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Slow-light dispersion properties of multiatomic multiband coupled-resonator optical waveguides
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In this paper, we investigate the dispersion properties of a multiatomic coupled-resonator optical waveguide
(CROW), and show the existence of band-dependent group velocities in its slow-light bands. By including the
next-nearest-neighbor coupling terms in a coupled-mode theory (CMT) analysis for the structure, we explain the
physical origin of the band-dependent group velocities in terms of the modification of molecular mode-coupling
strengths, and also derive the criteria for complete band separation and perfect intermode intensity overlap. Our
results imply that when estimating the performance of a multiwave slow-light device, the band dependency of
group velocities must also be considered in addition to the conventional CROW dispersion. Numerical analysis
with a photonic crystal platform shows excellent agreement with theory.
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I. INTRODUCTION

Slow-light structure [1-3] has been considered to be one
of the key elements for future all-optical functional devices.
Many notable advantages of slow light, such as its larger group
index, small footprint, and reduced power operation have been
demonstrated in various forms [4-8]. In particular, with the
orders-of-magnitude enhancement of optical nonlinearities—
derived from light compression in the spatial domain [7-10], it
now became possible to seriously consider the option of optical
signal processing, which has been difficult to achieve with
conventional structures or materials. For instance, a slow-light
enhanced nonlinear phase shift has been used to construct
power-efficient and compact all-optical modulators [7,10],
tunable buffers [11], parametric conversions [12], and optical
analog-to-digital converters [13,14].

Still, while modern wavelength-division multiplexed sys-
tems and most of all-optical signal processing devices require
more than one wave (for example, control, signal, and clock),
the slow-light structures, in general, have been designed for
single-band operation [1-13] and have rarely been extended to
incorporate multiband, multichannel functionalities [14—16].
As an example, for an all-optical, high-speed logic device
based on cross-phase modulation (XPM) [17,18], a multiband
slow-light coupled-resonator optical waveguide (CROW) with
perfect intensity overlap and matched group velocities of its
bands would be ideal.

In this paper, in order to extend our understanding of
slow-light structures, we study the dispersion properties of
a multiband multiatomic CROW, using coupled-mode theory
(CMT) supported by a numerical assessment. To incorporate
the interference between multiatomic molecular field patterns
into the slow-light coupling strength, next-nearest-neighbor
interaction terms are included in the CMT analysis of the
multiatomic CROW structure. By assessing the results of the
CMT, a simple formula describing the origin of the band-
dependent dispersion for each multiatomic (MA)-CROW band
is derived. The physical origin of the band-dependent group
velocity is then explained in terms of the modification of
the molecular mode-coupling strength, which is the result of
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the mode-dependent interference from next-nearest-neighbor
couplings. The result of our analysis implies that the per-
formance limitation of multiatomic CROW devices has to
be estimated by including mode-dependent group velocity,
which has been ignored in the past, rather than using only
the conventional CROW time-bandwidth relation [19]. The
criteria for band separation and intermode intensity overlap
are also discussed. Numerical assessments using a photonic
crystal MA-CROW and all-optical slow-light travelling-wave
Mach-Zehnder switch show excellent agreement with the
analytical solution developed from the coupled-mode theory.

II. THEORY: BAND-DEPENDENT DISPERSION OF A
MULTIATOMIC CROW

To study the slow-light operation of a multiatomic CROW,
coupled-mode theory [20,21] is employed. The MA-CROW
unit cell is composed of multiples of single-mode atomic
cavities, each at aresonant frequency of wy, that are tightly cou-
pled together with an internal coupling coefficient «; (Fig. 1).
When isolated, the unit cell forms a resonator molecule
having orthogonal modes of nondegenerate frequency. The
nearest-neighbor coupling between the atoms in neighboring
molecules is also represented by an external coupling coeffi-
cient «,. It is critical to note that the current analysis includes
a cross-coupling coefficient k. between next-nearest-neighbor
resonators (dashed lines in Fig. 1), which has been neglected
in previous studies [14,16]. Under this arrangement, field
amplitudes a;' (m = 1~n, with n representing the number
of atomic resonators in the kth molecule) can be written in a
matrix form:

dAg : : :
T —iwoly A + ik CrAg +iko D (Ag—1 + Agt1)
+ikcCp(Ak—1 + Agt1), ey

where Ay is the vector with its mth component being the field
amplitude of the mth atomic resonator in the kth molecule
([Axln = a), I, is the n x n identity matrix, and C, is the
n X n matrix denoting the next-nearest-neighbor couplings
([Chlpg = 1for |p—g| = 1,[C,],4 = O otherwise).

Now, by applying Bloch-wave harmonic functions a;' =
Ay, e kB 4 A ei@l=ikBA (B being the propagation
constant and A is the distance between molecules) with a
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periodic boundary condition, a governing equation for the dispersion relations for n-atomic CROW can be obtained:

M,A; = O, )

where the matrix M,, is

M,

(w — wp) + 2K, cos(BA) Ki + 2Kk, cos(BA)

0 0

Ki + 2K, cos(BA) (w — wg) + 2k, cos(BA) Ki + 2K, cos(BA) e 0
— 0 Ki + 2Kk, cos(BA) (w — wp) + 2k, cos(BA) e 0
: : ki + 2k. cos(BA)
0 0 0 Ki + 2k, cos(BA) (w — wp) + 2k, cos(BA)
(3)

As can be clearly seen, M, now represents the nearest- and
next-nearest-neighbor couplings altogether. It is worth noting
that by setting the diagonal and off-diagonal elements to
Q = (w — wy) + 2k, cos(BA) and K = «; + 2k, cos(BA),
M, can be rewritten as M,, = Q1I, + KC,. In order to get the
dispersion relations, we first derive a recurrence relation for
the determinant of M,,:

det(M,) = Q det(M,_;) — K?* det(M,_»). @)
Applying the initial conditions of n = 1 [atomic CROW,
det(M;) = Q] and n = 0O [null space, det(M,) = 1], we can
now write down the determinant of M, for n-atomic CROW

as follows:
—(n+1)

2
— 2 2\n+1
det(M,) = ——— = _[(Q + V@2 — 4K

(@ oAk, )

Setting det(M,,) = O to get nontrivial solutions, we can then
obtain the following relation:

Q++/Q% —4K?

Q— Q2 —4K?
where p is an integer (1 < p < n). The closed-form expression
for 2 can then be obtained:

— ei[2p7'[/(n+1)]’ (6)

1+ ei[2pn/(n+1)]

Q=-—"¢ g —2K cos 2~ 7
= T gilpr/t D] =R s T )

At this point, it is worth noting the functional form of the
matrix M, = QI, + K C,. While 1, describes the dynamics
of isolated atomic CROW (coupled by «,), the off-diagonal
elements of K C,, describe the rest of the interactions in MA-
CROW. Meanwhile both the x; and 2k, cos(BA) terms in

Aa ml <=

« k-1 Molecule ~ « k" Molecule «  k+1t Molecule

FIG. 1. (Color online) Coupled-mode theory model of a mul-
tiatom, multiband CROW. «;, .: coupling constants between res-
onators; a;': field amplitude in the mth atomic resonator in molecule k.

K contribute to the modification of the eigenvalues of the
molecular modes, and it is critical to mention that only the
cross-coupling-originated 2k, cos(BA) term [with a nonzero
B differential 0K /98 ~ 2k, A sin(BA)] modifies the group
velocity.

To get further insight into the effect of the cross-coupling
k. to the dispersion properties of multiatomic CROW, we now
calculate explicitly the dispersion relation and group velocity.
Substituting the functional forms of €2 and K into Eq. (7),
we finally arrive at n sets of dispersion relations and group
velocities (p = 1~n),

w, = wo + 2k; cos % -2 (KO—ZKC cos anTl) cos BA,
(®)

pr .
Vgp = 2| ko — 2K, COS m A sin BA. )]

As can be seen from the dispersion equations (8) and
the triatomic example in Fig. 2, after the introduction of a
nonzero k., the functional forms of the n dispersion curves
start to deviate from each other [Figs. 2(a), 2(b), and Eq. (8)]
depending on the band number p.

This band number p-dependent deviation of dispersion
curves then leads to differences in their group velocities
[Fig. 2(c) and Eq. (9)], which would otherwise (k. = 0) be
solely determined by «, [1]. To note, in practical applications,
the cross-coupling strength k. will be dependent on both
6 and A (Fig. 1); meanwhile «; and «k, will be dependent
only on § and A, respectively. It is worth mentioning, by
comparing Figs. 2(a) and 2(b) it is easy to see that complete
band separation can be achieved only for a regime of strong
internal coupling. From Eq. (8), we derive the criteria for band
separation between the p—1th and pth band as

p—1
n+1

Ky — (cos %n + cos JT)KC

(10)

|ici| > 2 7
cos -7 —cos E=nx
n+1 n+1

Before examining dispersion properties of MA-CROW as
a function of n (number of atoms in a molecule), it is better to
understand the physical origin of the band-dependent group
velocity. The case of a diatomic CROW is illustrated in
Fig. 3(a). Compared to single-atom CROW (where dispersion
curves are determined by «, alone), the effective coupling
strengths between diatomic molecules come to have different
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FIG. 2. (Color online) Dispersion curves of a triatomic CROW in (a) a weak internal coupling regime (k;
—0.08wy, k, = 0.02wy). Effect of cross coupling is evident by comparing k. = 0 (solid line) and

(b) a strong internal coupling regime (k;

—0.04wy, k, = 0.02wy) and

ke = 0.4k, (dashed line). (c) Group velocities for the dispersion curves in (b). Group velocities are normalized to v, (@ = wy, k. = 0).

values depending on the molecular-mode field patterns—
that is, constructive or destructive interference between «,
and «. (red and black arrows) directly affect the effective
coupling. Similarly, for n-atomic molecules, the effective
coupling between molecules [k = k,—2k. cos[pm/(n 4 1)],
from Eq. (9)] comes to have different values depending on the
mode field pattern (or band number p), in addition to being
affected by the number of atoms, 7, in a molecule. Figure 3(b)
shows the calculated group velocities as a function of atomic
number 7, at the band centers, v, [8 = 0.5(r/A), k. = 0.2k,].
The deviation of group velocities for n-atomic CROW modes,
from that of isolated (n = 1) CROW modes increases with n,
up to a limit of 2(k, £ 2«.)A (in the case of all- constructive
or destructive interaction between k, and ).

III. IMPLICATIONS IN DEVICE PERFORMANCES:
GROUP VELOCITY WALK-OFF EFFECT

To investigate the implications of these findings for device
applications, as an example here we estimate the system
penalty from the group velocity walk-off [22-24], in cross-
phase modulation devices. In the presence of signal-control
walk-off, the limit of the nonlinear phase shift ¢ for the signal is
given by [25]; ¢ < AkLy =~ Ak[AT/(l/vZ,lg"al—1/v§°mr°1)],
where Ak is the XPM-induced wave-vector change, L,, is the
walk-off length, and AT is the pulse width. Restricting the
present analysis to cases of maximum XPM efficiency [i.e., p
and ¢ modes of identical |E(x,y)|?, p + g = n + 1 as shown

in Fig. 3(c)], now for a device using the pth (gth) band as a
signal (control) wave for all-optical modulation, the walk-off
limited device bandwidth Aw then can be easily estimated,
using Aw ~ 1/AT in ¢ and Eq. (9):

-1

1 1

Ugp  Vgq
ow K,

= ApxpmMm—— N

@ 4k COS T

O W

PUgp

Aw < Apxpm

Y

where Apxpym is the XPM-induced nonlinear refractive index
change ratio, wy is the signal frequency, and o is the mode
energy fraction in the nonlinear region [7].

The blue lines in Fig. 4(a) show the bandwidth (device
speed) limit of a multiatomic CROW device. With the increase
of cross coupling «., the walk-off (11) becomes the dominant
factor in the bandwidth limit of the device, and gives values
far below those determined by the CROW dispersion only [19]
[red line in Fig. 4(a)]. It is worth noting that the maximum
bandwidth penalty is weakly dependent on the atomic number
n, and saturates at a value proportional to x,, /(4«.), as expected
from the maximum and minimum group velocities of 2(x, *
2k.)A [Fig. 3(b)]. To verify our theory, we utilize multiatomic
CROWSs on a photonic crystal platform. By assuming a
two-dimensional square-lattice, rod-type photonic crystal of
lattice constant a = 528 nm, rod index 7n,,q = 3.5, and radius r
= 0.2a, CROWs made of point defect resonators (r; = 0.07a,
A = 3a~6a,6 = 2a~3a) are constructed. Figures 4(b) and
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FIG. 3. (Color online) (a) Band-dependent modification of molecular coupling strength for a diatomic CROW; from constructive (even
mode, Keven = Kk, + k) and destructive (odd mode, xoaq = k,—k,) interferences. (b) Deviations in group velocity for each molecular mode,
plotted for different n-atomic molecules. . was set to 0.2«,. v3*"® denotes the group velocity of single-atom CROW. (c) Intensity overlap
between molecular modes p and g (marked as np:nq). Perfect intensity overlap can be obtained if p + ¢ = n + 1; for example, p = 1 and

q =4 forn =4.
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FIG. 4. (Color online) (a) Bandwidth limit of multiatomic CROW, for different cross-coupling coefficient «.. Blue and red lines show the
walk-off- and CROW dispersion-limited bandwidth, respectively, for different MA-CROW structures (n = 2-5). A plot was made for the cases
of p =1 and ¢ = n by assuming maximum band separation and a perfect intensity overlap between the signal and control waves. Apxpy =
0.02%, Ay =27c/wy = 1550 nm, o = 0.6, ¢ = 7, and k, = 0.001wy. [(b), (c)] A plot of the theoretically (lines) and field-emission microscopy

(FEM) calculated (symbols) (b) walk-off parameter An, = c|1/v,, —

1/vgq| and (c) bandwidth limit, for di- and triatomic CROWs (A =

3a—6a, for § = 2a and 3a). Coupling coefficients for the CMT analysis were calculated from the isolated resonator modes [20]. Switching
operation of diatomic CROW MZI for (d) on state and (e) off state. Optical eye of the switched output, for pseudorandom bit sequence control

waves at (f) 100 and (g) 200 Gbps.

4(c) show the group-velocity walk-off and walk-off limited
bandwidth, respectively, for the constructed CROW. For the
tested di- and also triatomic examples, excellent agreement
between theory (CMT, lines) and numerical assessments
(COMSOL, symbols) were observed, for different «, (~A~1)
and k. [~(A? + 8%)~1/2]. Note that for a fixed value of 8, larger
A results in increased walk-off and associated penalties, as the
difference in strength between external coupling «, and cross
coupling k. decreases.

As an application example of multiband slow-light struc-
tures, we constructed an all-optical travelling-wave Mach-
Zehnder interferometer (MZI), which could be utilized for
all-optical switching [10], analog-to-digital conversion [14],
or parametric conversions [12,26]. To achieve an operation
speed of ~100 GHz, and at the same time sufficient fre-
quency separation between control and signal waves, diatomic
CROWSs of A = 4a and § = 2a were used [14]. A nonlinear
Kerr index of n, = 1.5 x 1077 m?/W was assumed in the
modulation region, constructed with a diatomic CROW of
200 cascaded molecule resonators. For the analysis of the
switching operation, a finite-difference time-domain (FDTD,
two-dimensional) method [27] was employed. A continuous-
wave (CW) input signal, with 100 and 200 Gbps modulated
control waves (2°-1 bits pseudorandom bit sequence, of third-
order super-Gaussian nonreturn to zero pulses) was fed to the
MZI to measure the bandwidth and output signal quality of

the all-optical switching action. Figures 4(d) and 4(e) show
the slow-light enabled low-power (10 mW /um for CW input,
and maximum 30 mW/um for control) switching action of
the MZI. From the FDTD-generated optical eye [Figs. 4(f) and
4(g)], an optical signal quality factor Q of 9.6 was obtained for
the 100 Gbps signal output. In contrast, at 200 Gbps [near the
estimated walk-off bandwidth of ~70 GHz [Fig. 3(c)], much
worse, marginally acceptable optical quality factors Q = 3.5
were observed, supporting the signal-control walk-off limited
bandwidth analysis for MA-CROW.

Extending our understanding on slow-light structures, we
revealed the existence and origin of the band-dependent
dispersion in a multiatomic, multiband slow-light structures.
By including next-nearest interactions in the CMT analysis
of a multiatomic CROW, a clear derivation of the band-
dependent dispersion equation was possible. An elucidation
of its physical origin was made, in terms of the molecular field
pattern interference between k, (external coupling between
CROW molecules) and «, (cross coupling). By identifying
conditions for complete band separation and also inten-
sity overlap between different modes, our analysis provides
guidelines in the design of multiwave slow-light devices, in
photonic crystal, ring resonator, or plasmonic platforms. The
implications of theoretical findings were elucidated in terms of
the group velocity walk-off penalty, for an example of photonic
crystal-based XPM devices. A perfect match between theory
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and numerical analysis was found supporting the analysis that
the performance of the multiatomic slow-light devices has to be
estimated including the effect of molecular field patterns. Our
analysis addressing the physical origin of the band-dependent
group velocity can be envisioned in the future to devise a means
of reducing detrimental cross-coupling effects—for example,
by utilizing resonance modes of anisotropic profiles.
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