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Resonance fluorescence in a waveguide geometry
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We show how to calculate the first- and second-order statistics of the scattered fields for an arbitrary intensity
coherent-state light field interacting with a two-level system in a waveguide geometry. Specifically, we calculate
the resonance fluorescence from the qubit, using input-output formalism. We derive the transmission and reflection
coefficients, and illustrate the bunching and antibunching of light that is scattered in the forward and backward
directions, respectively. Our results agree with previous calculations on one- and two-photon scattering as well
as those that are based on the master equation approach.
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I. INTRODUCTION

Interaction between an atom and a laser beam tuned close to
one of the atomic resonances leads to light emission from the
atom (i.e., resonance fluorescence) with a rich set of spectral
and temporal properties. Spectrally, as the laser intensity
is increased the emitted light will develop symmetric side
lobes around the central excitation frequency and the resulting
spectral shape is called the Mollow triplet [1]. Temporally, the
light emitted will also show antibunching with a second-order
correlation that has a minimum for zero time delay [2].

Recent advances in integrated optics [3,4] and supercon-
ducting circuits [5] make it possible to think about quantum
systems connected to each other via waveguides that operate
at optical or microwave frequencies. For such waveguide
embedded systems, the Mollow triplet was observed in the
emission spectra from a single superconducting qubit [6] and
correlation measurements were also reported [7–9]. These
structures were later shown to work as a switch [10] or a
router [11]. In the optical domain, resonance fluorescence
was modeled in photonic band-gap waveguides [12] and
experimentally investigated in a system where a fiber was
coupled to a quantum dot [13,14].

Conventional modeling of resonance fluorescence focuses
on light that is emitted in a direction perpendicular to the
direction of the laser excitation [15–18] which results in
antibunched statistics. In multiqubit systems it is possible
to observe both bunching and antibunching due to the
interference of light emission from different qubits [19–21]. In
a waveguide geometry excitation and observation directions
are colinear as shown in Fig. 1. The transmitted amplitudes
have contributions from both the incident waves and the
emitted waves from the atom. The resonance fluorescence
effect is therefore different from the conventional situation.
In a previous study based on two-photon scattering off of a
qubit embedded in a waveguide, bunching and antibunching
of light due to the interference of the incoming light with
the scattered fields in the transmitted and reflected directions,
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respectively, was predicted [22]. In this work, as an original
contribution, we will extend the two-photon analysis to the
case where the excitation is made with an arbitrary intensity
coherent state. We will make use of input-output formalism
[23] recently generalized to waveguide structures [24] to
derive analytical expressions for the second-order correlation
functions for the reflected and transmitted fields. We will
further show that the low excitation limit of the coherent-state
solutions agrees very well with the two-photon results. The
Mollow triplet will naturally emerge in our analysis. A distinct
feature of our analysis is that we can calculate the multitime
correlations without specifically referring to the quantum
regression theorem.

The outline of this article is as follows. In Sec. II we
will provide the necessary definitions and derive the single
and double time correlations for one-way waveguides by
using input-output formalism. In Sec. III we will extend the
analysis to two-way waveguides and derive the spectra of
the transmitted and reflected fields. Section IV will have the
analysis on double time correlations for the scattered fields
where we compare the coherent-state and the two-photon
results. We will conclude the article in Sec. V.

II. DERIVATION OF THE SINGLE AND DOUBLE
TIME CORRELATIONS

A system consisting of a qubit interacting with photons in
a waveguide is described by the Hamiltonian H = H0 + H1,
where [24]

H0 =
∫ ∞

−∞
dω ω a†

ωaω,

(1)

H1 = 1

2
�σz + V√

vg

∫ ∞

−∞
dω (σ+aω + a†

ωσ−).

Here ω is the atomic transition frequency, a†
ω and aω are the

creation and annihilation operators for photons at frequency ω,
respectively. σ− and σ+ are the lowering and raising operators
for the qubit σz = [σ+,σ−]. V denotes the coupling strength
between the atomic states and the waveguide modes, and vg

is the group velocity of the propagating waveguide mode. In
the derivation of the Hamiltonian we make the dipole and
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FIG. 1. (Color online) Schematic of the system under investiga-
tion. A right-going coherent state (rin) at frequency k and an arbitrary
intensity, propagating in a waveguide denoted by the long horizontal
lines, is incident on a two-level system with energy separation � and
a spontaneous emission rate τ−1. After interacting with the qubit,
the transmitted (rout) and the reflected (�out) light has both a coherent
(ω = k) and an incoherent (ω �= k) component.

the rotating wave approximations, linearize the waveguide
dispersion around the excitation frequency to obtain the group
velocity, and assume that the photons are at a frequency in the
vicinity of the excitation wavelength so that the linearization
can be justified [24].

We set

1

τ
= π

V 2

vg

, ain(t) = 1√
2π

∫
dω aω(t0)e−iω(t−t0),

aout(t) = 1√
2π

∫
dω aω(t1)e−iω(t−t1),

where ain and aout are the input and output fields defined long
before (t0 → −∞) and long after (t1 → ∞) the interaction
between the qubit and the the photons takes place. The two
fields are related by

aout(t) = ain(t) − i

√
2

τ
σ−(t). (2)

Through the help of the Heisenberg equations of motion and
the definitions of the input and output fields, we can write
the following set of input-output equations for a single qubit
system [24]

dσ−(t)

dt
= i

√
2

τ
σz(t)ain(t) −

(
1

τ
+ i�

)
σ−(t),

dσ+(t)

dt
= −i

√
2

τ
a†in(t)σz(t) −

(
1

τ
− i�

)
σ+(t),

dσz(t)

dt
= −i2

√
2

τ
[σ+(t)ain(t) − a†in(t)σ−(t)]

− 2

τ
[σz(t) + 1]. (3)

In this article we will be interested in the statistics of the
scattered fields when a coherent-state input is incident on the
qubit. We define the incoming coherent state at frequency k as

|α+
k 〉 = e−|αk |2/2

∞∑
n=0

αn
k√
n!

|n+
k 〉 = e−|αk |2/2

∞∑
n=0

αn
k a†in(k)n

n!
|0〉,

such that

ain(t)|α+
k 〉 = 1√

2π

∫
dk′ain(k′)e−ik′t |α+

k 〉
= αk√

2π
e−ikt |α+

k 〉 = ωR

2

√
τ

2
eiφ−ikt |α+

k 〉. (4)

The value of αk is in general complex valued. We define αk ≡
|αk|eiφ . ωR ≡ 2|αk|/√πτ is the Rabi frequency.

The expectation value of an operator O is given as

〈O〉 ≡ 〈α+
k |O|α+

k 〉.
To describe resonance fluorescence in a waveguide, three
classes of correlation functions will be of importance: ones
with one operator, ones with two operators at two different
times, and ones with three operators at two different times,
that is,

c1(t = 0,t ′) =

⎛
⎜⎝

〈σ−(t ′)〉
〈σ+(t ′)〉
〈σz(t ′)〉

⎞
⎟⎠ , c2(t,t ′) =

⎛
⎜⎝

〈σ+(t)σ−(t ′)〉
〈σ+(t)σ+(t ′)〉
〈σ+(t)σz(t ′)〉

⎞
⎟⎠ ,

(5)

c3(t,t ′) =

⎛
⎜⎝

〈σ+(t)σ−(t ′)σ−(t)〉
〈σ+(t)σ+(t ′)σ−(t)〉
〈σ+(t)σz(t ′)σ−(t)〉

⎞
⎟⎠ .

To calculate these expectation values, we use input-output
equations (3) and multiply them from the left and the right
with the necessary terms.1 We then take the expectation values,
make use of Eq. (4) and the commutator [ain(t ′),σ−(t)] = 0 for
t ′ � t [25] to arrive at the following set of differential equations
for all three classes of expectation values (n = 1,2,3)

d

dt ′
cn(t,t ′) = B(t ′)cn(t,t ′) + bn, where B =

⎛
⎜⎝

−(1/τ + i�) 0 1
2 iωRe−ikt ′eiφ

0 −(1/τ − i�) − 1
2 iωReikt ′e−iφ

iωReikt ′e−iφ −iωRe−ikt ′eiφ −2/τ

⎞
⎟⎠ , bn =

⎛
⎜⎝

0

0

bn

⎞
⎟⎠ .

These are called the optical Bloch equations with radia-
tive damping. For different n, the inhomogeneous term bn

and the initial conditions at t ′ = t are different: b1 = − 2
τ

,

1For instance, to get the second set, c2(t,t ′), we need to multiply (3)
evaluated at time t ′ by σ+(t) from the left.

b2 = − 2
τ
〈σ+(t)〉, and b3 = − 2

τ
〈σ+(t)σ−(t)〉. Previously, the

same results were derived through the help of the quantum
regression theorem [16,18]. However, the derivation here
follows naturally within input-output formalism. In Appendix
A we provide the derivation of the general solution to the Bloch
equations and in Appendix B explicit solutions for all cn are
listed.
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III. DERIVATION OF THE FLUORESCENCE SPECTRUM
OF THE TRANSMITTED AND THE REFLECTED

LIGHT

Up till now, our analysis did not distinguish between right-
and left-going waves. Indeed, the Hamiltonian we wrote was
for a chiral (i.e., one-way) waveguide. For a regular two-way
waveguide where fields propagate in both directions, the
Hamiltonian has separate input and output operators for right
(r) and left (�) propagating waves [24]. The equations of
motion become

dσ−
dt

= i

√
2

τ
σzrin + i

√
2

τ
σz�in −

(
2

τ
+ i�

)
σ−,

dσ+
dt

= −i

√
2

τ
r†inσz − i

√
2

τ
�†inσz −

(
2

τ
− i�

)
σ+, (6)

dσz

dt
= −i2

√
2

τ
[σ+(rin + �in) − (r†in + �†in)σ−]

− 4

τ
[σz + 1].

We can decompose the right and left input or output states as

rin/out(t) = ain/out(t) + åin/out(t)√
2

,

(7)

�in/out(t) = ain/out(t) − åin/out(t)√
2

,

and as a result arrive at the Hamiltonian H = H0 + H1, where

H0 =
∫

dω ω (a†
ωaω + å†ωåω),

H1 = 1

2
�σz +

√
2V√
vg

∫
dω (σ+aω + a†

ωσ−).

The fields a and å are even and odd combinations, respectively,
of the right and left propagating fields. The interacting part of
the Hamiltonian H1 depends on a only and the å dependence
is solely in the noninteracting part H0. Except for an additional
term in H0,2 the two-way Hamiltonian is very similar to the
chiral Hamiltonian in Eq. (1). Hence we will be able to make
use of the results of the previous section in the analysis of
two-way waveguides. To do so, we decompose a right-going
coherent state with frequency k into two separate (even and
odd) channels [26]

exp[αr†in(k) − α∗rin(k)]|0〉

= exp

[
α

a†in(k) + å†in(k)√
2

− α∗ ain(k) + åin(k)√
2

]
|0〉

≡
∣∣∣∣ α+

k√
2

;
α+

k√
2

〉
(where the first term in the bra-ket refers to the even channel
and the second term to the odd channel) such that

ain(t)

∣∣∣∣ α+
k√
2

;
α+

k√
2

〉
= åin(t)

∣∣∣∣ α+
k√
2

;
α+

k√
2

〉
= åout(t)

∣∣∣∣ α+
k√
2

;
α+

k√
2

〉

2Note also that the extra factor of
√

2 in front of V in H1 will lead
to a redefinition τ → τ ′ ≡ τ/2.

= αk√
2
√

2π
e−ikt

∣∣∣∣ α+
k√
2

;
α+

k√
2

〉

= ωR

2

√
τ ′

2
eiφ−ikt

∣∣∣∣ α+
k√
2

;
α+

k√
2

〉
, (8)

where τ ′ ≡ τ/2 absorbs the
√

2 factor. As one can see, the odd
channel is interaction-free and thus is an eigenstate of åin(t) =
åout(t) whereas the even channel is subject to H1. Nevertheless,
it is the combination of both the even and odd channels that lead
to the right- and left-going fields. The two-channel expectation
value of an operator O is defined as

〈〈O〉〉 ≡
〈
α+

k√
2

;
α+

k√
2

∣∣∣∣O
∣∣∣∣ α+

k√
2

;
α+

k√
2

〉
.

To calculate the spectral properties of the transmitted fields,
we need to calculate the Fourier transform of 〈〈r†out(t)rout(t +
δt)〉〉 with respect to δt (see Fig. 1). By using (7) we can write

〈〈r†out(t)rout(t + δt)〉〉
= 1

2 〈〈[a†out(t) + å†out(t)][aout(t + δt) + åout(t + δt)]〉〉.

The application of Eq. (2) with τ → τ ′ results in

= 1

2

[
ω2

R
τ ′

2
e−ikδt − iωRe−iφ+ikt 〈〈σ−(t + δt〉〉

+ iωReiφ−ik(t+δt)〈〈σ+(t)〉〉 + 2

τ ′ 〈〈σ+(t)σ−(t + δt)〉〉
]
.

One can show that the two-channel expectation values of
operators are the same as their single-channel expectation
values [i.e., those in Eq. (5)] except for the substitution τ → τ ′.
The derivation can be made by using (6), taking the relative
expectation values, and using (8) to simplify the results.
Therefore, we can use the steady-state values from Appendix B
to arrive at

〈〈r†out(t)rout(t + δt)〉〉 = 1

τ ′
R2

4

(
−1 + D2 + 1

2R2

1 + D2 + 1
2R2

)
e−ikδt

+ 1

τ ′ 〈〈σ+(t)σ−(t + δt)〉〉,

where

D = (� − k)τ ′, and R = ωRτ ′.

To calculate the Fourier transform of this expression, we need
to know 〈〈σ+(t)σ−(t + δt)〉〉 for δt < 0 as well. By using the
identity 〈〈σ+(t + δt)σ−(t)〉〉 = 〈〈σ+(t)σ−(t + δt)〉〉∗ we can see
that the expectation values for δt < 0 are related to those with
δt > 0 by complex conjugation. The Laplace transform results
in Appendix B thus allow us to calculate the Fourier transform
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as

G(1)
r (ω) ≡ Fδt [〈〈r†out(t)rout(t + δt)〉〉]

= 1

τ ′
1√
2π

1
2R2

1 + D2 + 1
2R2

[
πδ(ω − k)

(
D2 + 1

2
R2 D2 + 1

2R2

1 + D2 + 1
2R2

)
+ R2

τ ′5
(ω − k)2τ ′2 + 4 + 1

2R2

|P [−i(ω − k)]|2
]
,

where the function P is as defined in Eq. (B4). We will use the
noninteracting case, that is,

G(1)
r0

≡ Fδt [〈〈r†in(t)rin(t + δt)〉〉] =
√

2πR2

4τ ′ δ(ω − k)

for normalization. As a result, the coherent part of the
correlation function, one which is proportional to δ(ω − k),
will be given by

g(1)
rcoh

= 1

1 + D2 + 1
2R2

(
D2 + 1

2
R2 D2 + 1

2R2

1 + D2 + 1
2R2

)
. (9)

For reflected fields we need to do a similar analysis for
〈〈�†out(t)�out(t + δt)〉〉. By using (7) and (2) we can see that

〈〈�†out(t)�out(t + δt)〉〉 = 1

τ ′ 〈〈σ+(t)σ−(t + δt)〉〉.
The Fourier transform of this term is given by

G
(1)
� (ω) ≡ Fδt [〈〈�†out(t)�out(t + δt)〉〉]

= 1

τ ′
1√
2π

1
2R2

1 + D2 + 1
2R2

×
[

1 + D2

1 + D2 + 1
2R2

πδ(ω − k)

+ R2

τ ′5
(ω − k)2τ ′2 + 4 + 1

2R2

|P [−i(ω − k)]|2
]
.

We again normalize with respect to the noninteracting case,
and obtain

g
(1)
�coh

= 1 + D2(
1 + D2 + 1

2R2
)2 (10)

for the coherently backscattered fields. The incoherent parts
of the reflected and transmitted fields are equal to each other
and are given by

g
(1)
incoh = 1

π

1

1 + D2 + 1
2R2

R2

τ ′5
(ω − k)2τ ′2 + 4 + 1

2R2

|P [−i(ω − k)]|2 .

In Fig. 2 spectral features of the transmitted and reflected fields
are plotted. Note that the results (9) and (10) agree with those
in Refs. [6,11].

IV. DERIVATION OF THE SECOND-ORDER
CORRELATION FUNCTION OF THE TRANSMITTED

AND REFLECTED LIGHT

Now that we have calculated various first-order correlations
and investigated spectral properties of scattered fields, we
can start to look into the time-dependent statistics of the
transmitted and reflected fields. To do so, we will begin by

investigating the second-order correlation function in a chiral
waveguide g(2)

c given by

g(2)
c (δt) = lim

t→∞
〈a†out(t)a

†
out(t + δt)aout(t + δt)aout(t)〉

〈a†out(t)aout(t)〉〈a†out(t + δt)aout(t + δt)〉
.

By using (2) and the results from Appendix B it can be shown
that

〈a†out(t)aout(t)〉 = 1

τ

R2

8
.

Similarly, after some algebra we arrive at the following formula
for the Laplace transform of g(2)

c

Lδt [g
(2)
c (δt)] = 1

s
+ 8

1 + D2 + 1
2R2

s
(
s + 1

τ

)
P (s)

.

Using the expression above, we can show that

lim
R→0

g(2)
c (δt) = ψ

(2)
k,p(t,t + δt)

1√
2

[
ψ

(1)
k (t)ψ (1)

p (t + δt) + ψ
(1)
p (t)ψ (1)

k (t + δt)
]

=
∣∣∣∣1 + 4

(D + i)2
e−i

|δt |
τ

(D−i)

∣∣∣∣
2

,
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FIG. 2. (Color online) Coherent part of the transmitted (solid) and
reflected (dashed) fluorescence spectrum for R = ωRτ ′ = {0.1,2,5}
corresponding to the blue, red, and green curves respectively. The
reflected fluorescence for R = 5 (dashed green curve) is plotted after
being multiplied by 5. Inset shows the incoherent part (ω �= k case as
depicted in Fig. 1) of the spectrum with the Mollow triplet for zero
detuning (D = 0).
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FIG. 3. (Color online) Plots of g(2) for D = 2 and R = {0.2,4} for the red and black curves, respectively. The dashed blue curve is the
normalized two-photon wave function. (a) One-mode case; (b) two-mode, transmitted case; (c) two-mode, reflected case. As can be seen, the
two-photon calculations are indistinguishable from resonance fluorescence ones for R = 0.2 but not for R = 4.

where ψ (1) [ψ (2)] is the one-photon [two-photon] wave
function.3 As a result, we have shown that the second-order
statistics of a low-intensity coherent-state input and a two-
photon input to a qubit are the same.

For the two-mode case, we will need to calculate the
correlation functions for the right-going (r) and the left-going
(�) fields as

g(2)
r (δt) = lim

t→∞
〈〈r†out(t)r

†
out(t + δt)rout(t + δt)rout(t)〉〉

〈〈r†out(t)rout(t)〉〉〈〈r†out(t + δt)rout(t + δt)〉〉
,

g
(2)
� (δt) = lim

t→∞
〈〈�†out(t)�

†
out(t + δt)�out(t + δt)�out(t)〉〉

〈〈�†out(t)�out(t)〉〉〈〈�†out(t + δt)�out(t + δt)〉〉
.

The normalization terms are given by

〈〈r†out(t)rout(t)〉〉 = 1

τ ′
R2

4

D2 + 1
2R2

1 + D2 + 1
2R2

,

〈〈�†out(t)�out(t)〉〉 = 1

τ ′

1
4R2

1 + D2 + 1
2R2

.

After some algebra done by the help of an automatic noncom-
mutative algebra system [27] we get

Lδt

[
g(2)

r (δt)
]

= 1

s
+ 1

A2P (s)

×
[(

s + 1

τ ′

)(
(1 + 2A)s + 1 + 4A

τ ′

)
+ D2

τ ′2

]
,

where A = D2 + 1
2R2, and

Lδt

[
g

(2)
� (δt)

] = 2

τ ′2

(
1 + D2 + 1

2
R2

)
s + 1

τ ′

sP (s)
.

In the limit R → 0 the second-order correlation results
for coherent-state and two-photon inputs in a two-mode
waveguide can be shown to equal each other, just like in
the chiral case (see Fig. 3). As was previously predicted,
the interference of incoming and scattered fields leads to

3See equations (43) and (120) in Ref. [22] for the one- and two-
photon wave functions, respectively. Note that the photons are at the
same frequency (i.e., k = p).

bunching and antibunching in the forward and backward
directions, respectively. When R is increased, the response
of the qubit gets saturated and there is less bunching in the
forward direction but the reflected fields continue to show
strong antibunching. In Refs. [28,29] g(2) was calculated
for a low-intensity coherent-state interacting with a qubit
in a waveguide where the qubit was coupled at a rate �′
to nonwaveguide modes as well. Our results supplement
these previous investigations by analytically describing the
scattering of an arbitrary intensity4 coherent state off of a
qubit for the �′ = 0 case.

V. CONCLUSION

In this article we used input-output formalism for waveg-
uides to analyze how an arbitrary intensity coherent state
scatters off of a qubit embedded in a waveguide. We provided
analytical results for the spectra as well as the second-order
correlation functions of the transmitted and reflected fields.
This work supplements the previous work on two-photon
calculations and shows that the two formulations agree for
low-intensity coherent-state inputs. We predicted that the
transmitted fields are bunched and the reflected fields are
antibunched for coherent-state inputs, similar to the case
for two-photon scattering. Very recent experiments in circuit
QED agree with these observations [30]. Functional devices
(e.g., transistors [28], switches [10], or routers [11]) that
make use of multilevel systems require both control signals
that are in a coherent-state basis and single- or multi-photon
Fock states that carry the information. We demonstrated the
versatility of input-output formalism with which one can do
analysis either based on Fock states to calculate the full
scattering matrix, or based on coherent states with an emphasis
on correlation measurements. Additionally, it is possible to
investigate nonlinear effects such as the ac Stark [31] and
Lamb [32] shifts using the methods developed to characterize
qubit-coherent-state interactions. Lastly, our approach paves
the way to calculations involving higher-order correlation
functions that become relevant when the qubit is strongly
excited; in a recent cavity QED experiment asymmetry in time
for g(3) was demonstrated [33].

4We still operate within the bounds of the dipole and the rotating-
wave approximations used in the derivation of the Hamiltonian.
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APPENDIX A: GENERAL SOLUTION TO THE BLOCH EQUATIONS

In this Appendix we will provide the general solution to the differential equation

d

dt ′

⎛
⎜⎝

x1(t,t ′)
x2(t,t ′)
x3(t,t ′)

⎞
⎟⎠ = B(t ′)

⎛
⎜⎝

x1(t,t ′)
x2(t,t ′)
x3(t,t ′)

⎞
⎟⎠ +

⎛
⎜⎝

0

0

b(t)

⎞
⎟⎠ , where B(t ′) =

⎛
⎜⎝

−(1/τ + i�) 0 1
2 iωRe−ikt ′eiφ

0 −(1/τ − i�) − 1
2 iωReikt ′e−iφ

iωReikt ′e−iφ −iωRe−ikt ′eiφ −2/τ

⎞
⎟⎠ ,

with the initial conditions given at t ′ = t by x1(t,t), x2(t,t), and x3(t,t). Here b(t) is the inhomogeneous term, independent of t ′.
The solution method we use is the same as the one in Refs. [2,15]. We begin by writing down the equations separately as

dx1

dt ′
+

(
1

τ
+ i�

)
x1 = 1

2
iωRe−ikt ′eiφx3,

dx2

dt ′
+

(
1

τ
− i�

)
x2 = −1

2
iωReikt ′e−iφx3,

dx3

dt ′
+ 2

τ
x3 = iωR(eikt ′e−iφx1 − e−ikt ′eiφx2).

Integrating x1(t,t ′) from t ′ = t to t + δt and making a change of variables results in

x1(t,t + δt) = x1(t,t)e−(1/τ+i�)δt + i
ωR

2
eiφe−(1/τ+i�)(t+δt)

∫ δt

0
dme[1/τ+i(�−k)](t+m)x3(t,t + m). (A1)

Likewise, for x2 and x3 we get

x2(t,t + δt) = x2(t,t)e−(1/τ−i�)δt − i
ωR

2
e−iφe−(1/τ−i�)(t+δt)

∫ δt

0
dme[1/τ−i(�−k)](t+m)x3(t,t + m), (A2)

x3(t,t + δt) = x3(t,t)e− 2
τ
δt + τ

2
b(t)

(
1 − e− 2

τ
δt
) + iωRe−iφ

∫ δt

0
dme

2
τ
meik(t+m)e− 2

τ
δt x1(t,t + m)

− iωReiφ

∫ δt

0
dme

2
τ
me−ik(t+m)e− 2

τ
δt x2(t,t + m). (A3)

Substituting (A1) and (A2) in Eq. (A3) results in

x3(t,t + δt) = x3(t,t)e− 2
τ
δt + τ

2
b(t)

(
1 − e− 2

τ
δt
) + iωRe−iφx1(t,t)eikt e

−[ 1
τ
+i(�−k)]δt − e− 2

τ
δt

1
τ

− i(� − k)

−iωReiφx2(t,t)e−ikt e
−[ 1

τ
−i(�−k)]δt − e− 2

τ
δt

1
τ

+ i(� − k)
− ω2

R

2

∫ δt

0
dm′x3(t,t + m′)

e−[ 1
τ
+i(�−k)](δt−m′) − e− 2

τ
(δt−m′)

1
τ

− i(� − k)

−ω2
R

2

∫ δt

0
dm′x3(t,t + m′)

e−[ 1
τ
−i(�−k)](δt−m′) − e− 2

τ
(δt−m′)

1
τ

+ i(� − k)
.

Once we take the Laplace transform of these equations with respect to the δt variable, the convolution integrals simplify and we
are left with

X3(s) =
(
s + 2

τ

)[(
s + 1

τ

)2 + (� − k)2
]

(
s + 2

τ

)[(
s + 1

τ

)2 + (� − k)2
] + ω2

R

(
s + 1

τ

)
{

x3(t,t)
1

s + 2
τ

+ τ

2
b(t)

(
1

s
− 1

s + 2
τ

)

+ iωRe−iφx1(t,t)eikt 1(
s + 2

τ

)[
s + 1

τ
+ i(� − k)

] − iωReiφx2(t,t)e−ikt 1(
s + 2

τ

)[
s + 1

τ
− i(� − k)

]
}

.

Using (A1) and (A2) we get

X1(s) = x1(t,t)
1

s + 1
τ

+ i�
+ i

ωR

2
eiφe−iktX3(s + ik)

1

s + 1
τ

+ i�
,

X2(s) = x2(t,t)
1

s + 1
τ

− i�
− i

ωR

2
e−iφeiktX3(s − ik)

1

s + 1
τ

− i�
.

These results are the general solution to the Bloch equations expressed in the Laplace domain.
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APPENDIX B: CORRELATION FUNCTION CALCULATIONS

1. Single time correlations

The calculation of 〈σ−(t)〉, 〈σ+(t)〉, and 〈σz(t)〉 can be made by using the results from the previous section. The inhomogeneous
term is b(t) = − 2

τ
. We assume that the atom is initially in its ground state such that x1(0) = x2(0) = 0, x3(0) = −1. The Laplace

transforms of the expectation values are

Lt [e
ikt 〈σ−(t)〉] = −i

ωR

2
eiφ

(
s + 2

τ

)[
s + 1

τ
− i(� − k)

]
sP (s)

, (B1)

Lt [e
−ikt 〈σ+(t)〉] = i

ωR

2
e−iφ

(
s + 2

τ

)[
s + 1

τ
+ i(� − k)

]
sP (s)

, (B2)

Lt [〈σz(t)〉] = −(
s + 2

τ

)[(
s + 1

τ

)2 + (� − k)2
]

sP (s)
, (B3)

where

P (s) =
(

s + 2

τ

)[(
s + 1

τ

)2

+ (� − k)2

]
+ ω2

R

(
s + 1

τ

)
. (B4)

The t → ∞ limit of these quantities is also of interest. We get

lim
t→∞〈σ−(t)〉 = − i

2R(1 − iD)

1 + D2 + 1
2R2

e−ikt+iφ, lim
t→∞〈σ+(t)〉 =

i
2R(1 + iD)

1 + D2 + 1
2R2

eikt−iφ, (B5)

lim
t→∞

〈σz(t)〉 + 1

2
= lim

t→∞〈σ+(t)σ−(t)〉 =
1
4R2

1 + D2 + 1
2R2

. (B6)

Here D ≡ (� − k)τ stands for the normalized detuning frequency and R ≡ ωRτ for the normalized Rabi frequency.

2. Double time correlations of two operators

To calculate 〈σ+(t)σ−(t ′)〉, 〈σ+(t)σ+(t ′)〉, and 〈σ+(t)σz(t ′)〉 we use initial values at t ′ = t under steady-state conditions when
t → ∞ such that 〈σ+(t)σ−(t)〉 is given by Eq. (B6), 〈σ+(t)σ+(t)〉 = 0 and 〈σ+(t)σz(t)〉 = −〈σ+(t)〉 is given by Eq. (B5). The
inhomogeneous term is b(t) = − 2

τ
〈σ+(t)〉. After some algebra we get

Lδt [e
ikδt 〈σ+(t)σ−(t + δt)〉] =

1
4R2

1 + D2 + 1
2R2

P (s) − 1
2ω2

R

(
s + 2

τ

)
sP (s)

,

Lδt [e
−ikδt 〈σ+(t)σ+(t + δt)〉] = − 1

4R2e−2iφ+2ikt

1 + D2 + 1
2R2

P (s)− 1
2 ω2

R(s+ 2
τ

)
sP (s)

[
s + 1

τ
+ i(� − k)

] − 1

s + 1
τ

− i(� − k)
,

Lδt [〈σ+(t)σz(t + δt)〉] = − i
2Rτe−iφ+ikt

1 + D2 + 1
2R2

{
P (s) − 1

2ω2
R

(
s + 2

τ

)
sP (s)

[
s + 1

τ
+ i(� − k)

]
− 1

}
.

Note that the Laplace transforms are taken with respect to δt .

3. Double time correlations of three operators

We multiply input-output equations (3) evaluated at time t ′ by σ+(t) from the left and σ−(t) from the right and take the
expectation values to arrive at the double time correlations of three operators. The initial values are given by

〈σ+(t)σ−(t)σ−(t)〉 = 〈σ+(t)σ+(t)σ−(t)〉 = 0, 〈σ+(t)σz(t)σ−(t)〉 = −〈σ+(t)σ−(t)〉 = −〈σz(t) + 1〉
2

,

and the inhomogeneous term is

b(t) = − 2

τ

〈σz(t) + 1〉
2

.
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The expectation value of σz(t) is at its steady-state value given by Eq. (B6). If we compare the initial values and the inhomogeneous
term to the case of single time correlations, we see that they are exactly the same except for the scaling term 〈σz(t) + 1〉/2 which
is given by Eq. (B6). Thus the results are just rescaled versions of the single time correlation ones and are given by

Lδt [e
ikδt 〈σ+(t)σ−(t + δt)σ−(t)〉] = (B1) × (B6), Lδt [e

−ikδt 〈σ+(t)σ+(t + δt)σ−(t)〉] = (B2) × (B6),

Lδt [〈σ+(t)σz(t + δt)σ−(t)〉] = (B3) × (B6),

where the Laplace transforms are taken with respect to δt .

APPENDIX C: SHORT NOTE ON NUMERICS

The differential equations that we analyzed so far can be transformed into time-independent forms by the substitution

σ̃− = eiktσ−, σ̃+ = e−iktσ+, and σ̃z = σz,

where k is the frequency of the incoming photons. For instance, the single time expectation values of σ̃−, σ̃+, and σ̃z can be
written as

d

dt

⎛
⎜⎝

〈σ̃−〉
〈σ̃+〉
〈σ̃z〉

⎞
⎟⎠ = M

⎛
⎜⎝

〈σ̃−〉
〈σ̃+〉
〈σ̃z〉

⎞
⎟⎠ +

⎛
⎜⎝

0

0

− 2
τ

⎞
⎟⎠ ,

where the matrix M is given by

M =

⎛
⎜⎝

− (
1
τ

+ i�̃
)

0 i ωR
2 eiφ

0 − (
1
τ

− i�̃
) −i ωR

2 e−iφ

iωRe−iφ −iωReiφ − 2
τ

⎞
⎟⎠ ,

and �̃ ≡ � − k. Other expectation values have the same form as well. This is a much more convenient formulation for purely
numerical studies with which we verified the analytical results reported in the previous Appendices.
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