).
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FIG. 4. The same pulse train as in Fig. 3 for td = T2 (a)
and t1 = T2/2 (b). Optical thickness is 6. The intensity is normalized
to I0.

Such a train of pulses can be used for a new type of
communication. If we take, for example, an optical fiber, doped
by resonant impurities, then a train of the phase-shift events
produced with the continuous wave (cw) input field transforms
into the train of the radiation bursts at the output with the
same dwell time td . The information in this transmission
line is coded in the presence or absence of the radiation
burst at each particular moment of time tk = ktd , where k

is a natural number. This way the information transmission
looks robust against noise since no field is present between
successive moments of time, tk and tk+1. Another advantage
is low intensity of the input cw field and high contrast of the
signal. This advantage comes from the fact that the energy of
the signal pulse at the output is taken from the transmitting
medium accumulating the energy of the cw field within the
time interval td between signal pulses (i.e., within the dwell
time of the phase shifts).

C. Slow change of the field phase

In practice the phase shift of the input field is not
instantaneous and takes a finite time. To estimate the influence
of the time scale of the phase change on the amplitude and
duration of the radiation burst we model the phase evolution
by the function,

ϕ(t) = tan−1[δω(t − td )] + π/2, (25)

where δω quantifies the rate of the phase change. According to
Eq. (25) the phase rises from 0 to π , and if δω is much larger
than γ and b0, one can consider ϕ(t) as a step function. A time
derivative of ϕ(t), which is an instantaneous frequency of the
field, is also a simple function,

ϕ̇(t) = δω

1 + δω2(t − td )2
. (26)
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FIG. 5. The shape of the radiation burst, Iϕ(z0,t) = |�ϕ(z0,t)|2,
for different rates of the phase shift δ, and different thickness of the
absorber, specified by the parameter b0. They are b0 = 3γ , δ = 30γ

(dotted line), and δ = 9γ (dash-dotted line) in (a), and b0 = γ , δ =
9γ (dotted line), and δ = 3γ (dash-dotted line) in (b). The radiation
intensity is normalized to I0 = �2

0. Solid line shows the intensity for
the instantaneous phase shift. Time td is 1/γ in (a) and 2/γ in (b).

We express the amplitude of the input step pulse, whose phase
changes according to Eq. (25) in a time domain around td >

0, as follows �ϕ(0,t) = ��(0,t) exp[iϕ(t)]. With the help of
Eq. (9) one can derive for the resonant absorber that the output
field is

�ϕ(z0,t)

= �0�(t)

[
eiϕ(t) − b0

∫ t

0
eiϕ(t−τ )−γ τ J1(2

√
b0τ )√

b0τ
dτ

]
.

(27)

If δω 	 b0, the function ϕ(t − τ ) can be approximated by the
step function π�(t − τ − td ). Then, the integration domain of
the integral in Eq. (27) is divided into two subdomains (0,td )
and (td ,t). Integrating by parts these two integrals we find that
Eq. (27) is reduced to Eq. (22) valid for the instantaneous
phase shift.

For arbitrary relation between δω and b0 Eq. (27) is reduced
to

�ϕ(z0,t) = �0�(t)[e−γ t+iϕ(0)J0(2
√

b0t) + fϕ(t)], (28)

where

fϕ(t) =
∫ t

0
[γ + iϕ̇(t − τ )]eiϕ(t−τ )−γ τ J0(2

√
b0τ )dτ. (29)

Numerical calculation of the integral shows that, for example,
for δω = 100b0 the shape of the radiation burst is almost
the same as for the instantaneous phase shift, except small
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smoothening of the initial peak. Figure 5 demonstrates two
examples of the radiation burst, induced in the samples with
different optical thickness [i.e., b0 = 3γ (a) and b0 = γ (b)].
We found that when δ is roughly 10 times larger than b0,
the amplitude of the radiation burst is large. For smaller δ,
for example, for δ = 3b0, the amplitude of the radiation burst
drops and its shape broadens.

Thus, to induce the radiation burst with large intensity
the rate of the phase change is to be larger than the rate of
the formation of the scattered field, which is defined by the
parameter b0.

To induce the radiation burst with intensity comparable to
the intensity of the input field, the rate δ of the phase change
should be at least three times larger than b0. Therefore, to
reduce the absolute value of this necessary rate it is preferable
to use samples with moderate thickness, for example, b0 = γ

as in Fig. 5(b). However, for samples with moderate thickness
the absolute value of the amplitude of the scattered field
decreases according to Eq. (20). For example, for b0 = γ

the asymptote of this amplitude is �sc
� (z0, + ∞) = −0.63�0.

Therefore, the maximum intensity of the radiation burst after
the instantaneous phase switch at td 	 1/b0 is Ipi(z0,td ) ≈
[�sc

� (z0, + ∞) − �0]2. If, for example, b0 = γ , the maximum
intensity of the spike is 2.7I0 [see Fig. 5(b), solid line], which
is appreciably smaller than the maximum intensity of the spike
at the output of a thick absorber [see Fig. 5(a), solid line].

D. Rectangular pulse with smooth edges

It is interesting to notice that the expression for the
amplitude of the output radiation field for the step pulse,
��(z0,t), Eq. (17), is a sum of two terms. The first term,
�0�(t) exp(−γ t)J0(2

√
b0t), corresponds to the output of

the radiation field whose input envelope is a single-sided
exponent [i.e., �1(t) = �0�(t) exp(−γ t)]. The counterpart of
the second term is �2(t) = �0�(t)[1 − exp(−γ t)]. Thus, the
step pulse can be considered as a sum of the pulse �1(t) with
a sharp front and the smoothly rising pulse �2(t). Their time
dependencies at the output of a thick absorber are qualitatively
different. The pulse �1(t) demonstrates a precursor at the
output of a thick absorber since the scattered field does not
develop instantly. Then this pulse �1(t) decays to zero with
time. The pulse �2(t) rises smoothly from 0 to �0. Therefore
the scattered field has time to develop in a thick absorber
and it extinguishes the pulse �2(t) due to their destructive
interference. Just the pulse �2(t) defines the amplitude of the
step pulse at the output when t 	 1/b0 and obviously �2(t)
does not show a precursor at a time interval 0 < t < 1/b0 if
b0 � γ .

Actually the step pulse, as well as the rectangular pulse, are
idealizations. Their edges are not infinitely sharp. We model
the step pulse with finite rise time of its front as

��f (t) = �0�(t)[1 − exp(−rt)], (30)

where r quantifies the rate of the pulse rise. This pulse is
analogous to the pulse �2(t), whose front rises with the
rate γ . When the rate r of the pulse rise is small (r � γ ),
one can expect that the precursor would not be observed since
the atomic dipoles have enough time to develop the response
field.
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FIG. 6. (a) Time evolution of the rectangular pulse with smooth
edges at the input (solid line) and output (dotted line) of the thick
absorber with b0 = 3γ . Pulse duration is tp = 5/γ . The rate of the
rise and fall of the pulse edges is r = 3γ . (b) Comparison of the time
evolution of the pulse front at the output for r = 0.3γ (dashed line),
r = 3γ (solid line), and r = 6γ (dotted line). The field amplitude is
normalized to �0.

According to Eq. (9) the pulse amplitude at the output of a
thick absorber is

��f (z0,t) = �(t)�0

∫ t

0
[γ + (r − γ )e−r(t−τ )]

× e−γ τ J0(2
√

b0τ )dτ. (31)

The rectangular pulse with smooth edges we model by the
function,

�RS(t) = ��f (t) − ��f (t − tp), (32)

where tp is a pulse duration. Its amplitude at the output of a
thick absorber is

�RS(z0,t) = ��f (z0,t) − ��f (z0,t − tp). (33)

Examples of the amplitude evolution of the pulse are shown in
Fig. 6. If r � b0 > γ the amplitudes of the precursor and FID
are appreciably larger than the attenuated amplitude of the
output radiation typical for the steady-state absorption [i.e.,
than �0 exp(−b0/γ )]. If r 	 b0, the output field �RS(z0,t)
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almost coincides with that [Eq. (19)] for the rectangular pulse
with sharp edges. On the contrary, if r � b0 the amplitude
of the precursor and FID are negligibly small [see Fig. 6(b),
dashed line]. In this case the scattered field has time to develop
and it always compensates the incident field down to the level,
defined by Beer’s law, even when the pulse is switched on and
off.

IV. NONRESONANT EXCITATION

It was shown in Ref. [20] that a nonresonant single-
sided exponential pulse demonstrates qualitatively different
transients in thick absorbers. In this section we show that the
step pulse, rectangular pulse, and step pulse, whose phase
instantly changes to π at t = td , also reveal unusual transients
out of resonance.

A. Transient nutations induced by the step pulse

According to Eqs. (9) and (10) the nonresonant step pulse
is transformed at the output of a thick absorber to

��(z0,t) = �0�(t)[e(i�−γ )t J0(2
√

b0t) + f�(t)], (34)

where

f�(t) = (γ − i�)
∫ t

0
e(i�−γ )τ J0(2

√
b0τ )dτ. (35)

The field ��(z0,t) consists of two components, that is,

�r (z0,t) = �0�(t)e(i�−γ )t J0(2
√

b0t), (36)

and

�nr (z0,t) = �0�(t)f�(t). (37)

The first component, �r (z0,t), decays to zero with the rate
b0. This component coincides with the output radiation field
whose input envelope is a single-sided exponent �r (0,t) =
�0�(t) exp(i�t − γ t). This field is in resonance with the ab-
sorber since its frequency coincides with the atomic frequency
ω0 [i.e., �r (0,t) exp(−iωst) = �0�(t) exp(−iω0t − γ t)].

The second component coincides with the output field
whose input envelope is �nr (0,t) = �0�(t)[1 − exp(i�t −
γ t)]. It has no sharp front. If |�| 	 γ the amplitude of this
field rises with the rate �. This component is out of resonance.
Since the function f�(t) in Eq. (37) has the asymptote (see
Ref. [26]),

lim
t→+∞ f�(t) = exp

(
− b0

γ − i�

)
, (38)

the amplitude of the output field �nr (z0,t) tends to nonzero,
constant value. In resonance, � = 0, the amplitude of the
second component tends to a very small value, defined by
Beer’s law, if b0 	 γ . If |�| 	 γ , the second component
experiences small absorption and acquires a phase, which
depends on the parameters b0 and �.

The nonresonant component of the field, �nr (0,t), prop-
agates with reduced group velocity (see Refs. [27,28]).
Therefore, the front of �nr (0,t) experiences appreciable delay
seen at the output as a slow development rate of this component
[i.e., �nr (z0,t)]. The resonant component �r (0,t) escapes
from interaction for very short t close to zero, demonstrating
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FIG. 7. Time evolution of the rectangular pulse at the output
of absorber with thickness parameter b0 = 100γ (solid line). The
resonant detuning is � = 31.8γ in (a) and � = 100γ in (b). The
input pulse is shown by dots. The intensity is normalized to I0.

precursor at the output of a thick absorber. Then, for longer
times �r (z0,t) experiences fast decay. Superposition of these
components is seen as the precursor, decaying fast, and then a
slow rise of the field amplitude to almost the same value as at
the input. Examples of such an evolution are shown in Fig. 7.
For larger ratio |�|/b0 the slow component develops faster.
A rough estimate of the development rate of the slow field is
given in the appendix, Sec. C.

B. FID at the end of the rectangular pulse

At the end of the rectangular pulse the output field is
described by Eq. (19). Therefore, FID, following switch-off
of the nonresonant field, has two main contributions. The first
is mostly defined by the term −�r (z0,t − tp) and the second
comes from �nr (z0,t). If b0tp 	 1 the amplitude of the first
component at t = tp is �1(tp) = −�0, and the amplitude of the
second component is �2(tp) ≈ �0 exp[−b0/(γ − i�)]. Thus,
maximum amplitude of FID at t = tp is

�FID(z0,tp,tp) ≈ −�0 + �2(tp). (39)

In resonance the second component is almost zero if b/γ 	
1. Out of resonance �2(tp) is large and it is defined by the field
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propagating with reduced group velocity. The phase of this
field,

ϕsl = − �b0

�2 + γ 2
, (40)

equals ±π if � = ∓�π and b0 > 2πγ , where

�π = b0

2π
+

√(
b0

2π

)2

− γ 2. (41)

The amplitude of this field, �0 exp(−πγ/�π ), is close to �0 if
�π 	 πγ . Thus, at t = tp and for b0tp 	 1, � = ∓�π FID
has the amplitude −2�0 and its intensity is 4I0. This is a result
of constructive interference of the fast and slow components
of the field. Such a constructive interference of two fields is
shown in Fig. 7(a) where � = �π . An opposite example, when
constructive interference of the two fields does not happen, is
shown in Fig. 7(b). For the chosen parameters (b0 = � =
100γ ) the intensity of FID at t = tp is IFID(tp) = | − �0 +
�2(tp)|2 = 0.91I0 since �2(tp) = �0(0.535 − i0.833).

C. Transients induced by the instantaneous phase shift

If the phase of the step pulse ϕ = 0 instantly changes
to π at time td , the field at the output of a thick absorber
acquires fast transients, which are described by Eq. (22). Two
examples of these transients are shown in Fig. 8. The amplitude
of the transients at t = td is defined by two contributions.
They are FID, induced by the pulse switch-off, �FID(z0,t,td ) =
��(z0,t) − ��(z0,t − td ), and transient nutations, induced by
the step-pulse switch-on with opposite phase, �T N (z0,t,td ) =
−��(z0,t − td ). As shown in the previous subsection, FID also
has two contributions (i.e., fast and slow). Transient nutations,
induced by the phase-shifted field, have large amplitude at
t = td , �TN(z0,td ,td ) = −�0, because the front of the phase-
shifted field escapes from interaction with the absorber. Thus,
if b0td 	 1, the total amplitude of the output field at t = td is

�pi(z0,td ) ≈ −2�0 + �sl(td ), (42)

where �sl(td ) ≈ �0 exp[−b0/(γ − i�)] is a slow component
of the field developed before td . If � = �π , the phase of
the slow field �sl(td ) is π and all three fields interfere
constructively. They are the fast and slow components of FID,
and the fast component produced by the phase-shifted field.
If �π 	 πγ , the amplitude of the radiation burst at t = td
is three times larger than the amplitude of the input radiation
field, and its intensity is nine times larger than the intensity
of the input field [see Fig. 8(a)]. If the absolute value of the
phase of the slow field, ϕsl , is much smaller than π , the slow
field interferes destructively with two other components of the
output field and the intensity of the radiation burst decreases.
An example of reduced transients at t = td is shown in
Fig. 8(b) where ϕsl = −0.5 radians.

It is interesting to compare the distribution of the atomic
coherence σeg(z,t) along the absorber just before the phase
shift of the field for resonant and nonresonant excitations.
For the resonant excitation spatial and temporal dependence
of the atomic coherence is derived in the appendix, Sec. B
[see Eq. (A14)]. It is easy to show that for the nonresonant
excitation one can obtain the expression for σeg(z,t) simply
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FIG. 8. Transients induced by the π shift of the field phase at
td = 35/b0. The parameter of the absorber thickness is b0 = 100γ .
The resonant detuning is � = 0.318b0 in (a) and � = 2b0 in (b). The
field intensity is normalized to I0.

replacing the parameter γ in Eq. (A14) with γ − i�. The
spatial dependence of the absolute value of the coherence,
|σeg(z,t)| at t = 0.35/γ is shown in Fig. 9(a) for the resonant
(solid line) and nonresonant (dashed line) excitations. The
nonresonant detuning is � = 31.8γ , which corresponds to
�π for b = 100γ . For the nonresonant excitation the atomic
coherence is relatively homogeneously distributed along the
absorber, while in resonance it is mostly concentrated in
the front domain of the absorber. In resonance the atomic
coherence has pure imaginary value whose sign changes with
distance. As a result the absorber is divided into domains
such that in neighboring domains the atomic coherence has
opposite phases [see Fig. 9(b)]. Out of resonance the imaginary
part of the atomic coherence is almost homogeneous along the
absorber. The real part of the atomic coherence changes almost
linearly with distance crossing zero at a particular coordinate.

D. Dephasing of the atomic coherence far from resonance

In gases as well as in solids the radiative broadening of the
absorption line is not the only mechanism of the dephasing of
the atomic coherence. In many cases the nonradiative contri-
bution to the dephasing rate γ is dominant, i.e., γ = γr + γnr

and γnr 	 γr , where γr is the contribution of the spontaneous
decay of the excited state e and γnr is the contribution of the
nonradiative decay of the atomic coherence σeg(t). Usually the
absorbtion coefficient in Beer’s law, αB = α/γ , is defined for
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FIG. 9. (a) The distribution of the absolute value of the atomic
coherence along the absorber for resonant (solid line) and nonresonant
(dashed line) excitations. (b) The distribution of the atomic coherence
for resonant excitation (thin solid line). The distribution of the real
(dotted line) and imaginary (thick solid line) components of the
atomic coherence along the absorber for nonresonant excitation.
Resonant detuning is � = 31.8γ . The duration of the excitation is
tp = 0.35/γ . The value of the atomic coherence is normalized to
�0/γ .

the monochromatic radiation tuned in resonance and the decay
rate in this formula is the total decay rate γ . In Ref. [28] it
is shown that far from resonance, |�τc| 	 1, where τc is the
correlation time of the stochastic processes, responsible for the
nonradiative broadening, the contribution of γnr is canceled,
and the dephasing rate is determined only by the radiative
decay rate γr . Since the Beer’s law coefficient is defined in
exact resonance, far from resonance the effective thickness
of the absorber increases substantially due to the suppression
of the nonradiative decay, i.e., αBout = αBinγnr/γr 	 αBin if
γnr 	 γr , where αBin = α/γ is the absorption coefficient in
resonance and αBout is the absorption coefficient [without the
spectral factor, see Eq. (6)] far from resonance. The actual
thickness parameter b is not modified out of resonance since

b = αBoutγr/2 = αBinγnr/2. However the condition b 	 γr ,
considered in this section, is easily satisfied for moderately
thick samples if |�τc| 	 1.

Inhomogeneous broadening is also not effective if |�| >

3�inh, where �inh is a half width of the inhomogeneously
broadened absorption line (see Refs. [28–30]). This is because
far wings of the inhomogeneously broadened absorption line
with Gaussian distribution of the resonant frequencies are
actually Lorentzian wings caused by radiative broadening.

For the resonant excitation of the inhomogeneously broad-
ened absorption line with a Gaussian shape the response
function, given in Eq. (10), is not applicable. Its analytical
derivation is not trivial and up to date only numerical
calculation of the integral in Eq. (8) is possible to perform
analysis of optical transients. This analysis is quite lengthy
and time consuming, and it is planned for future.

Meanwhile, as an example, inhomogeneous broadening
with Lorentzian distribution of resonant frequencies was con-
sidered in Ref. [22]. Since the convolution of two Lorentzians
is Lorentzian, the response function of such a medium
coincides with that, given in Eq. (10), where γ is substituted
by γ + �inh.

V. CONCLUSION

Interaction of a weak radiation field with thick resonant
absorbers is studied theoretically. Coherent excitation of the
atomic dipoles in the absorber induces their coherent ringing
seen as a coherently scattered radiation field. Since the phase
of the coherently scattered radiation is opposite the phase of
the incident radiation, these fields interfere destructively. As a
result the radiation field decreases substantially at the output
of a thick absorber.

If the input pulse has a sharp leading edge its front escapes
the attenuation because the scattered field needs time to
develop. Therefore the decrease of the intensity of the output
radiation is not instantaneous. It develops later with the rate
defined by the absorber thickness. Thus, the optical precursor
appears at the output, followed by optical transients decaying
to a steady-state intensity, which is consistent with Beer’s
law attenuation. Fast switch-off of the incident radiation field
produces large intensity FID. It is just coherent ringing of the
induced dipoles continuing to produce a coherently scattered
field. This field is not compensated by the input field after its
switch-off. Therefore a thick absorber produces FID whose
amplitude is almost the same as the amplitude of the input
field and whose phase is opposite.

Another transient is produced by a fast phase switch of
the field from zero to π . Then FID and the phase-shifted input
field interfere constructively producing a radiation burst whose
intensity is four times larger than the intensity of the input field.
Such a phase shift is proposed for use in communication. The
information can be coded in a train of pulses (radiation bursts),
induced by the phase switch. Between the signals the energy
is stored in a transmitting line in a form of the destructively
interfering input field and dipoles ringing. An optical fiber,
doped with resonant impurities, is proposed as a transmitting
line.

If the step-pulse input field is far from resonance its front
also escapes from interaction forming the optical precursor.
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Then, the start of the dipoles ringing with the frequency of
the input field form a pulse propagating with a reduced group
velocity and a phase different from the phase of the input pulse.
As a result of the delayed atomic response the front of the step
pulse is transformed into the smoothly rising pulse, whose
front is delayed and spread in time. Thus, optical transients,
induced by the step pulse, are split into the optical precursor,
followed by a dip, and a delayed part whose intensity is close
to the intensity of the input pulse.

Fast switch-off of the input field leaves the atomic dipoles
free and then they start to oscillate with their own frequency,
which is different from the frequency of the input field.
In this case two coherent fields are developed, i.e., FID
oscillating with the resonant frequency of atoms and the slowly
propagating field, which is still present in the absorber and
whose frequency coincides with the frequency of the input
field. The phase of FID is π . The phase of the slow field
depends on the optical thickness of the absorber and resonant
detuning. If they are chosen such that the phase of the slow
field is also π , FID and the slow field interfere constructively
after switch-off of the input field. Then, the radiation burst is
observed whose intensity is four times larger than the intensity
of the input field.

A fast phase switch of the field to π brings the input
field, FID, and the slow field in phase. Their constructive
interference produces a radiation burst whose intensity is nine
times larger than the intensity of the input field.

The effect of the phase switch was experimentally studied
for the resonant γ quanta in Refs. [18–20]. Anomalous
radiation burst after the phase switch was observed in Ref. [20]
at the output of the thick absorber for the nonresonant
excitation by γ quanta.
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APPENDIX

A. Step-pulse analysis

To facilitate calculation of the integral in Eq. (8) for the
output of the step pulse from a thick sample one can apply the
Laplace transform,

F (s) =
∫ +∞

0
e−sbf (b)db, (A1)

to the function ��(z,t), which is assumed to be a function of
the single real variable b = αz/2. Here s is a complex Laplace
variable. For the step pulse the Fourier transform �(0,ν) in
Eq. (8) is ��(0,ν) = i�0/ν. The Laplace transformation of
the transmission function,

exp

(
−iν − ib

ν + iγ

)
, (A2)

reduces the Laplace transform of Eq. (8) to

��(s,ν) = i

2π

∫ +∞

−∞

e−iνt

ν
(
s + i

ν+iγ

)dν. (A3)

This integral is easily calculated by the method of residues.
The result is

��(s,ν) = γ

γ s + 1
+ e−γ t−t/s

s(γ s + 1)
. (A4)

The inverse Laplace transform of Eq. (A4) is found with
the help of the convolution theorem and tables of Laplace
transforms (see, e.g., Ref. [31]),

��(z,t) = e−b/γ + e−γ t

γ

∫ b

0
e−β/γ J0(2

√
(b − β)t)dβ.

(A5)

The main contribution to the integral in Eq. (A5) is given by
the domain where β is small. Therefore, if one takes only
the first three terms of the Taylor expansion of the function
J0(2

√
(b − β)t) in the vicinity of β = 0, then the integral is

easily calculated. The approximated result is

��(z,t) = e−b/γ + e−γ t

[
f0(b)J0(2

√
bt)

+f1(b,t)
J1(2

√
bt)√

bt
+ f2(b,t)

J2(2
√

bt)

bt

]
, (A6)

where

f0(b) = 1 − e−b/γ , (A7)

f1(b,t) = γ t

[
1 −

(
1 + b

γ

)
e−b/γ

]
, (A8)

f2(b,t) = (γ t)2

[
1 −

(
1 + b

γ
+ b2

2γ 2

)
e−b/γ

]
. (A9)

Comparison of the approximated time evolution of ��(z0,t),
Eq. (A6), with exact function, Eq. (17), for the output of the
step pulse from absorbers with different optical thickness Th =
αBz0 is shown in Fig. 10. Over a wide range of values of the
parameter Th these functions are quite close to each other.

B. Conventional derivation of the FID signal

In this subsection FID signal, induced by the resonant
rectangular pulse (� = 0), is derived if the distribution of
the polarization along the sample, when the pulse is switched
off, is known. This derivation is useful for the qualitative
understanding of the formation of FID in a thick sample.

According to Eq. (4) the atomic coherence σeg(z,t), induced
by a pulse �(z,t), is

σeg(z,t) = i

∫ +∞

−∞
e−γ (t−τ )�(t − τ )�(z,τ )dτ. (A10)

For the step pulse the distribution of the field amplitude,
��(z,τ ), along the sample is derived in Sec. III [see Eq. (16)].
Substituting ��(z,τ ) into Eq. (A10) one obtains

σeg(z,t) = i�0�(t)e−γ t [F1(z,t) + F2(z,t)] , (A11)
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FIG. 10. Time evolution of the front of the step-pulse output
for different values of the absorber thickness Th = αBz0. Thin
solid line represents the function, which is given by Eq. (17). The
approximation, Eq. (A6), is shown by dots. The amplitude of the
output pulse is given in units of the amplitude of the input pulse �0.

where

F1(z,t) =
∫ t

0
J0(2

√
bτ )dτ. (A12)

F2(z,t) = γ

∫ t

0
dτ1

∫ τ1

0
dτ2e

γ (τ1−τ2)J0(2
√

bτ2). (A13)

Change of the order of the integrals in F2(z,t) and integration
of the integral with a variable τ2 gives

σeg(z,t) = i�0�(t)
∫ t

0
e−γ τ J0(2

√
bτ )dτ. (A14)

Figure 11 shows a distribution of the coherence σeg(z,t) along
the sample at different moments of time t elapsed from the
pulse switch on, i.e., T2/2, T2, and 3T2, where T2 = 1/γ is a
homogeneous dephasing time of the atomic coherence. It is
obvious that with time the atomic polarization of a noticeable
amplitude is mostly concentrated in the front domain of the
absorber, i.e., for 0 < D < 5, where D = αBz is the optical
depth measured from the input. For D > 5 the value of this
coherence is almost negligible.

After switch-off of the pulse at t = tp the atomic coherence
decays as

σeg(z,t)|t�tp = e−γ (t−tp)σeg(z,tp), (A15)

5 10 15 20
0.2

0

0.2

0.4

0.6

0.8

-iσeg(z,t)

D

FIG. 11. Distribution of the coherence σeg(z,t) along z in units of
nondimensional optical depth D = αBz at different moments of time
t , which are T2/2 (solid line), T2 (dashed line), and 3T2 (dotted line).
The value of the coherence is normalized to �0/γ .

where σeg(z,tp) is defined in Eq. (A14). Each thin slice of the
sample of thickness dz emits a radiation field,

�r (z,t,tp) = i
α

2
e−γ (t−tp)σeg(z,tp)dz, (A16)

which is a result of the dipoles ringing in a thin slice. The field,
which is produced by dipoles in the slice, located at distance
+z from the front face of the absorber, propagates a distance
z0 − z through the absorber with resonant particles. According
to the arguments given in Sec. II [see Eqs. (11) and (12)] this
field transforms to

�out(z0 − z,t,tp) = �r (z,t,tp)J0
(√

2α(z0 − z)(t − tp)
)
,

(A17)

at the output of the absorber with coordinate z0. The sum of
all these fields gives the FID signal, which is

�FID(z0,t,tp) =
∫ z0

0
�out(z0 − z,t,tp)dz. (A18)

The explicit form of this expression is

�FID(z0,t,tp) = − �0

∫ b0

0
db

∫ tp

0
dτe−γ (t−tp + τ )F3(t − tp,τ,b),

(A19)

where

F3(t − tp,τ,b) = J0(2
√

bτ )J0(2
√

(b0 − b)(t − tp)).

(A20)

With the help of the Laplace transform, Eq. (A1), and the
convolution theorem one finds that∫ b0

0
J0(2

√
bτ )J0(2

√
(b0 − b)(t − tp))db � 1

s2
e(t−tp+τ )/s,

(A21)

where the right-hand side of the equation is the Laplace
transform of the left-hand side integral. The inverse Laplace
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FIG. 12. Intensity of the slow adiabatic component of the step
pulse, Iad (z0,t) = |�ad (z0,t)|2, is shown by dots. Output intensity of
the step pulse is shown by the solid line. Both are normalized to I0.
The ratio of �/b0 is 0.3 in (a) and 0.6 in (b).

transformation of the obtained result allows one to reduce
Eq. (A19) to

�FID(z0,t,tp)

= −�0b

∫ tp

0
dτe−γ (t−tp+τ ) J1(2

√
b(t − tp + τ ))√

b(t − tp + τ )
. (A22)

Integration by parts of the integral in Eq. (A22) gives the
expression, which is identical to Eq. (19) obtained in Sec. II
for FID signal with the help of the response function technique.

C. Slow part of the step pulse

With the help of the adiabatic following approximation,
Refs. [27,28], we derive the expression describing time

evolution of the slow component of the step pulse, ��(z0,t),
whose front experiences time delay and spreading. For
simplicity we consider the case when the parameters b0 and
�are much larger than γ . Then Eq. (8) can be approximated
as

��(z0,t) = 1

2π

∫ +∞

−∞

i

ν
exp

(
−iνt − ib0

ν + �

)
dν. (A23)

In Ref. [27] it is shown that, for example, the nonresonant
rectangular pulse is split at the output of a thick absorber
into two components (i.e., the fast nonadiabatic and slow
adiabatic components). The propagation of the slow adiabatic
component is well described by Eq. (8) where the transmission
function A(ν) is approximated by its expansion in power series
near ν = 0. In Ref. [28] it is found that it is enough to take
only three terms of this expansion, that is,

ib0

ν + �
≈ ib0

�

(
1 − ν

�
+ ν2

�2

)
. (A24)

The first term, ib0/�, describes the phase shift of the field. The
second term, −ib0ν/�2, gives a time delay of the pulse front
due to the reduced group velocity. The third term describes the
group velocity dispersion.

The integral in Eq. (A23), where the adiabatic approxima-
tion (A24) is taken into account, is calculated in Ref. [20]. The
result for the adiabatic part, �ad (z0,t), is

�ad (z0,t) = �0e
−ib0/�

2

{
1 + (1 − i)

[
C

(
t − td

tbr

)
+ iS

(
t − td

tbr

)]}
, (A25)

where C(x) and S(x) are Fresnel integrals [31], td = b0/�
2

is a delay time of the pulse, and tsp =
√

2πb0/�3 quantifies
a time spreading of the pulse front due to the group velocity
dispersion.

A time when the intensity of the step pulse at the output
of the nonresonant absorber reaches its input value (i.e., when
the slow component is formed) can be estimated as td + tsp.
For the numerical examples, given in Fig. 12, this estimate
coincides quite well with time when intensity of the step pulse
at the output, I�(z0,t), reaches its value at the input I0. This
time, td + tsp, is 26.4/b0 in (a) and 8.2/b0 in (b). In Fig. 12 the
function I�(z0,t) (solid line) is plotted according to Eq. (34)
where γ = 0.
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