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Macroscopic aspects of relativistic x-ray-assisted high-order-harmonic generation
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A theoretical model is developed describing high-order-harmonic generation (HHG) from a gas of multiply
charged ions driven by a laser field of relativistic intensity. Macroscopic propagation of harmonics is investigated
in a relativistic HHG setup where the relativistic drift is suppressed by means of x-ray field assistance of
the driving laser field. The possibility of phase-matched emission of the harmonics is shown. The laser field
geometry is optimized to maximize the HHG yield with the corresponding phase-matching schemes. Crucial
issues determining the macroscopic HHG yield are discussed in detail.
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I. INTRODUCTION

High-order-harmonic generation (HHG) is a reliable source
of coherent soft-x-ray radiation in the nonrelativistic regime.
With the state-of-the-art technology, coherent x rays of up
to ∼3 keV [1] of photon energy can be generated. The
most favorable conversion efficiency for nonrelativistic multi-
kilo-electron-volts harmonics is anticipated with midinfrared
driving laser fields at high gas pressures [2–4]. A further
increase of the photon energy can in principle be achieved by
increasing the laser intensity. However, the applicable laser
intensity is limited in two ways [5]. First, the relativistic
electron drift prevents recollision and results in a dramatic
suppression of the HHG efficiency. And second, the strong
field causes rapid ionization of the medium leading to a large
free-electron dispersion and along with a significant phase
mismatch. The electron recollision is suppressed when the
drift distance becomes larger than the electron wave packet
size at the moment of recollision [6]. This happens when the
laser intensity exceeds 1016–1017 W/cm2 for infrared (IR)
wavelengths. The ponderomotive potential of the laser field in
this case amounts to Up ≈ 3 keV and the achievable cutoff
frequency for HHG to ωc ≈ 10 keV. This indicates the limit
of nonrelativistic HHG.

Various methods to counteract the relativistic drift have
been proposed. To suppress the drift, different laser field ge-
ometries, in some cases with an additional field, can be applied
[7–20]. Highly charged ions moving relativistically [21,22] or
a gas of positronium atoms [23,24] can also be employed for
this purpose. However, all these efforts have only addressed
the drift suppression problem for the emission from a single
atom rather than coherent emission from a macroscopic gas
target where phase matching becomes crucial. Both problems
of relativistic HHG, namely the relativistic drift and the phase
matching, have been solved at the same time in Ref. [25]
where the macroscopic yield of HHG has been calculated in
the setup consisting of two counterpropagating attosecond
pulse trains [19]. In this setup, the relativistic drift caused by
the ionizing laser pulse is reverted by the counterpropagating
pulse inducing recombination. It appears that, specific to this
setup, an additional harmonic phase exists which depends on
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the time delay between the driving pulse trains. We have
shown in Ref. [25] that this additional phase of the emitted
harmonics can be tuned to compensate the phase mismatch
caused by the free-electron background. However, the setup of
counterpropagating pulses is rather challenging, for instance,
the requirement for a small pulse distortion imposes a rather
strong restriction on the medium length. Additionally, a
precise modulation of the laser intensity along the propagation
direction is required.

Another appealing scheme for relativistic HHG exists
based on XUV assistance [18] which seems experimentally
less demanding than the scheme with counterpropagating
attosecond pulses. The usefulness of XUV light assisting a
strong laser field has been demonstrated in the nonrelativistic
regime for various purposes. It has been used to enhance HHG
by many orders of magnitude compared with the case via a
fundamental laser pulse alone [26,27]. When the XUV field
has the form of an attosecond pulse train a single quantum
path can be selected to contribute to HHG and in this way
allowing one to manipulate the time-frequency properties of
harmonics as well as to enhance a selected bandwidth of
harmonics [28–30]. In Ref. [31] we have shown that XUV
assistance can be employed to alter the time structure of the
emitted harmonics and render even attochirp-free harmonics
possible. The XUV field can also be used to control the bound
dynamics of the ion during the excursion of the active electron
that was tunnel ionized from the valence shell before. Tuning
the XUV field to a resonance between a core and valence state
can lead this way to the emergence of a second plateau that
is shifted to higher energies by the former resonance energy
with respect to the first plateau [32].

In the relativistic regime the XUV or x-ray assistance can
be employed to overcome the relativistic drift motion [18].
Thereby, the XUV frequency has to exceed the ionization
energy to liberate the electron with a single photon and to
deliver a significant initial momentum to the freed electron.
This way the electron can obtain sufficient momentum in
the direction opposite to the laser propagation direction
to compensate for subsequent drift motion and return to
the atomic core, recombine, and emit harmonics after the
excursion in the relativistically strong laser field. The medium
is a gas of multiply charged ions with an ionization energy
large enough to withstand the strong optical laser field. How
much the XUV assisted setup for relativistic HHG favors

023819-11050-2947/2012/85(2)/023819(11) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.023819


MARKUS C. KOHLER AND KAREN Z. HATSAGORTSYAN PHYSICAL REVIEW A 85, 023819 (2012)

phase matching needs investigation. Formalisms describing
macroscopic effects due to ionization and phase matching in
HHG are restricted to the nonrelativistic regime (for a recent
review see, e.g., [33]).

In this paper we investigate the feasibility of phase-matched
emission and the macroscopic yield of harmonics in the
relativistic regime of the x-ray assisted HHG setup in a strong
IR laser field. Generally, the efficiency of HHG is rather
small even in the nonrelativistic regime due to the wave
packet spreading. In the relativistic regime, the single-atom
HHG emission rate continues to decrease even when the
relativistic drift is compensated [25]. Thus, a large phase-
matching volume is crucial in order to achieve a significant
HHG yield. Furthermore, the large ponderomotive potential
is likely to result in rapid phase changes if ions emit under
different conditions. For generating relativistic harmonics both
challenges have to be met: circumventing the drift and having
the setup stable against phase changes. Our presented setup
overcomes both issues and renders a measurable HHG yield
in the relativistic regime possible.

The structure of the paper is the following. In Sec. II
the theory of macroscopic HHG is presented applicable for
any field geometry in the relativistic regime. In Sec. III the
developed theory is applied to calculate the macroscopic HHG
yield for the setup of x-ray assisted relativistic HHG. Our
conclusion is presented in Sec. IV.

II. MACROSCOPIC MODEL FOR RELATIVISTIC HHG

A. Macroscopic HHG yield

In this section our model is presented for the calculation
of the harmonic spectrum from a macroscopic gas target
suitable for relativistic laser intensities. In the nonrelativistic
regime the standard approach for the calculation of the
macroscopic HHG response incorporates the single-atom
contribution via the time-dependent dipole moment [33–35].
However, employing the dipole moment for the radiation
response assumes that an emitted harmonic wavelength is
much longer than the spatial extensions of the emitter. This
approach fails for sufficiently small wavelengths because then
the retardation between different points of the emitting wave
packet becomes important [36,37]. Our approach uses the
complete current density distribution of each atom rather than
the dipole moment. Retardation between different emission
points within the distribution is taken into account by a phase
factor. The link between the microscopic (atomic) current
density j and the macroscopically emitted harmonic electric
field EH is obtained from Maxwell’s equations similar to the
nonrelativistic approaches [33–35]. The Fourier component of
the emitted harmonic electric field from a gas target is given
by [38]

ẼH(x′,ωH) = i
ωH

c2

∫
d3x

n′ × [j̃(x,ωH) × n′]
R

eikHR, (1)

where j̃(x,ωH) is the Fourier component of the current density,
ωH is the frequency of the emitted harmonic light, kH = kHn′
is the wave vector, R = |x − x′| is the distance between the
emission and observation point, x′ is the coordinate of
the observation point, and n′ = x′/|x′| is the unit vector in the

x

detector

R
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laser pulse

yield

z

FIG. 1. (Color online) Geometry of the medium and detector
including the definitions of the coordinates. The dashed lines denote
the divergence angle of the harmonic radiation. The box on the right
schematically shows the measured angular distribution.

observation direction (see Fig. 1). Absorption of the harmonic
photons is neglected [35] because their energy is much higher
than the largest atomic transition energy. The current density
j is exclusively determined by the HHG process. For the
evaluation of Eq. (1), we restrict ourselves to the far-field zone
which is sufficient for calculating the overall HHG photon
yield. The far-field zone is determined by the conditions that
the distances from the emitters to the observation point are
larger than the wavelength of the emitted radiation as well
as the size a of the emitting region (kHR � 1 and R � a).
We thus can expand Eq. (1) over a small parameter a/R

using R = |x − x′| � |x′| − x · n′ [38]. When inserting this
expression into Eq. (1), the exponential function splits up into
two parts. One term contains x′ and is thus a general phase
factor depending on the constant observation point that can be
separated: ẼH(x′,ωH) = eikH|x′|ẼH,0(n′,ωH). In the following
we consider ẼH,0(n′,ωH) only and find

ẼH,0(n′,ωH) = i
ωH

c2R

∫
d3x n′ × [j̃(x,ωH) × n′]e−ikH·x. (2)

The total current density distribution consists of a sum over
all current densities of the individual atoms ja(xa,x,t) with
positions xa each:

j̃(x,ωH) =
∫

d3xaρ(xa)
∫

dt ja(xa,x,t)eiωHt , (3)

where ρ(xa) is the atomic number density. Inserting Eq. (3)
into Eq. (2) yields the final expression for the macroscopically
emitted harmonic field:

ẼH,0(n′,ωH) = i
ωH

Rc2

∫
d3xaρ(xa)

∫
d3x

×
∫

dt n′ × [ja(xa,x,t) × n′]e−ikHx·n′+iωHt

= i
ωH

Rc2

∫
d3xa ρ(xa) n′ × [j̃a(xa,n′,ωH) × n′],

(4)

where j̃a(xa,n′,ωH) ≡ ∫
d3x

∫
dtja(xa,x,t) exp(−ikHx · n′ +

iωHt). Note that the combination of outer products in Eq. (4)
prevents us mathematically from emission in the direction of
the current density vector. However, due to phase matching,
the macroscopic emission is in many cases mainly along the
propagation direction of the laser n′ ≈ ẑ (see Fig. 1). When the
laser is linearly polarized in the x̂ direction, the current density
vector is parallel to the x̂-ẑ plane. Thus we can approximate
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n′ × (j̃ × n′) = j̃ − (n′ · j̃)n′ ≈ j̃xx̂ and can restrict ourselves
to the x̂ component

ẼH,0,x(n′,ωH) = i
ωH

Rc2

∫
d3xa ρ(xa)j̃a,x(xa,n′,ωH) (5)

to describe emission in this case.
The overall emitted energy can be obtained via integrating

the Poynting vector S(x′,t) = c
4π

E2
H(x′,t)n′ over all emission

directions in the far field

W = cR2

4π

∫
dt

∫
d� E2

H(x′,t). (6)

By inserting

EH(x′,t) = 1

2π

∫ ∞

−∞
dωHe−iωHt ẼH(x′,ωH) (7)

into Eq. (6), the energy can be calculated via an integration
over the spectrum [39]:

W = cR2

(2π )2

∫
d�

∫ ∞

0
dωH|ẼH,0(n′,ωH)|2. (8)

The emitted spectral photon number per solid angle from
Eq. (8) is given by

dN

dωHd�
= cR2

(2π )2ωH
|ẼH,0(n′,ωH)|2. (9)

B. Single-atom current density

In Sec. II A the macroscopic HHG yield has been calculated
via classical electrodynamics. Since the expression Eq. (5) for
the emission field relies on the current densities of a single
atom in the gas, we continue to derive the single-atom current
density quantum mechanically in the relativistic regime via the
Klein-Gordon equation. The Klein-Gordon current density of
a particular atom at position xa in the laser field is given by [40]

ja(xa,x,t) = [
�∗

xa
(x)ĵ�xa (x) + �xa (x)ĵ∗�∗

xa
(x)

]
, (10)

where ĵ = p̂ + AL(x)/c and �xa (x) is the solution of the Klein-
Gordon equation when the binding potential is centered around
xa. In the following, the time-space coordinate is x = (ct,x),
the wave four vector of the laser field kL = (ωL/c,kL), and the
metric tensor gμν = diag(1,−1,−1,−1).

By a Fourier transformation of Eq. (10) and partial
integration, the spectral current is obtained:

j̃a(xa,ωH,n′)

= 1

c

∫
d4x eikHx

[
�∗

xa
(x)ĵ�xa (x) + �xa (x)ĵ∗�∗

xa
(x)

]
= 2

c

∫
d4x eikHx�∗

xa
(x)

(
ĵ − 1

2
kH

)
�xa (x). (11)

We calculate the electron wave function in the field of the laser
and the ionic core by means of the strong-field approximation
(SFA) [41,42]

�xa (x) = φ(x − xa,t) +
∫

d4x ′GL(x,x ′)VI(x
′)φ(x′ − xa,t

′),

(12)

where VI = 2i{[AL(η)/c]∇ − A2
L(η)/c2} is the term in the

Hamiltonian describing the electron interaction with the laser
field with the vector-potential AL(η) and phase η = kL · x. The
Volkov propagator GL(x,x ′) in a plane wave laser field is given
by [43,44]

GL(x,x ′) = −i θ (t − t ′)
∫

c d3q
2εq(2π )3

exp[−i SL(x,x ′)]

(13)

with the classical action of an electron in the laser field

SL(x,x ′) = q · (x − x ′)

+
∫ η

η′
dη̃

{
[q + AL(η̃)/2c] · AL(η̃)/c

kL · q

}
, (14)

the energy-momentum four-vector q = (εq/c,q) and the en-
ergy εq =

√
c2q2 + c4. Here φ(x) = φ0(x)c√

2(c2−Ip)
exp{−i[(c2 −

Ip)t + x · AL/c]}, where φ0(x) is the nonrelativistic ground-
state wave function. Inserting Eq. (12) into Eq. (11) and
applying the usual assumptions [44,45] of neglecting bound–
bound and continuum–continuum transitions and the time-
inverted process, we obtain

j̃a(xa,ωH,n′) ≈ 2

c

∫
d4x

∫
d4x ′eikH·xφ∗(x − xa,t)

(
ĵ − 1

2
kH

)
×GL(x,x ′)VI(x

′)φ(x′ − xa,t
′). (15)

C. Electron wave function in a distorted plane wave laser field

The Volkov propagator Eq. (13) describes the evolution of
the wave function of an electron in a plane wave laser field with
vector potential AL(η). However, in many practical situations
this assumption on the laser field is not met, in particular,
when a focused laser field or multiple laser beams are applied
[46–48], or when the dispersion distorts the laser pulse. For
this reason we need to find the electron wave function in an
external laser field where the vector potential depends not only
on phase η but also on the position z along propagation. The
deviation of the laser field from the plane wave form is assumed
to be a perturbation, so that the total vector potential reads

A(η,x) = AL(η) + Ap(η,x), (16)

with |Ap(η,x)| � |AL(η)|. Note that Ap(η,x) is not Lorentz
invariant and, thus, we describe the system in the laboratory
frame. We find the solution of the Klein-Gordon equation in
the field of Eq. (16) using the eikonal approximation (see
e.g. [49,50]) in which the impact of the perturbation onto the
wave function is taken into account by an expansion of the
wave function phase. The electron wave function is described
by the Klein-Gordon equation

(∂μ∂μ + c2)�(x) = V �(x) , (17)

with V = 2i{[A(η)/c]∇ − A2(η)/c2}. In order to solve
Eq. (17), the ansatz

�(x) =
√

c√
2(2π )3εp

exp{−i[SL(x,x0) + Sp(x,x0)]} (18)

is employed. Here SL(x,x0) is defined in Eq. (14), with
an arbitrary constant x0 and, consequently, exp[−iSL(x,x0)]
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solves the unperturbed equation (17) with A(η,z) = AL(η).
Inserting the ansatz Eq. (18) into Eq. (17), one finds

1

c2

[−i∂2
t Sp − 2∂tSL∂tSp − (∂tSp)2

]
−[−i∇2Sp − 2∇SL∇Sp − (∇Sp)2]

= 2
AL

c
∇Sp + 2

Ap

c
∇(SL + Sp) − A2

p

c2
− 2

ALAp

c2
. (19)

In the applied approximation, |∇Sp| � |Ap/c| and |∂tSp| �
|AP |, which allows us to neglect the (∇Sp)2 and (∂tSp)2

terms. When additionally ξ ≡ EL/cωL � ωL/c2, one has
|∇2Sp| � |(AP /c)∇Sp| and |∂2

t Sp| � |∂tSL∂tSp|. Then, ∇2Sp,
∂2
t Sp terms also can be neglected, yielding

2
ALAp

c2
+ A2

p

c2
+ 2

Ap

c
∇SL

= 2

c2
∂tSL∂tSp +

[
−2∇SL + 2

c
(AL + Ap)

]
∇Sp. (20)

The equations for the characteristics of the first-order partial
differential equation (20) are

∂t(u)

∂u
= 2

c2
∂tSL, (21)

∂r(u)

∂u
= −2∇SL + 2

c
(AL + Ap). (22)

It follows from Eqs. (21) and (22) that

−2kL · p = kL
∂r
∂u

− ωL
∂t

∂u
(23)

and

u = −(kLr − ωLt)/(2kL · p) = η/(2kL · p). (24)

Integrating Eq. (20) and employing Eq. (24) we derive

Sp(x,x0) =
∫ η

η0

dη̃
1

kL · p

[
∇SL + AL(η̃)

c
+ Ap(η̃,x̃L(x,η̃,η))

2c

]
×Ap(η̃,x̃L(x,η̃,η))/c (25)

with

x̃L(x,η̃,η) = x −
∫ η

η̃

dη′ 1

kL · p

{
p + AL(η′)

c

+ kL

kL · p

[
px + AL(η′)

2c

]
AL(η′)

c

}
. (26)

The integral in Eq. (26) can be omitted in the case if the z

dependence of Ap along the classical trajectory of the particle
in the laser field is negligible. For the total phase of the wave
function, we therefore find

ST(x,x0) = SL(x,x0) + Sp(x,x0)

= p · (x − x0)

+
∫ η

η0

dη̃

[
p + A(η̃,x̃L(x,η̃,η))

2c

]A(η̃,x̃L(x,η̃,η))
c

kL · p
, (27)

where η0 and x0 are arbitrary constants. We derive the
propagator as follows:

GT(x,x ′) ≈ −i θ (t − t ′)
∫

c d3q
2εq(2π )3

exp[−i �(x,x ′)],

(28)

where �(x,x ′) ≡ ST(x,x0) − ST(x ′,x0). The latter can be
represented as

�(x,x ′) = ST(x,x ′) + �T(x,x ′) (29)

with

�T(x,x ′)

= 1

kL · p

∫ η

η0

dη̃

{[
p + A(η̃,x̃L(x,η̃,η))

2c

]
A(η̃,x̃L(x,η̃,η))

c

−
[

p + A(η̃,x̃L(x,η̃,η′))
2c

]
A(η̃,x̃L(x,η̃,η′))

c

}
. (30)

The two terms in the integrand of Eq. (30) deviate only in
x̃L(x,η̃,η) and x̃L(x,η̃,η′). Within the saddle-point approxima-
tion applied later, η and η′ are the phase of recollision and
ionization, respectively. Therefore, x̃L(x,η̃,η) and x̃L(x,η̃,η′)
differ only by the distance in space between ionization and
recollision, which is zero. Thus, we can omit �T(x,x ′).

III. RELATIVISTIC PHASE-MATCHED X-RAY
ASSISTED HHG

In this section the theory developed in Sec. II is employed to
investigate macroscopic harmonic emission in the relativistic
regime for a HHG setup where an IR laser field of relativistic
intensity is assisted by an x-ray field. In this scheme, the
x-ray frequency ωx exceeds the binding energy Ip,x of the
electron and thus delivers an initial momentum to the freed
electron which can balance the subsequent drift motion. The
laser alignment of the setup and an example of a classical
trajectory that recollides are illustrated in Fig. 2. The weak
counterpropagating IR field (brown) is important for a phase-
matched macroscopic response and can be ignored for the
first when discussing the process for a single atom. The HHG
medium is a macroscopic gas of multiply charged ions.

laser
HHG

x rays

electron

parent ion weak IR

x

z

FIG. 2. (Color online) Geometry of the HHG process for a
collinear alignment of the x-ray and laser field. The copropagating
x-ray field (orange) has a frequency above the ionization energy to
achieve drift compensation. The weak IR field (brown) is employed
to accomplish phase matching.
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A. Current density

We begin with adapting the general equation for the current
density Eq. (15) to the present setup. Presuming that for the
realization of phase matching additional weak fields Ap(η,x)
will be required, we employ the Green function GT(x,x ′) of
Eq. (28) instead of the Volkov propagator GL(x,x ′) in the
general expression for the current density of Eq. (15):

j̃a(xa,ωH,n′) = 2

c

∫
d4x

∫
d4x ′eiωHt−ikH rφ∗(x − xa)

×
(

ĵ − 1

2
kH

)
GT(x,x ′)VI(x

′)φ(x′ − xa). (31)

In this expression, the x-ray field enters only into the poten-
tial VI(x) = 2 x · (Ex + EL) in the Klein-Gordon formalism.
Ignoring tunnel ionization by the IR laser field, which is justi-
fied in the considered setup, we drop the laser field in this term
and approximate VI(x) ≈ 2 x · Ex ≈ x · EX0e−i(ωxt−kx·x). In the
last step the exponential function with the positive argument is
dropped because it leads to an unphysical solution of the saddle
point equations [30]. Due to its negligible ponderomotive

potential, Ex can be neglected for the continuum propagation
of the electron and, thus, it is omitted in the propagator.

The dependence of the current density Eq. (31) on the
position of the atom xa is given by the bound wave functions
φ(x − xa,t). To separate out phase factors that highly oscillate
with xa, a coordinate transformation is applied: x̃ = x − xa.
Thereafter, time integration is transformed to an integration
over the laser phase: η = ωLt − kL · x = ωLt − kL · xa − kL ·
x̃. Finally, we obtain an expression for the current density that
can be evaluated within the saddle-point approximation:

j̃a(xa,ωH,n′) =
∫ ωLTp

0
dη

∫ η

−∞
dη′

∫
d3q mj (q,η,η′,xa)

× exp

{
−i

[
S̃p(q,η,η′,xa) + ωx

ωL
η′ − ωH

ωL
η

]}

× exp

[
i

(
ωH

ωL
kL − kH + kx − ωx

ωL
kL

)
xa

]
,

(32)

where Tp is the laser pulse duration and

mj (q,η,η′,xa) = −i
c2

(
q + A(η,xa)

c
− kL

ωL
εq − 1

2 kH
)

εqω
2
L

〈
0|q + A(η,xa)

c
− kL

ωL
(εq + Ip,x − c2) + ωH

ωL
kL − kH

〉

×
〈
q + A(η′,xa)

c
− kL

ωL
(εq + Ip,x − c2) + ωx

ωL
kL − kx |x · EX0| 0

〉
. (33)

Furthermore,

S̃P(p,η,η′,xa) =
∫ η

η′
dη̃

[
ε̃P

q(η̃,x̃(xa,η̃,η)) − c2 + Ip,x
]
/ωL

(34)

with the relativistic energy of the electron in the position
dependent laser field given by

ε̃P
q(η,x) = εq + ωL

kL · q

[
q + A(η,x)

2c

]
· A(η,x)

c
. (35)

The wave vector of the laser is kL = nref
ωL
c

êz and

nref =
√

1 − ω2
p

ω2
L

(36)

is the refractive index of the plasma, with the plasma frequency
ωp = √

4πZρ and the ion charge number Z. This way we
take into account the change of the phase velocity caused by
the free electrons but ignore pulse deformation. Furthermore,
we restrict ourselves to a weakly focused laser field which can
be treated as a plane wave and ignore the transversal variation
of the vector potential with respect to the propagation direction.

The propagation direction and the frequency of the assisting
x-ray field Ex have to be chosen in such a way to facilitate the
phase matching and to counteract the relativistic drift effec-
tively. Let us first consider the feasibility of phase matching by
analyzing the harmonic emission phase of different ions in the

medium via Eq. (32). Generally, the vector potential consists
of two terms as in Sec. II C,

A(η,x) = AL(η) + Ap(η,x). (37)

To understand the most favorable condition for phase
matching, let us assume for a moment that there are no
additional fields for facilitating quasiphase matching and
ignore deformation of the laser pulse. Then we can omit
Ap(η,x) in Eq. (37) [a modified setup where the additional
Ap(η,x) field is taken into account will be considered in
Sec. III C]. In this case, we have no xA dependence of
mj (q,η′,η′′,xA) and S̃p(q,η′,η′′,xA). The only contribution
to the variation of the harmonic emission phase along the
medium comes from the exponential function exp(i�k · ra)
in Eq. (32) determining the coherence length lcoh = π/|�k|,
with the phase-mismatching wave vector

�k = ωH

ωL
kL − kH + kx − ωx

ωL
kL (38)

caused by the refractive index difference between the fields.
The phase-mismatch Eq. (38) can be split up in two parts. One
is due to the phase mismatch between the harmonics and the
laser and the other one due to the phase mismatch between the
ionizing x rays and the laser. Interestingly, due to the different
signs both can partially cancel out. This fact also holds true for
this setup in the nonrelativistic regime. Note that ωH

ωL
kL and kH

are much larger than the other two terms left in Eq. (38) for the
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case ωH � ωx. The phase mismatch is smallest in the case of
a collinear alignment of the x-ray and laser fields kH ‖ kL (see
Fig. 2) with propagation in the z direction. Accordingly, only
the x component of the spectral current density of Eq. (32)
will contribute to the harmonic emission in the z direction.

The drift compensation can be achieved with an appro-
priate choice of the x-ray frequency which is considered in
Sec. III B 2.

B. Single-atom response

1. Singe-atom HHG rate

The single-atom photon emission rate per solid angle of the
nth harmonic can be calculated from

dwn

d�
= 1

Tp

∫ nωL+ωL

nωL−ωL

dωH
dN

dωHd�

= cR2

(2π )2ωHTp

∫ nωL+ωL

nωL−ωL

dωH|ẼH,0(n′,ωH)|2 (39)

using Eq. (5) for ẼH,0(n′,ωH) and the density ρ(xa) = δ(xa)
which yields

dwn

d�
= ω2

LωH

(2πc)3
|j̃a(0,nωL,n′)|2, (40)

where in the expression for j̃a(0,nωL,n′) given by Eq. (32), Tp

is replaced by 2π
ωL

to confine the emission to one laser period
{the rate of Eq. (40) is identical to the one in Refs. [18,19]}.

A typical HHG spectrum for the considered setup calculated
within the saddle-point approximation is displayed in Fig. 3(a)
in black for the set of parameters denoted in the caption of the
figure. In this paper we employ a zero-range potential [51]
to model the binding potential. Analytical expressions of the
matrix elements which appear in Eq. (33) can be found in,
for example, [17,52]. The ionization potential Ip,x = 8 a.u.

is chosen large enough such that tunnel ionization by the
strong optical laser field does not lead to depletion of the
bound wave function. We compare the spectrum obtained
from the x-ray assisted setup (solid black line) with the
spectrum of a conventional HHG setup where no x-ray field
is present, calculated either fully relativistically [17] (dashed
black) or within the dipole approximation (DA) [52] (gray).
The ionization matrix elements for the conventional HHG
setups was multiplied by the factor 2

√
2κ3

t
|EL(t ′)| [53] to account

for the underestimation of the tunneling rate when employing
the zero-range potential. Here t ′ is the ionization time and
κt = √

2Ip,t, with Ip,t being the ionization potential in the case
of the conventional setup. In order to have a fair comparison of
the x-ray assisted setup with the conventional one, we have to
choose the ionization potential of the conventional setup (Ip,t)
different from that of the x-ray assisted one (Ip,x) such that the
ionization rates of both setups were the same. For this purpose,
the ionization rate for the conventional setup is calculated from
the Perelomov, Popov, Terent’ev (PPT) tunneling rate [54,55],
while the single-photon ionization rate from the zero-range
potential is derived using the differential photoionization
cross section in nonrelativisitic, dipole approximation and
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FIG. 3. (Color online) (a) Single-atom emission probability for
E0 = 2.5 a.u., Ip,x = 8 a.u., ωx = 14 a.u. and Ex = 0.65 a.u. (black)
and a conventional laser field (Ex = 0) with E0 = 2.5 a.u. and
Ip,t = 4.8 a.u. (dashed black) and the same configuration in the
DA (gray). For the second configuration, Ip,t is chosen such that
the average tunnel-ionization rate is the same as the single-photon
ionization rate in the case before. (b) Separate HHG yields of the three
contributing quasiclassical trajectories for the discussed setup [blue
line in (a)]. The dotted red contribution (long trajectory) is suppressed
because the drift for the trajectory is not completely compensated (as
discussed in Sec. III B 2). The short trajectory contributions [solid
lines in blue (gray thick line) and orange (gray thin line)] are nearly
identical and separate only at the cutoff region where the saddle point
approximation breaks down.

approximating the ionized electron wave function by a plane
wave (in analogy to Ref. [56]):

dσx,1ph

d�
= p

2πcωx
|〈p|z|0〉|2 = 24p3ωxκz

c

cos2 θ(
κ2

x + p2
)4 , (41)

where θ is the angle between the electron momentum p and
the polarization direction ẑ of the x-ray field. An integration
over all emission angles yields the total cross section

σδ,1ph = 4κxπ

3c

(
2ωx − κ2

x

)3/2

ω3
x

, (42)

where we used p = √
2ωx − κ2

x .
The main message of Fig. 3(a) is that the relativistic drift can

be fully compensated in the x-ray assisted HHG setup (the gray
and black curve are of comparable order, small suppression
arises from the different spreading behavior). The yield of the
considered setup is much higher than that for the conventional
setup (dashed black), the latter being suppressed by the drift.
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In the next section we explain how the single-x-ray-photon
ionization provides the necessary initial momentum for the
electron (opposite to the IR laser propagation direction) to
counteract the relativistic drift in the case when the x rays
propagates along the strong IR laser field. We discuss also
the optimization of the applied x-ray frequency for the HHG
process.

2. Drift compensation and influence of x-ray frequency

The integration in Eq. (32) is carried out via the saddle-point
integration method [45,57]. This means that instead of the
integration we only need to sum the integrand over a small
number of saddle points for each energy ωH. A saddle point
(η,η′,q) determines the ionization and recollision times and
the canonical momentum for the electron classical trajectory
leading to the harmonic energy under consideration. In general,
they are complex expressing nonclassical dynamics during
tunneling ionization. For the parameters chosen above, three
quantum paths (saddle points) contribute to the spectrum for
each energy ωH being equivalent to three classical trajectories
that recollide with that energy. The separate contributions of
each quantum path to the spectrum are shown in Fig. 3(b). The
two paths marked in blue and orange (solid lines) have nearly
the same yield, whereas the dotted red line is suppressed by
several orders of magnitude. In the following we explain the
reason for the difference and discuss the influence of the x-ray
frequency on the dynamics.

In order to understand the number of contributing trajec-
tories in Fig. 3(b), we calculate the saddle-point solutions
for different x-ray frequencies ωx for the harmonic emission
at 50 keV and show the ionization phase saddle point in
Fig. 4(a). For small initial energies ωx − Ip,x, two saddle
points contribute to harmonic emission as in the usual case
of HHG in a laser field only. Both saddle points, the long
(Re η2 ≈ −1.345) and short (Re η2 ≈ −1.115) trajectory, are
complex [their real part is shown in the graph] and their HHG
amplitude is very tiny due to the missing drift compensation
which is indicated by their complex value. When increasing
ωx, first the short trajectory and then the long trajectory split up
into two parts. These branches are called uphill and downhill
trajectories, respectively, because their initial momentum
component along the laser polarization is either positive or
negative [30]. After this splitting at about ωx − Ip,x ≈ 4 a.u.
and ωx − Ip,x ≈ 8.5 a.u., the respective ionization phase is
purely real which indicates that the initial momentum is
sufficient to compensate for the subsequent relativistic drift.
The short trajectory reaches drift compensation earlier because
it spends less time in the continuum and, therefore, undergoes
a smaller drift that requires compensation.

The dashed line in Fig. 4(a) denotes the x-ray frequency
ωx that was chosen in Fig. 3(b). The short trajectory has two
contributions (blue and orange), whereas the long trajectory
(dotted) has only one contribution (red). The contribution of
the long trajectory is suppressed by about three orders of
magnitude compared to the short contributions which is visible
from Fig. 3(b). This is because the long trajectory spends more
time in the continuum and experiences a larger relativistic
drift which cannot be fully compensated for. In this case, the
ionization saddle point is complex leading to a damping in the
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FIG. 4. (Color online) (a) We show the ionization phase saddle
points of the 50 keV trajectory for different x-ray frequencies, which
is the same as ionization time in units of radian. The dashed line
indicates the value chosen in Fig. 3. The dotted and solid lines
belong to the long and short trajectories, respectively. (b) Displays the
initial momentum direction for different initial energies ωx − Ip,x (as
indicated in a.u. next to the respective arrow) needed for the emission
of a 50 keV photon. The upper and lower branch correspond to the
short uphill and downhill trajectories, respectively, where the color
indication coincides with the one in (a). Note that the ionization
phases η2 are different for the uphill and downhill trajectories. x̂
and ẑ are the propagation and polarization directions of the laser,
respectively. (c) Differential ionization rate depending on the initial
energy ωx − Ip,x from Eq. (41). The considered direction is in the
initial momentum direction determined by the saddle-point equations.
From (b) we see that the z component is approximately pz,c = 2.9 a.u.

and the x component depends on ωx − Ip,x.

exponential function in the respective amplitude Eq. (32). By
increasing ωx above ωx − Ip ≈ 8.5 a.u., the drift compensation
could also be achieved for the long trajectory and the dashed
red contribution in the spectrum could be enhanced leading to a
larger single-atom yield. However, only one of the trajectories
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can be phase matched in many cases and the enhancement of
the other trajectories would not be useful.

In Fig. 4(b) the initial momentum vectors of the ion-
ized electron p(η′,q) = q + A(η′)

c
− k

ωL
(εq + Ip,x − c2), which

correspond to solutions of the saddle-point equations, are
displayed for different ωx. When ωx − Ip,x ≈ 4.2 a.u., the
momentum required for drift compensation of the short
trajectories is just reached [see Fig. 4(a)]. In this case, the
initial momentum is directed mainly along the z direction
[arrows marked with 4.2 in Fig. 4(b)]. When ωx is increased,
only the px component changes; the pz component approxi-
mately remains constant because it is determined by the drift
compensation condition. The electrons with an appropriate
initial momentum vector can be provided by x-ray single-
photon photoionization because the latter happens with a large
angular distribution with a maximum around x-ray polarization
direction as can be seen from the differential ionization cross
section of Eq. (41). Because the HHG amplitude for each
trajectory contains the differential ionization cross section
Eq. (41), the HHG efficiency for each quantum path depends
on the scalar product between required ionization direction p
and x-ray field polarization direction Ex. This results in some
freedom in choosing the direction of Ex. Only if p and Ex were
close to perpendicular [θ ≈ π/2 in Eq. (41)], the differential
ionization probability would be close to zero. For realization
of phase matching, as it is shown in Sec. III A, the collinear
propagation of the laser and x-ray field is advantageous. For
this case of a collinear alignment, we show the differential
ionization probability dσx,1ph/d� from Eq. (41) for different
x-ray frequencies ωx in Fig. 4(c). The emission angle of interest
θ is estimated by the initial momentum p = √

2(ωx − Ip,x)
and its z component pz,c = 2.9 a.u. taken from Fig. 4(b) via
sin θ = pz,c/p. For initial energies just above 4 [e.g., 4.2
corresponding to the nearly horizontal vectors in Fig. 4(b)],
dσx,1ph/d� is vanishing because the momentum direction and
the direction of Ex are perpendicular. The angle of emission
θ will increase with rising ωX, increasing the ionization
probability. On the other side, large values for ωx decrease
the overall ionization probability due to the denominator of
Eq. (41). These two competing tendencies create the maximum
in the ionization probability in Fig. 4(c). We see that at our
chosen parameter ωx − Ip,x = 6 a.u. the curve is on the same
order as the maximum but can be further optimized.

The former trajectory-based discussion can also be seen
from a wave packet perspective. The single-photon ionization
mechanism with a large initial kinetic energy obeys a dipole
angular distribution of the ejected wave packet, that is, the
wave packet has an increased spreading velocity compared
to tunnel ionization. The increased spatial dimension of the
recolliding wave packet is exploited to overcome the drift.

C. Macroscopic HHG emission

After discussing the single-atom yield of the x-ray assisted
setup, we continue to elaborate on the macroscopic aspect of
the emission from a gas target.

We inspect the emission from a Be3+ gas of homogeneous
density ρ = 5 × 1016/cm3 with the same parameters as in
Fig. 3. The plasma refractive index at the laser frequency
is nL = 1 − 5 × 10−5. The phase mismatching wave vector

of Eq. (38) at the harmonic emission energy of 50 keV
is then �k = 6 × 10−4 a.u. and the coherence length lcoh =
π/�k = 0.25 μm. In order to increase the coherence length,
a quasiphase matching (QPM) scheme can be employed
[46–48]. We propose to use a weak counterpropagating IR field
with the parameters E2 = 5 × 10−5 a.u. and ω2 = 0.0418 a.u.

to achieve quasiphase matching (QPM). The additional field
is denoted by a brown line in Fig. 2. It is included into our
mathematical formalism by Ap(η,x) in Eq. (37). In that way
a dependence on xa is introduced into S̃p(q,η,η′,xa) and the
saddle points for the integration in Eq. (32) depend on the
position within the medium. Thereby, x̃(xa,η̃,η) in Eq. (34)
contains the variation of the weak field seen by the electron
along the z direction. For the chosen set of parameters, the
approximation of x̃(xa,η̃,η) by xa does not lead to a significant
change of the final results and, thus, can be done to save
computation time. The impact of the additional field can be
observed in Fig. 5(a). The real part of the spectral current
density [Eq. (32)] at the respective position is shown. The
emitted total field is given by a spatial integral over all
contributions of the current density [see Eq. (4)]. Without QPM
(blue dashed line), the single-atom contributions oscillate
on the scale of the coherence length estimated previously.
An integration over all contributions results in extensive
cancellation. However, when applying the additional field, the
symmetry between the positive and negative contributions is
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FIG. 5. (Color online) (a) Real part of spectral component of
the locally emitted HHG field at 48.6 keV at different positions
along the propagation direction. The blue dashed line is for HHG
without the quasiphase-matching scheme. The red line is for the
case of adding the weak counterpropagating field to achieve QPM.
(b) The macroscopically emitted spectral photon number via Eq. (9)
is displayed for the QPM scenario.
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broken (see the red line) and both parts only partially cancel,
thus achieving quasiphase matching and a nonzero value of the
integral. The parameters of the additional field were chosen to
optimize the photon energy at 48.6 keV. A medium length
of 100 μm was chosen, whereas the diameter is 500 μm.
The assumed laser and x-ray pulse duration is 10 cycles. The
length is limited due to the assumed bandwidth of the weak
QPM field �ω2 ∼ 0.1%. The spectrum is shown in Fig. 5(b)
and an integral over the spectrum yields the final result of
5 × 10−7 emitted photons per shot. The number is of similar
order of magnitude as in the other relativistic HHG setup based
on counterpropagating attosecond pulse trains for driving the
harmonics [25].

D. Efficiency analysis

We continue with a discussion about the small HHG yield
in the relativistic regime and identify several reasons for it that
are either general to the relativistic regime or specific to this
setup. First, we specify an estimate expression for the emitted
photon number:

N = dwn

d�
× �n × �� × �t × V 2ρ2. (43)

It allows in a simple way to estimate the HHG yield by an order
of magnitude and to single out the different issues influencing
the HHG yield. In Eq. (43), dwn/d� is the single-atom
emission rate, �n is the number of harmonics within the
phase-matched frequency bandwidth, �t is the interaction
time that is approximately the laser pulse duration, �� is
the solid angle of emitted harmonics, V is the volume of
coherently emitting atoms (perfect phase matching is assumed
in this volume), and ρ is the atomic density.

First, we demonstrate the usefulness of the expression by
estimating the photon number for the proposed setup and
show that the result of the former exact calculation can be
reproduced. We estimate the terms in Eq. (43) as follows: the
single atom emission rate is dwn/d� ≈ 10−21 [see Fig. 3(b)];
the phase-matched frequency bandwidth can be deduced
from Fig. 5(b): �ωH ≈ 0.2keV which gives �n ∼ 102; the
solid angle of phase-matched emission in the far field is
determined by the interference pattern of a circular aper-
ture �� ∼ π (2πc/DωH)2 ≈ 10−14, where ωH = 50 keV and
medium radius ra = 5 × 106 a.u. are assumed; the interaction
time �t ≈ 103 a.u. is the laser pulse duration; the volume
is cylindrical V = πr2

a �za = 1020; and the plasma density
restricted by dispersion is ρ = 5 × 1016/cm3. Taking all pieces
together, the emitted photon number under phase-matched
conditions is

N50 keV
rel = dwn

d�

∣∣∣∣
x,s

× �n × �� × �t × V 2ρ2

= 10−21 × 102 × 10−14 × 103 × 1040 × 10−16

= 10−6 (44)

in agreement with the previous accurate calculation. The
subindex x stands for the x-ray assisted setup, whereas s
denotes that the short trajectory contribution is taken into
account only.

To explain the low yield in the relativistic regime we
perform the same kind of estimation for a state-of-the-art

HHG experiment [58] in the nonrelativistic regime where 80 as
pulses were generated from harmonics below 100 eV. We can
estimate the emitted photon number in this case:

N50 eV
nonrel = dwn

d�

∣∣∣∣
t,s

× �n × �� × �t × V 2ρ2

= 10−16 × 101 × 10−7 × 102 × 1041 × 10−12

= 109. (45)

The single-atom contribution dwn/d�|t,s was calculated
from [52] where we additionally inserted a correction factor
accounting for the underestimation of the tunneling rate when
using the zero-range potential as described in Ref. [25].
By comparing Eqs. (44) and (45), one observes a dramatic
suppression of 15 orders of magnitude when rising the HHG
energy by three orders of magnitude. It arises mainly due to the
single-atom yield dwn/d�, the phase-matched emission angle
��, and the gas density ρ. The single-atom contribution will
be investigated separately below. The estimated solid angle
emission angle decreases quadratically with the harmonic
energy. This is because a smaller harmonic wavelength leads
to a smaller angle of the first interference minimum. The gas
density depends on the phase-matching conditions which are
much more difficult to fulfill in the relativistic regime and thus
the gas density is lower in this case.

In the following we inspect the ratio between the single-
atom yields dwn/d� of Eqs. (44) and (45) closer. In each
case, we concentrate on a single (short) trajectory at 50 eV
and 50 keV, respectively. Then each single-atom rate can be
estimated [18,19],

dwn

d�

∣∣∣∣
x,s

= 1

(2πc)3ω2
L

ω2
H

∣∣∣∣
√

(−2πi)5

D(q,η,η′)

∣∣∣∣
2

×
∣∣∣∣c2px(η,q)

εq
√

ωH
〈0|p(η,q)〉

∣∣∣∣
2

|〈p(η′,q)|Exx|0〉|2 (46)

for the considered relativistic setup [see also Eq. (40)], and
by [52]

dwn

d�

∣∣∣∣
t,s

= ω2
L

(2πc)3
ω2

H

∣∣∣∣ 1

ω2
L

√
(−2πi)5

D(p,η,η′)

∣∣∣∣
2

|√ωH〈0|x|px+A(η)/c〉|2

×
∣∣∣∣2

√
2κ3

|E(η′)| 〈px + A(η′)/c|V |0〉e−i[S̃(q,η,η′)+ ωx
ωL

η′− ωH
ωL

η]
∣∣∣∣
2

(47)

for a conventional nonrelativistic setup where we inserted the
tunneling correction factor of Ref. [53] and where D(p,η,η′) =
det ∂S̃(p,η,η′)

∂(p,η,η′) is the functional determinant of the respective
action. Both Eqs. (46) and (47) are evaluated at the saddle point
belonging to the short trajectory of the respective energy. All
factors in Eqs. (46) and (47) were ordered in the same way and
a distinct physical meaning can be assigned to them [25,59]:

dwn

d�
∝ ω2

H

(
|pf |∂ωH

∂ti

)−1

|arec(pf)|2 d3wi(ti,pi)

dpi
3

. (48)
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The factor ω2
H accounts for the phase space and converts

the matrix element into the probability, d3wi(ti,pi)/dpi
3 is

the differential ionization rate with the ionization time ti
in momentum direction pi, arec(pf ) is the recombination
amplitude and the last factor accounts for the dynamical
properties of the wave, pf is the final momentum at recollision,
and ∂ωH/∂ti is the electron wave packet chirping factor
discussed in Ref. [25].

We compare all factors in Eq. (48) between the two cases,
to identify the reasons for the five orders of magnitude
suppression of the single-atom yield in the relativistic regime.
Since the harmonic energy increases by a factor of 103 by
going to the relativistic case, the factor ω2

H yields an increase
of six orders of magnitude. The differential ionization rate
of the particular trajectory is reduced by a factor of 10−2.
Three properties contribute to estimate this ratio: The electron
angular distribution of ionization is much broader for the
one-photon ionization p2 ∼ (ωx − Ip,x) ∼ 6 than for tunneling
ionization p2 ∼ 3E√

2Ip,t
∼ 0.23 [19] yielding a factor of 4 ×

10−2. On the other hand, the total (constant) ionization rate of
the relativistic example [see Eq. (42)] is by a factor 2 higher
than the instantaneous rate of nonrelativistic example [54,55].
Third, in the relativistic setup, the relevant electron trajectory
starts with a certain angle θ off the x-ray field direction
resulting in a factor cos2 θ ≈ 0.3 in Eq. (42). Together, we find
the ratio of the differential rate 0.3 × 2 × 4 × 10−2 ≈ 10−2.
Note that the total time-average ionization rate is a factor of 10
lower for the nonrelativistic example than for the relativistic
one [see Eq. (42)]. The recombination amplitude is reduced
by a factor of 10−5 as discussed in Ref. [25]. The factors pf

and ∂ωH/∂ti contained in the functional determinant reduce
the relativistic yield by 10−4. Collecting all factors, we find
the suppression of 106 × 10−2 × 10−5 × 10−4 = 10−5 of the
single-atom yield according to ratio between the respective
terms in Eqs. (44) and (45).

IV. CONCLUSION

Extending table-top HHG to the hard x-ray domain is
an exciting prospect, especially because many research labs
already use HHG as a XUV sources and other approaches to
generate hard x rays, like free-electron lasers, require large
scale facilities.

The present study discussed several difficulties that need to
be overcome in order to realize the idea. The relativistic drift
has been extensively discussed in the literature. Each proposed

geometry has its own advantages and disadvantages regarding
phase matching. Generally, increasing the harmonic energy
renders phase matching more difficult for many reasons:
the emission phase of the harmonics depends approximately
linearly on the intensity (φ ∼ Upτ ). Small intensity variation,
for example, in a Gaussian focus, immediately results in
phase difference much larger than π . On the other hand,
differences in the phase velocities between the harmonics
and the laser wave lead to a slip in space between both
waves. This results in phase mismatch as soon as the slip is
comparable to the harmonic wavelength which happens earlier
for shorter harmonic wavelengths. Additionally, relativistic
HHG is always accompanied by a large ionization leading
to an enormous plasma dispersion. For these reasons, in the
best case, we obtain realizable medium lengths of only a
few tens of micrometers reducing the expectable macroscopic
yield.

Apart from the relativistic drift and phase matching, we
identified further issues decreasing the harmonic emission
in relativistic HHG connected with the single-atom yield.
First, recombination of the recolliding electron becomes less
likely for high momenta: scattering is favored instead. Second,
the electronic wave function is spread over a larger energy
bandwidth. If phase matching cannot be achieved for the whole
bandwidth, however, a large part of the harmonic radiation
is lost. This was expressed by the chirping factor. Third, the
solid emission angle decreases quadratically with the harmonic
energy increase.

Regarding the harmonic yield, the present setup for rela-
tivistic HHG as well as the one in Ref. [25] yield a small photon
number for emitted harmonics that are both of similar order.
On the bottom line, we think that the setup considered in this
paper is more promising than that of [25] because the required
laser intensities are lower and the phase-matching scheme is
more practical.

One important conclusion of the paper is that phase
matching favors the collinear alignment of the laser and x-ray
beams for the x-ray assisted relativistic HHG setup. This
copropagation is sufficient to induce drift compensation and
no perpendicular alignment of both beams is required. Note
that the collinear geometry has already been used in various
experiments [26,27,29].
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