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The measurement of photon-number statistics of fields composed of photon pairs, generated in spontaneous
parametric down-conversion and detected by an intensified charge-coupled device (iCCD) camera, is described.
Final quantum detection efficiencies, electronic noises, finite numbers of detector pixels, transverse intensity
spatial profiles of the detected beams, as well as losses of single photons from a pair are taken into account in
a developed general theory of photon-number detection. The measured data provided by an iCCD camera with
single-photon detection sensitivity are analyzed along the developed theory. Joint signal-idler photon-number
distributions are recovered using the reconstruction method based on the principle of maximum likelihood.
The range of applicability of the method is discussed. The reconstructed joint signal-idler photon-number
distribution is compared with that obtained by a method that uses superposition of signal and noise and minimizes
photoelectron entropy. Statistics of the reconstructed fields are identified to be multimode Gaussian. Elements
of the measured as well as the reconstructed joint signal-idler photon-number distributions violate classical
inequalities. Sub-shot-noise correlations in the difference of the signal and idler photon numbers as well as
partial suppression of odd elements in the distribution of the sum of signal and idler photon numbers are
observed.
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I. INTRODUCTION

Light generated in the process of spontaneous parametric
down-conversion (SPDC) is emitted in photon pairs [1].
Photons comprising one photon pair are strongly quantum
correlated (entangled). Entanglement of photons in a pair has
been used in many experiments that have provided a deep
insight into the laws of quantum mechanics [2,3]. Among
others, the measured violation of Bell’s inequalities ruled
out neoclassical local hidden-variable theories. Photon pairs
have also found their way into practical applications, e.g., in
quantum cryptography [4], in the measurement of ultrashort
time delays, or in absolute measurements of detection quantum
efficiencies [5,6]. These experiments utilize photon fields that
contain only one photon pair in a measured time window with
a high probability.

There have been experiments [teleportation, measurement
of Greenberger-Horne-Zeilinger correlations, etc.] measuring
triple and quadruple coincidence counts caused by fields
containing two photon pairs in a time window given by
an ultrashort pump pulse. However, states used for such
experiments contain a very low fraction of states with two
photon pairs in comparison with the fraction belonging to the
state with one photon pair and the vacuum state. The reason
is to eliminate the influence of three and more-than-three
photon-pair states to the considered experimental setups.
Measurements done in such setups have to be conditional and
they require long data-acquisition times.
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The use of more powerful pump pulses as well as the
development of materials with higher values of χ (2) suscep-
tibilities have opened the way to generate fields containing
many photon pairs originating in one pump pulse. For such
fields, a joint signal-idler photon-number distribution is the
main characteristic that determines the experimental results
utilizing these fields. Determination of photon-pair statistics
is important also for weak cw fields provided that they are
detected in long-time-detection windows [7]. In this case
photon-pair statistics have been identified to be Poissonian
after eliminating dead-time detection effects [7].

Returning back to more intense fields, recent experiments
([8–15] and references therein) are even able to provide
experimental joint signal-idler photoelectron distributions of
twin beams containing up to several thousands of photon
pairs. As for detectors, weaker fields containing up to ten
photons can be measured by special single-photon avalanche
detectors (VLPC) [16], hybrid photomultipliers [17,18], super-
conducting bolometers [19], or time-multiplexed fiber-optics
detection loops [20–25]. Intensified charge-coupled device
(CCD) cameras [11,26,27] can in principle capture states with
hundreds of photons. Ultrasensitive photodiodes with their
linear response and very low level of noise are suitable for the
detection of states with hundreds or, even better, thousands
of photons. A special method utilizing precisely attenuated
beams has also been suggested and developed [28,29]. It
allows to resolve photon numbers even in the measurement
based on single-photon-sensitive avalanche photodiodes. We
note that also the well-known homodyne detection has been
found useful in the determination of intensity correlations of
twin beams [30,31].
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PEŘINA JR., HAMAR, MICHÁLEK, AND HADERKA PHYSICAL REVIEW A 85, 023816 (2012)

All these approaches give experimental photoelectron
distributions obtained by detectors with finite quantum de-
tection efficiencies. While silicon p-i-n photodiodes or back-
illuminated CCD cameras can offer detection efficiencies close
to unity, their internal noise prevents their use in the single-
photon regime. On the other hand, detectors with large internal
gain, such as intensified CCD (iCCD) cameras, electron-
multiplying CCD (EMCCD) cameras, or avalanche photode-
tectors, allow single-photon sensitivity or even photon-number
resolution by effectively decreasing their noise. A price for
this sensitivity is paid, however, in the form of lower quantum
detection efficiencies. The iCCD cameras are a good trade-off
in this respect. Their level of noise is low, but not negligible.
On the other hand, quantum detection efficiencies around 20%
are sufficient enough to profit from their low level of noise.

Once we know the quantum detection efficiency and the
level of noise, we can reconstruct the field in front of a
detector. The usual and physically motivated approach is
based on the assumption of the character of the reconstructed
field. Working with photon pairs, we can naturally assume
that the reconstructed field is composed of a certain number
of independent modes containing photon pairs and small
additional noise in the form of single photons. Using this
picture, a multimode theory of signal and noise tailored
especially for paired fields can be applied (see [32,33] for the
spontaneous process and [34–36] for the stimulated process).
It can be accompanied by the principle of minimum entropy
to get the reconstructed field. As an alternative, one may rely
on a mathematically based method that uses the maximum-
likelihood principle. In the framework of this method, the
reconstructed field is reached as a steady point accessible by
an iteration procedure. As a final step in the characterization
of the fields, joint signal-idler quasi-distributions of integrated
intensities may be reached using the reconstructed joint signal-
idler photon-number distributions [12,37].

Here, we pay attention to the determination of a joint signal-
idler photon-number distribution beyond a nonlinear crystal
using an iCCD camera as a tool to resolve photon numbers.
The method of maximum likelihood is applied. It allows to
deal with even more difficult experimental conditions such as
those reached when more than one photon can be registered
in a single pixel. Transformation matrices describing details
of the detection process and being an important ingredient of
the iteration procedure are derived under several conditions.
The reconstructed fields are compared with those obtained by
the method of superposition of signal and noise.

The paper is organized as follows. Section II contains
a general model describing a photon-number-resolving de-
tection device. Section III is devoted to the description of
photon-number-resolving detection by an iCCD camera under
real experimental conditions. The role of inhomogeneous
transverse profiles of the detected fields is discussed in Sec. IV.
In Sec. V, the iteration procedure of the maximum-likelihood
method is explained and used to recover joint signal-idler
photon-number distributions. Section V A is devoted to non-
classical characteristics of the emitted fields. Statistics of
the fields are discussed in Sec. V B, in which the problem
of reconstruction of more intense fields is also addressed.
Comparison of the reconstructed fields obtained by the
maximum-likelihood method and the method of superposition

of signal and noise is provided in Sec. VI. Section VII brings
conclusions. The formula for an effective quantum detection
efficiency is derived in Appendix.

II. PROBABILITIES OF MULTIPHOTON-COINCIDENCE
COUNTS IN AN ARRAY OF SINGLE-PHOTON

DETECTORS

The measurement of joint signal-idler photon-number
distribution can be in general described using the scheme
shown in Fig. 1 [38–40]. Photon pairs occurring in the output
plane of a nonlinear crystal propagate toward photon-number-
resolving detection devices placed in the paths of the signal
and idler fields. One or both photons from a pair may be lost
before they reach their detection devices. Geometric filtering
(one photon from a pair is not steered to the detector area),
reflections on optical elements in the experimental setup, or
absorption of a photon along its path to a detection device
represent possible reasons. We describe this effect by two
beam splitters, BSS and BSI [41], placed in the signal and idler
field paths, respectively. We model a photon-number-resolving
detection device as a multiport 1 × N [42] followed by N

single-photon detectors. This description holds also in the
special case when an intensified CCD camera is used [26]. We
note that detectors able to resolve directly photon numbers to
some extent have been constructed [16,19,43]. From a practical
viewpoint, also detectors using time multiplexing (reached,
e.g., in fiber optics) and one or two single-photon detectors
are promising [21,22,25]. Photon-number-resolving detection
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FIG. 1. Scheme of the considered model. Photon pairs are
generated in a nonlinear crystal. Virtual beam splitters BSS and
BSI describe possible losses of one or both photons from a pair
before they are detected. Signal (idler) photons propagate through
a 1 × NS (1 × NI ) multiport and are detected by single-photon
detectors DS1 ,DS2 , . . . ,DSNS

(DI1 ,DI2 , . . . ,DINI
). Signals from the

detectors are registered in a coincidence-detection device.
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in all these devices can be described in the framework of the
presented general model.

We assume that the signal and idler fields in the output
plane of the nonlinear crystal are described by the following
statistical operator ρ̂SI written in the Fock basis:

ρ̂SI =
∞∑

nS=0

∞∑
nI =0

p(nS,nI )|nS〉SS〈nS | ⊗ |nI 〉I I 〈nI |; (1)

the symbol p(nS,nI ) stands for the joint signal-idler photon-
number distribution.

The statistical operator ρ̂D
SI appropriate for the signal and

idler fields in front of the detection devices can be expressed as:

ρ̂D
SI =

∞∑
nS=0

∞∑
nI =0

p(nS,nI )
nS∑

lS=0

(
nS

lS

)
T

lS
S R

nS−lS
S |lS〉SS〈lS |

×
nI∑

lI =0

(
nI

lI

)
T

lI
I R

nI −lI
I |lI 〉I I 〈lI |. (2)

The symbols RS and RI (TS and TI ) denote intensity
reflectivities (transmissivities) of the beam splitters in the
corresponding path.

We assume a multiport 1 × NS (1 × NI ) followed by NS

(NI ) single-photon detectors with quantum efficiencies ηSj

(ηIj
) and dark-count rates dSj

(dIj
) in the signal (idler) path.

Detection of a photon in the kth detector is described by the
following detection operator D̂ik [38]:

D̂ik =
∞∑

n=0

{[
1 − (

1 − ηik

)n] + dik

(
1 − ηik

)n}|n〉kk〈n|,
(3)

i = S,I.

On the other hand, detection operator D̂no
ik

corresponds to the
case when no detection has occurred:

D̂no
ik

= 1 − D̂ik . (4)

The effect of “splitting” photons in the signal field in a 1 × NS

multiport can be described by the relation âS = ∑NS

j=1 tSj
âSj

,
where âS is the annihilation operator in the signal field entering
the multiport, whereas the annihilation operator âSj

describes
a field at the ith multiport output. The symbol tSj

stands for
an amplitude transmissivity of a photon from the input to
the j th output. The 1 × NI multiport in the idler-field path
is described similarly and the symbol tIj

then refers to an
amplitude transmissivity of a photon from the input to the j th
multiport output.

The probability CSD,ID that given cS detectors in the signal
field and given cI detectors in the idler field detect a photon,
whereas the rest of the detectors do not register a photon, is
determined as the quantum mean value:

CSD,ID = TrSI

⎧⎨
⎩ρ̂D

SI

∏
a∈SD

D̂a

∏
b∈S\SD

D̂no
b

∏
c∈ID

D̂c

∏
d∈I\ID

D̂no
d

⎫⎬
⎭ .

(5)

The symbol S (I ) denotes the set of all signal-field
(idler-field) detectors S = {S1, . . . ,SNS

} (I = {I1, . . . ,INI
}).

The set SD (ID) contains signal-field (idler-field) detectors
that have registered a photon. Tr stands for an operator
trace.

Using the statistical operator ρ̂D
SI given in Eq. (2), the

probability CSD,ID of a multicoincidence count defined in
Eq. (5) is obtained in the form

CSD,ID =
∞∑

nS=0

∞∑
nI =0

p(nS,nI )KS,SD (nS)KI,ID (nI ),

KS,SD (nS) = (−1)cS

[∏
b∈S

(1 − db)

] [
TS

(∑
c∈S

|tc|2(1 − ηc)

)
+ RS

]nS

+ (−1)cS−1

1!

∑
a∈SD

[ ∏
b∈S\{a}

(1 − db)

][
TS

(
|ta|2ηa +

∑
c∈S\{a}

|tc|2(1 − ηc)

)
+RS

]nS

+ · · ·

+
[ ∏

b∈S\SD

(1 − db)

][
TS

( ∑
c∈SD

|tc|2 +
∑

c∈S\SD

|tc|2(1 − ηc)

)
+ RS

]nS

,

(6)

KI,ID (nI ) = (−1)cI

[∏
b∈I

(1 − db)

] [
TI

(∑
c∈I

|tc|2(1 − ηc)

)
+ RI

]nI

+ (−1)cI −1

1!

∑
a∈ID

[ ∏
b∈I\{a}

(1 − db)

][
TI

(
|ta|2ηa+

∑
c∈I\{a}

|tc|2(1 − ηc)

)
+RI

]nI

+ · · ·

+
[ ∏

b∈I\ID

(1 − db)

][
TI

( ∑
c∈ID

|tc|2 +
∑

c∈I\ID

|tc|2(1 − ηc)

)
+ RI

]nI

.
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We now consider two symmetric multiports
(tS1 = tS2 = · · · = tSNS

= tS = 1/
√

NS , tI1 = tI2 = · · · =
tINI

= tI = 1/
√

NI ) and detectors endowed with the
same characteristics in the signal and idler fields
(ηS1 = ηS2 = · · · = ηSNS

= ηS , dS1 = dS2 = · · · = dSNS
= dS ,

ηI1 = ηI2 = · · · = ηINI
= ηI , dI1 = dI2 = · · · = dINI

= dI ).
Then the probability f NS,NI (cS,cI ) of having cS detections
somewhere at NS signal detectors and cI detections
somewhere at NI idler detectors can be expressed as

f NS,NI (cS,cI ) =
(

NS

cS

) (
NI

cI

)
CSD,ID . (7)

Using the expression for CSD,ID provided in Eq. (6) we arrive
at the relation

f NS,NI (cS,cI ) =
∞∑

nS=0

∞∑
nI =0

p(nS,nI )KS,NS (cS,nS)KI,NI (cI ,nI ),

(8)

where

Ki,Ni (ci,ni) =
(

Ni

ci

)
(1 − di)

Ni (1 − τi)
ni (−1)ci

×
ci∑

l=0

(
ci

l

)
(−1)l

(1 − di)l

(
1 + l

Ni

τi

1 − τi

)ni

,

i = S,I, (9)

and where τi (τi = Tiηi) determines the probability that a
photon is registered at some of the detectors.

If the number of photons detected by the camera is much
lower than the number of pixels detecting the overall field with
a non-negligible probability, the limits NS → ∞ and NI → ∞
are appropriate. When determining these limits, the overall
noise levels DS and DI are kept constant (DS = NSdS , DI =
NIdI ). The coefficients K defined in Eq. (9) then considerably
simplify:

Ki,∞(ci,ni) =
min(ci ,ni )∑

l=0

(
ni

l

)
(τi)

l(1 − τi)
ni−l

× D
ci−l
i

(ci − l)!
exp(−Di), i = S,I. (10)

We note that the following relations have been used when
deriving Eq. (10):

N∑
k=0

(
N

k

)
(−1)k(α + k)n−1 = 0,

N � n � 1, 00 ≡ 1, N,n ∈ N+,

N∑
k=0

(
N

k

)
(−1)k(α + k)N = (−1)NN !,

N � 0, 00 ≡ 1,

where N+ denotes positive-integer numbers.

III. PHOTON-NUMBER DETECTION UNDER REAL
EXPERIMENTAL CONDITIONS

In our typical experiment (see Fig. 2) we define three
regions of interest on the iCCD detection photocathode: one for

FIG. 2. Scheme of the setup for detection of photon pairs. Fields
composed of typically tens or hundreds of photon pairs are generated
in a nonlinear crystal. Idler photons are reflected on a mirror. Both
signal and idler photons propagate through a frequency filter and are
detected in an iCCD camera.

collecting signal photons, one for counting idler photons, and
one that serves for monitoring the dark noise in the experiment.
To achieve higher data collection rates we use hardware
binning of several pixels to a single macropixel. The signal and
idler regions typically contain about one thousand macropixels
that give information about photon detection. This means that
a finite number of (macro)pixels may play an important role
depending on the intensity of the impinging field, and the
general form of the transfer matrix Ki,Ni (ci,ni) in Eq. (9)
should be preferably used. However, evaluation of a transfer
matrix K for larger numbers of photons, photoelectrons
(registered photons), and (macro)pixels is difficult because a
high extended precision in the evaluation of the sum occurring
in Eq. (9) is required. For instance, if fields having up to 1000
photons are measured, from 200 to 300 significant decimal
digits are needed in the evaluation of the sums in Eq. (9) under
the conditions considered below. This is time demanding and
that is why we present several alternative ways to handle the
problem under specific conditions.

First, we rewrite the relation between the measured fre-
quencies f NS,NI and the photon-number distribution p in a
general form:

f NS,NI (cS,cI ) =
∞∑

nS=0

∞∑
nI =0

p(nS,nI )

×GS,NS (cS,nS)GI,NI (cI ,nI ), (11)

where the general transformation matrices Gi,Ni (ci,ni) for i =
S,I have been introduced.

In a real experimental setup, there are non-negligible losses
(described by intensity transmissivities TS and TI ) before a
field arrives to the photocathode of the iCCD camera. As
a result the average number of photons in the input to the
camera is lower compared to the average number of photons
in the output plane of the crystal. This may make a numerical
evaluation of the matrix Ki,Ni in Eq. (9) faster due to lower
dimensions of this matrix. In this case the transfer matrix
Gi,Ni (ci,ni) can be rewritten as a product of two matrices:

Gi,Ni (ci,ni) =
ni∑

m=0

Ki,Ni (ci,m)K0(m,ni). (12)
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The matrix K0 introduced in Eq. (12) describes the Bernoulli
distribution with transmissivity Ti :

K0(m,ni) =
(

ni

m

)
T m

i (1 − Ti)
ni−m. (13)

Evaluation of the matrix Ki,Ni using Eq. (9) is then done
assuming τi = ηi .

If numbers of photons in a detected field are too high,
preventing the application of Eq. (9) (technical reasons in the
evaluation), we can proceed as follows. The measured field
first undergoes losses described by the intensity transmissivity
Ti before impinging on the camera. In the next step each photon
present in the region of interest of the camera “registers” itself
in one (macro)pixel. The probability γ i,Ni (m2,m1) that m1

photons register in m2 (macro)pixels, assuming the overall
number of (macro)pixels to be Ni , is given by permutations
with repetition:

γ i,Ni (m2,m1) =
( Ni

m2

)( m1 − 1
m2 − 1

)
( Ni + m1 − 1

Ni − 1

) , m2 � Ni. (14)

In this case, m2 (macro)pixels are exposed by the field and the
probability of ci detections (ci � m2) is given by the matrix

Ki,∞(ci,m2) written in Eq. (10), i.e., as if there is an infinite
number of (macro)pixels in the camera. The matrix Gi,Ni (ci,ni)
then takes its final approximative form:

Gi,Ni (ci,ni) =
min(m1,Ni )∑

m2=0

ni∑
m1=0

Ki,∞(ci,m2)

× γ i,Ni (m2,m1)K0(m1,ni), (15)

where the matrix K0 is defined in Eq. (13).
It has been assumed in the derivation of Eq. (15) that each

of the exposed m2 (macro)pixels contains only one photon
(see the limit N → ∞). This approximation can be improved.
If m1 photons are registered at m2 (macro)pixels, an average
photon number occurring in one (macro)pixel is m1/m2. The
average photon number m1/m2 greater than 1 leads to a higher
probability of detection. This increase of detection probability
can be modeled by an effective increase of detection quantum
efficiency (see Appendix). The improved matrix Gi,Ni (ci,ni)
can then be determined along the relation

Gi,Ni (ci,ni) =
ni∑

m=0

�i,Ni (ci,m)K0(m,ni) (16)

and

�i,Ni (ci,m) =
min(m,Ni )∑

m2=1

min(ci ,m2)∑
l=0

(
m2

l

) [
1 − exp

(
−ηi

m

m2

)]l [
exp

(
−ηi

m

m2

)]m2−l
D

ci−l
i

(ci − l)!
exp(−Di)

(
Ni

m2

)( m − 1
m2 − 1

)
(

Ni + m − 1
Ni − 1

) . (17)

On the other hand, weak detected fields allow the following
simplification. If the maximum number ci of counts is much
less than the number Ni of (macro)pixels the expression for
matrix Ki,Ni in Eq. (9) can be successfully approximated using
the relation (1 + x)ni ≈ exp(xni) for |x| � 1. We then arrive
at the matrix Gi,Ni (ci,ni) in the form

Gi,Ni (ci,ni) =
ni∑

m=0

Ki,Ni

exp (ci,m)K0(m,ni) (18)

and

Ki,Ni

exp (ci,m) =
(

Ni

ci

)
(1 − di)

Ni−ci (1 − ηi)
m−ci

×
[
di(1 − ηi) + ηi

m

Ni

]ci

. (19)

The expression in Eq. (19) has a simple interpretation: m − ci

impinging photons are not registered with probability 1 − ηi

per photon. There occur ci counts given either by impinging
photons with probability mηi/Ni per photon or by dark counts
with probability di(1 − ηi). Ni − ci (macro)pixels cannot feel
dark counts with probability 1 − di per (macro)pixel.

IV. INHOMOGENEOUS TRANSVERSE INTENSITY
PROFILE OF A DETECTED BEAM

If the intensity transverse profile of a beam impinging on an
iCCD camera is inhomogeneous, we can divide (macro)pixels
of the camera into Mi groups assuming the same level of
illumination of (macro)pixels belonging to one group. A
j th group of (macro)pixels is characterized by probability
τij that a photon present in beam i (i = S,I ) impinges on
one (macro)pixel from this group, by the number νij of
(macro)pixels, by the quantum detection efficiency ηij , by the
dark-count rate dij , and by the mean number μij of photons

impinging on one (macro)pixel. It holds that
∑Mi

j=1 τij νij = ηi

and
∑Mi

j=1 νij = Ni . The probability τij that a photon reaches
one (macro)pixel of the j th group is linearly proportional to
the mean number μij of photons coming to this (macro)pixel
and can be expressed as

τij = μij

μav
i Ni

, i = S,I. (20)

The average mean photon number μav
i is given as μav

i =∑Mi

j=1 μij νij /Ni .
A transformation matrix K̃i,Ni (ci,ni) that generalizes

the matrix Ki,Ni occurring in Eq. (9) and determines the
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probability of ci counts caused by ni photons coming to the camera is given by the following Mi-dimensional convolution of
matrices Ki,νij written in Eq. (9) and characterizing the detection in the j th group of (macro)pixels:

K̃i,Ni (ci,ni) =
{[

Mi∏
j=1

ni∑
nj =0

]∣∣∣∣∣∑Mi
j=1 nj =ni

}{[
Mi∏
j=1

ci∑
cj =0

]∣∣∣∣∣∑Mi
j=1 cj =ci

}
ni!

Mi∏
j=1

(
τij νij

)nj

nj !
K

i,νij (cj ,nj ), i = S,I. (21)

The matrix K̃i,Ni occurring in Eq. (21) can be rewritten into the following form if the matrices K
i,νij are expressed using the

relation in Eq. (9):

K̃i,Ni (ci,ni) =
{[

Mi∏
j=1

ci∑
cj =0

]∣∣∣∣∣∑Mi
j=1 cj =ci

}[
Mi∏
k=1

(
νik

ck

) (
1 − dik

)νik

]{
Mi∏
j=1

cj∑
lj =0

}[
Mi∏
k=1

(
ck

lk

)
(−1)lk(

1 − dik

)lk

]

× (−1)ci

[
1 −

Mi∑
k=1

(
τik νik ηik

) +
Mi∑
k=1

(
lkτik ηik

)]ni

. (22)

If the number of (macro)pixels is sufficiently large compared to the number of impinging photons, consideration of the
following limit is useful. In this limit, νij → ∞ for j = 1, . . . ,Mi , assuming νij τij [probability that a photon is detected in the
j th group of (macro)pixels] to be constant. Also dij νij = Dij [overall dark-count rate of all (macro)pixels in the j th group] is
assumed to be constant. Then the expression in Eq. (22) simplifies and leaves the matrix K̃i,Ni in the form

K̃i,∞(ci,ni) =
{[

Mi∏
j=1

ci∑
cj =0

]∣∣∣∣∣∑Mi
j=1 cj =ci

}{
Mi∏
j=1

min(cj ,ni )∑
lj =0

}
ni![ ∏Mi

k=1 lk!
](

ni − ∑Mi

k=1 lk
)
!

[
Mi∏
k=1

(
τik νik ηik

)lk

]

×
[

Mi∏
k=1

D
ck−lk
ik

(ck − lk)!
exp(−Dik )

] [
1 −

Mi∑
k=1

(
τik νik ηik

)]ni−
∑Mi

k=1 lk

, i = S,I. (23)

The expression in Eq. (23) has a simple interpretation: ni photons impinging on the camera generate lj counts in a j th group
of (macro)pixels with probability τij νij ηij per photon and (cj − lj ) counts come from dark counts occurring in the j th group of

(macro)pixels. The remaining ni − ∑Mi

k=1 lk photons are not registered with probability 1 − ∑Mi

j=1(τij νij ηij ) per photon.
Provided that the maximum number of counts cj in a j th group of (macro)pixels is much less than the number of (macro)pixels

νij in this group the approximate relation (1 + x)ni ≈ exp(nix) for |x| � 1 enables to rearrange the formula in Eq. (22)
as follows:

K̃i,Ni

exp (ci,ni)

=
{[

Mi∏
j=1

ci∑
cj =0

]∣∣∣∣∣∑Mi
j=1 cj =ci

} (
1 −

Mi∑
k=1

(
τik νik ηik

))ni−ci {
Mi∏
j=1

(
νij

cj

) (
1 − dij

)νij
−cj

(
dij

[
1 −

Mi∑
k=1

(
τik νik ηik

)]
+ niτij ηij

)cj }
.

(24)

The expression in Eq. (24) can be interpreted similarly as the formula in Eq. (19). If ci counts occur after ni photons enter
the camera, ni − ci photons are not registered with probability 1 − ∑Mi

k=1 τik νik ηik per photon. In a j th group of (macro)pixels,
νij − cj (macro)pixels do not count a photon with probability 1 − dij per (macro)pixel (dark counts have to be “eliminated”).
Finally cj (macro)pixels detect a photon either due to a successful registration of a photon taken from ni incident photons with
probability τij ηij per photon or owing to a dark count with probability dij (1 − ∑Mi

k=1 τik νik ηik ) (a dark count occurs if there is no
detection caused by an impinging photon).

If the number ci of counts registered by an iCCD camera is low and the number of groups of (macro)pixels is greater, a useful
alternative expression for the transfer matrix K̃i,Ni (ci,ni) given in Eq. (21) can be derived directly from Eq. (6) (Ti = 1 and
Ri = 0 are assumed, i = S,I ):

K̃i,Ni (ci,ni) =
{[

Mi∏
j=1

ci∑
cj =0

]∣∣∣∣∣∑Mi
j=1 cj =ci

}
K̃i,{c1,...,cMi

}(ci,ni), i = S,I, (25)
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where the coefficient K̃i,{c1,...,cMi
}(ci,ni) gives the probability that cj counts have occurred in the j th group of (macro)pixels;∑Mi

j=1 cj = ci . It can be expressed as follows:

K̃i,{c1,...,cMi
}(ci,ni) =

[
Mi∏
j=1

(
νij

cj

) (
1 − dij

)νij

]{
(−1)ci 


ni

i + (−1)ci−1
ci∑

k1=1

[

i + τiσi (k1)ηiσi (k1)

]ni

1 − diσi (k1)

+ (−1)ci−2
ci−1∑
k1=1

ci∑
k2=k1+1

[

i + τiσi (k1)ηiσi (k1) + τiσi (k2)ηiσi (k2)

]ni(
1 − diσi (k1)

)(
1 − diσi (k2)

)

+ (−1)ci−3
ci−2∑
k1=1

ci−1∑
k2=k1+1

ci∑
k3=k2+1

[

i + ∑3

m=1

(
τiσi (km)ηiσi (km)

)]ni∏3
m=1

(
1 − diσi (km)

) + · · · +
[

i + ∑ci

m=1

(
τiσi (km)ηiσi (km)

)]ni∏ci

m=1

(
1 − diσi (km)

)
}

.

(26)

The symbol 
i introduced in Eq. (26) denotes the probability
that a photon is not registered by the camera; i.e.,


i = 1 −
Mi∑
j=1

(
τij νij ηij

)
, i = S,I. (27)

The vector σi in Eq. (26) is composed of ci elements (i = S,I );
its j th element gives the number of group of (macro)pixels
that registered the j th click (j = 1, . . . ,ci). Thus, the first c1

elements equal 1, the next c2 elements equal 2, and so on.

V. RECONSTRUCTION OF THE JOINT SIGNAL-IDLER
PHOTON-NUMBER DISTRIBUTION

The probabilities (frequencies) f (cS,cI ) are measured in
the experiment and the relation in Eq. (11) has to be inverted
in order to obtain the joint signal-idler photon-number distri-
bution p(nS,nI ) beyond the nonlinear crystal. The relation in
Eq. (11) together with the coefficients Gi,Ni (ci,ni) defined in

Eq. (12) can be inverted under special conditions analytically.
For instance, if DS = DI = 0 the inversion relation is found
using the “convolution” of function f with the Bernoulli distri-
butions with efficiencies 1/(TSηS) and 1/(TIηI ) that are greater
than 1. For more general cases, a method of direct matrix
inversion has been elaborated [44,45]. However, analytical
approaches are not suitable for processing real experimental
data [46] because of numerical instabilities and the occurrence
of artifacts. On the other hand, reconstruction algorithms have
been found to be suitable for this task [21]. Such algorithms are
able to find a reconstructed joint signal-idler photon-number
distribution ρrec(nS,nI ) that matches the measured frequencies
f (cS,cI ) in the best way with respect to a given criterion. Here,
we consider the Kullback-Leibler divergence as a measure of
the distance between the experimental data and data provided
by the developed theory. The reconstructed joint signal-
idler photon-number distribution ρrec(nS,nI ) minimizing the
Kullback-Leibler divergence can then be found as a steady
point of an iteration algorithm [47,48]:

ρ(n+1)(nS,nI ) = ρ(n)(nS,nI )
∞∑

iS ,iI =0

f (iS,iI )GS,NS (iS,nS)GI,NI (iI ,nI )∑∞
jS ,jI =0 GS,NS (iS,jS)GI,NI (iI ,jI )ρ(n)(jS,jI )

. (28)

The symbol ρ(n)(nS,nI ) denotes a joint signal-idler photon-number distribution after an nth step of the iteration, and ρ(0)(nS,nI )
is an arbitrary initial photon-number distribution. We note that each element of the initial photon-number distribution has to be
nonzero in order to be considered in the iteration process.

Convergence of the iteration process can be monitored using parameter S that gives the declination of the reconstructed
photon-number distribution from the measured frequencies f (cS,cI ) and is determined along the formula

S(n) =
[ ∞∑

cS ,cI =0

∣∣∣∣∣f (cS,cI ) −
∞∑

jS ,jI =0

GS,NS (cS,jS)GI,NI (cI ,jI )ρ(n)(jS,jI )

∣∣∣∣∣
2]1/2

. (29)

Alternatively, also covariance C of the signal and idler photon numbers, nS and nI , derived for the joint photon-number
distribution ρ,

C(n) = 〈�nS�nI 〉√
〈(�nS)2〉〈(�nI )2〉

, �ni = ni − 〈ni〉, i = S,I,

(30)〈
nk

Sn
l
I

〉 =
∞∑

nS=0

∞∑
nI =0

nk
Sn

l
I ρ

(n)(nS,nI ), k,l = 0,1, . . . ,
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can be used as a useful indicator. The reason is that the initial
photon-number distribution ρ(0) is usually considered without
any correlation and the iteration process gradually reveals
photon-number correlations present in the joint signal-idler
field. We note that we have checked by numerical simulations
that the reconstruction algorithm cannot reveal correlations
provided that the measured frequencies f (cS,cI ) describe two
independent fields.

Here, we analyze three photon-number distributions ob-
tained under different conditions using the experimental setup
shown in Fig. 2. Photon pairs are generated in a 5-mm-long
beta barium borate (BBO) crystal cut for a type I process
(θ = 50◦, φ = 90◦) pumped by ultrashort pulses delivered by a
cavity-dumped titanium-sapphire femtosecond laser at a wave-
length of 840 nm followed by a third-harmonic generator. The
pulses at the fundamental wavelength are about 150 fs long.
The laser system runs at a repetition rate of 50 kHz and, after
converting the 840-nm beam to its third harmonic, it typically
delivers pulses with energy up to 45 nJ. Degenerate signal
and idler photons occur at the cone layer behind the crystal
and leave the crystal at the outer output half-angle of 13◦.
Photons in the idler field are reflected from a high-reflectivity
mirror (>99% at 560 nm) and impinge on an intensified
CCD camera (Andor iStar 734). The camera has 1 megapixel
resolution with 13 × 13 μm2 pixels but we use 8 × 8 hardware
binning to increase the readout rate. The detection events are
processed using our own software employing thresholding,
event centroid finding, and photon counting. The software is
optimized to achieve maximum detection efficiency, which
we evaluate to 23% near the degenerate wavelength of 560
nm. Three regions of interest are defined in the field of
view of the camera: the first one is for the signal field, the
second one is for the idler field, and the last region serves for
reference measurements of the noise level. The whole field of
the camera is filtered by a high-transmittance high-pass filter
blocking light below 490 nm and an interference filter of 14
nm FWHM centered at 560 nm. The interference filter selects
nearly frequency degenerate photon pairs. Since a single run of
data acquisition usually takes several hours, the laser intensity
is actively stabilized (the intensity noise lays below 0.3%
rms) using a feedback loop and polarization attenuator. The
intensifier of the camera is synchronously gated (gate duration
equals 5 ns) by cavity-dumper trigger pulses to minimize the
noise from the laboratory.

In the experimental setup, histograms f (cS,cI ) of photo-
electron numbers have been taken under two different intensity
conditions. In the first case (a), the measurement has been
performed for the lowest signal and idler intensities allowed
by the setup. The limiting intensities are given by the noise
of the camera and stray light from the laboratory. The second
case (b) represents a typical result obtained under most suitable
conditions. The third case (c) corresponds to the measurement
done with greater signal and idler intensities and the histogram
f (cS,cI ) has been obtained by summing up five neighbor
frames together. We thus have three representative data sets
with mean photoelectron numbers equal to 1.2, 8.6, and 43.
The corresponding histograms f (cS,cI ) are shown in Fig. 3.
Covariances of the photoelectron numbers cS and cI described
by the histograms f (cS,cI ) plotted in Fig. 3 are in turn 23.8%,
21.4%, and 21.1%. This corresponds to the expected overall

(a)

(b)

(c)

FIG. 3. Topological graphs of the measured histograms f of
signal (cS) and idler (cI ) photoelectron numbers for three data sets
denoted as (a), (b), and (c). A black curve encircles the area in which
the classical inequality (31) is violated.

detection efficiencies TSηS and TIηI around 20% and the low
level of single-photon noise.

In order to apply the iteration reconstruction algorithm
described in Eq. (28) we need to know the overall de-
tection efficiencies TSηS and TIηI . In principle, they can
be determined by knowing parameters of the experimental
setup. However, the fragility of the experimental alignment
enforces the determination from the obtained experimental
data. The values of detection efficiencies can be derived either
from the measured covariance between the signal and idler
photoelectron numbers cS and cI or alternatively by applying
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a method described in Sec. VI below that relies on finding
the best fit to the experimental data. This method applied to
data set (b) has provided TSηS = 0.207 and TIηI = 0.205,
which have been used in the reconstruction. These values take
into account the quantum detection efficiency of the iCCD
camera as well as losses occurring in the setup (frequency
filters, reflection on the output plane of the crystal and mirror).
The reconstruction algorithm also needs the level of dark
noise that has been monitored in the third region of interest
of the photocathode; (a) DS = DI = 0.03, (b) 0.09, and
(c) 0.46. The application of the formula in Eq. (28) has then
resulted in the joint signal-idler photon-number distributions
prec(nS,nI ) ≡ ρ(∞)(nS,nI ) appropriate for the output plane of
the crystal and shown in Fig. 4. The initial joint signal-idler

(a)

(b)

(c)

FIG. 4. Topological graphs of the reconstructed joint signal-idler
photon-number distributions prec(nS,nI ) for data sets (a), (b), and (c).
A black curve encircles the area in which the classical inequality (31)
is violated.

FIG. 5. Covariance C of the signal and idler photon numbers nS

and nI as it depends on the number nit of the iteration step for data
set (b).

photon-number distribution ρ(0) has been taken as uniform
in all three cases. Covariances of the reconstructed joint
signal-idler photon-number distributions prec equal (a) 90.0%,
(b) 90.1%, and (c) 89.7%. These numbers show the ability
of the reconstruction algorithm to recover paired correlations
that have been weakened during the propagation and detection
process. The fact that the obtained covariances do not approach
100% has two reasons: (1) there is an imperfect description
of all noises occurring in the experiment, and (2) numerical
implementation of the iteration reconstruction algorithm loses
its precision with the increasing number of steps [29]. Both
values of the parameter S given in Eq. (29) and covariance C

defined in Eq. (30) can be used for monitoring convergence
of the iteration process. Covariance C has been found to be
more sensitive. Typically several hundreds of iteration steps are
needed to arrive at solid (asymptotic) results as documented in
Fig. 5 valid for data set (b). In all three cases, 10 000 iteration
steps have been applied.

The reconstructed joint signal-idler photon-number distri-
butions prec show that the emitted fields are mainly composed
of photon pairs that are responsible for nonzero covariances
of the signal and idler photon numbers. Such fields are
nonclassical in the sense that they cannot be described by
non-negative Glauber-Sudarshan quasidistributions [37]. As
a consequence, there even exist elements prec(nS,nI ) of the
joint photon-number distribution prec that violate the classical
inequality [49]

prec(nS,nI ) � 〈nS〉nS 〈nI 〉nI

nS! nI !
exp[−〈nS〉 − 〈nI 〉]. (31)

However, nonclassical properties manifest also in quantities
which determination is based on all elements of the joint
photon-number distribution prec.

A. Important nonclassical characteristics of paired fields

Correlations in the signal and idler photon numbers nS

and nI lead to narrowing of the distribution p− of the
photon-number difference nS − nI together with broadening
of the distribution p+ of the photon-number sum nS + nI . The
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(a)

(b)

FIG. 6. (a) Distributions p− of the photon-number difference
nS − nI and (b) distributions p+ of the photon-number sum nS + nI

for data set (b) (solid curves). Dashed curves give the distributions
derived from the joint signal-idler photon-number distribution given
as a direct product of the marginal signal and idler distributions; they
are plotted for comparison.

distributions p+ and p− are defined as

p±(n) =
∞∑

nS=0

∞∑
nI =0

δn,nS±nI
prec(nS,nI ). (32)

The symbol δ is Kronecker’s delta.
Fluctuations described by the distribution p− of the photon-

number difference can even be lower than those corresponding
to any classical field with no correlations [see Fig. 6(a)].
We then speak about sub-shot-noise correlations that can be
quantified by parameter R (R < 1 for nonclassical states):

R = 〈[�(nS − nI )]2〉
〈nS〉 + 〈nI 〉 . (33)

Considering the experimental data, we obtain (a) R = 0.133
(8.7 dB), (b) R = 0.111 (9.5 dB), and (c) R = 0.117 (9.3 dB).
This means that all three detected fields are strongly nonclassi-
cal. We note that the discussed narrowing can also be observed
for stronger fields utilizing correlations of photocurrents from
two detectors [31].

On the other hand, the distribution p+ of the photon-number
sum is super-Poissonian; i.e., its Fano factor F is greater than
1 [F = 〈(�n)2〉/〈n〉]. The suppression of its elements giving

the probabilities of odd photon numbers represents its most
striking feature [44]. If the field were composed only of photon
pairs, these elements would have been zero. However, the
presence of noise photons conceals this feature and so we
can observe it only for the data set (a) obtained under low
illumination [see Fig. 6(b)].

B. Determination of photon-number statistics, measurement
of intense fields, and role of the intensity profile

The type of statistics of the emitted photon pairs is an
important characteristic [1,37]. According to the theory,
if the emission occurs in one spatiotemporal mode, the
photon-number statistics is Gaussian (thermal). However, the
emission is usually observed in more than one independent
spatiotemporal mode [45] and, as a consequence, the statistics
of photon pairs declines toward a Poissonian distribution. The
greater the number of modes, the closer the actual statistics to
the Poissonian distribution. In the experiment the situation is
more complex because of noises superimposed on the emitted
paired field. The theory presented in Sec. VI below allows
in principle to determine the number of paired modes and to
extract the statistics of photon pairs. When the reconstruction
algorithm is applied, we can only determine the statistics
of marginal signal and idler fields and deduce the type of
statistics of photon pairs from them. We note that a Fano factor
F is commonly used to judge the type of statistics or, more
precisely, the declination of statistics from the Poissonian one.

The Fano factor is also extraordinarily important for the
quantification of the effect of the presence of more than one
photon in the area of one macropixel at the photocathode.
If the probability of having more than one photon at one
macropixel is non-negligible, the statistics of photoelectron
numbers [f (cS,cI )] decline from photon-number statistics
[prec(nS,nI )]. The fact that one macropixel cannot resolve
photon numbers leads to a systematic decrease of the Fano
factor of a detected field. The stronger the field the smaller the
value of the Fano factor. This effect is in its nature the same
as a dead-time effect in time-resolved detection. However, this
effect can be corrected using appropriate transfer matrices.
When stronger fields are measured, the transfer matrices KS

and KI should even be corrected with respect to the field
intensity profile as suggested in Sec. IV.

Data set (c) has been obtained in the discussed regime
and the regions of interest were composed of NS = NI =
6528 macropixels. Here, the Fano factors of the marginal
distributions of detected photoelectrons are FS = 0.996 and
FI = 1.008. We can see in Fig. 7 how the Fano factors FS and
FI of the marginal distributions derived from the reconstructed
joint signal-idler photon-number distribution prec depend on
the form of transformation matrices KS,NS and KI,NI , in more
detail on parameter M (M = MS = MI ) giving the number
of areas inside the detection region. In the kth area there are
pixels illuminated by intensities greater than (k − 1)�I and
lower than k�I , k = 1, . . . ,M [�I = Imax/M , Imax being the
maximum intensity found in the profile]. The Fano factors FS

and FI plotted for M = 0 in Fig. 7 are obtained assuming the
transfer matrices given in Eq. (10) [NS,NI → ∞]. We can see
from the curves in Fig. 7 that the more precise the form of
transfer matrices the better the elimination of the effect and
so the greater the values of Fano factors FS and FI . We can
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FIG. 7. Fano factors FS (solid curve) and FI (solid curve with ∗)
of the marginal signal and idler photon-number distributions obtained
from the reconstructed joint signal-idler photon-number distribution
prec as they depend on the number M of areas defined inside the
detection region of interest.

also deduce that it is sufficient to divide the detection region
of interest into several areas to arrive at reliable results. The
reconstruction of fields described by data set (c) clearly demon-
strates the ability of the method to cope with this problem.

The Fano factors of marginal distributions have been
determined as (a) FS = 1.32, (b) 1.126, and (c) 1.106 and (a)
FI = 1.33, (b) 1.126, and (c) 1.165. These values show that
the observed down-conversion has been emitted into several
tens or even hundreds of independent spatiotemporal modes.

Provided that the generated joint signal-idler field is
multimode and the photons are preferably generated in the
spontaneous process, we can assume that relative phases
of different modes have random values. In this case, the
joint signal-idler field can fully be characterized by a joint
signal-idler quasi-distribution PW of signal and idler integrated
intensities. The quasi-distribution PW can be uniquely derived
from the joint signal-idler photon-number distribution prec

using the decomposition into Laguerre polynomials [12,37].
Due to the pairwise character of the emitted fields, the joint
signal-idler quasi-distributions PW of integrated intensities
attain negative values in certain regions [50,51].

VI. FIT OF THE EXPERIMENTAL DATA USING THE
MODEL OF SIGNAL AND NOISE

An alternative approach for obtaining a joint signal-idler
photon-number distribution in the output plane of the crystal
can be developed assuming a certain form of this distribution.
We can assume for physical reasons that the overall field can
be described by a certain form of superposition of signal and
noise and can also be decomposed into three independent con-
tributions. The first contribution describes photon pairs that are
inside mp independent modes with mean photon-pair numbers
bp. The second (third) contribution takes into account the pres-
ence of noise in the signal (idler) field and is composed of mS

(mI ) independent modes with mean photon numbers bS (bI ).
On the experimental side of the problem there are five first-

and second-order moments of the measured photoelectron
numbers: 〈cS〉, 〈cI 〉, 〈c2

S〉, 〈c2
I 〉, and 〈cScI 〉. Moreover, a

reliable determination of overall detection efficiencies TSηS

and TIηI in the experimental setup is difficult. That is why
we can consider the efficiencies TSηS and TIηI as parameters
that should be determined from the experimental data. We
thus have eight independent parameters and five measured
quantities. The requirement of minimum entropy of the joint
photoelectron distribution used for fitting the experimental
data can be applied to find the most appropriate form of the
joint signal-idler photon-number distribution p (details can be
found in a forthcoming publication).

The application of the method to data set (b) has provided
the values TSηS = 0.207 and TIηI = 0.205 that were used
in the reconstruction in Sec. V. Values of the remaining
parameters have been found as mp = 628, bp = 0.066, mS =
0.46, bS = 0.173, mI = 0.018, and bI = 2.32. Comparison
of the obtained joint signal-idler photon-number distribution
pfit with the distribution prec revealed by the reconstruction
is given in Fig. 8. We can see that the distribution pfit is

(a)

(b)

FIG. 8. Topological graphs of (a) joint signal-idler photon-
number distribution pfit(nS,nI ) obtained by the fitting method and
(b) difference �p(nS,nI ) of photon-number distributions pfit and
prec obtained by the fitting and reconstruction methods, respec-
tively [�p(nS,nI ) = pfit(nS,nI ) − prec(nS,nI )] for data set (b). The
black line identifies the elements pfit(nS,nI ) violating the classical
inequality (31).
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“narrower”; i.e., it contains less noise (FS = 1.066, FI =
1.068). This is in agreement with the expectation that the
fitting method is by its nature more efficient in eliminating the
noise. We note for comparison that using the fitting method
covariance C of the signal and idler photon numbers nS and
nI equals 99.7% and R = 0.028. However, compared to the
reconstruction method, the fitting method does not take into
account the number of macropixels and also cannot be applied
to more intense fields.

VII. CONCLUSIONS

We have developed a method for the reconstruction of a joint
signal-idler photon-number distribution using the measured
histograms of photoelectron numbers and an iteration expecta-
tion maximization algorithm. In the framework of a general de-
tection theory we have found formulas for the transfer matrices
that give linear relations between elements of a photon-number
distribution and the corresponding photoelectron distribution.
These formulas take into account finite quantum detection
efficiencies, the level of dark counts, as well as finite numbers
of detection macropixels. Special formulas appropriate for
very weak as well as high illumination intensities have been
found. A method for the inclusion of a transverse intensity
profile into the form of transfer matrices has been suggested.
Three joint signal-idler photon-number distributions differing
in mean photon numbers have been reconstructed using the
developed method. Some of their elements violate a classical
inequality. Fluctuations of the difference of signal and idler
photon numbers are highly suppressed due to pairing of pho-
tons in all three cases (sub-shot-noise correlations). Moreover,
there occurs a partial suppression of elements corresponding
to odd photon numbers in the distribution of the sum of signal
and idler photon numbers for the weakest measured field.
The developed reconstruction method has been compared to
a method that provides the best fit of the experimental data
assuming a joint signal-idler photon-number distribution in
the form of superposition of signal and noise. The power of
the reconstruction method to eliminate noise has been found
weaker on one side. On the other side, it allows a more realistic

description of the detection process. This is invaluable for
higher detector illumination intensities. We believe that the
developed reconstruction method will stimulate a broader use
of iCCD cameras as photon-number-resolving detectors.
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APPENDIX: DETERMINATION OF AN EFFECTIVE
DETECTION QUANTUM EFFICIENCY

We assume that a Poissonian field with mean photon
number μ and statistical operator �̂,

�̂ =
∞∑

n=0

μn

n!
exp(−μ)|n〉〈n|, (A1)

impinges on a detector with quantum efficiency η and dark-
count rate d. The probability pPois of registering a photon is
given as

pPois = Tr(D̂�̂)

= 1 − (1 − d) exp(−ημ); (A2)

the detection operator D̂ has been introduced in Eq. (3).
If there is just one photon in the Fock state (�̂ = |1〉〈1|) in

a detected field, the probability pFock of its counting is

pFock = 1 − (1 − d)(1 − η). (A3)

The requirement of equal detection probabilities pFock and
pPois results in an effective quantum efficiency ηeff depending
on μ:

ηeff(μ) = 1 − exp(−ημ). (A4)
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[42] P. Törmä, T. Kiss, I. Jex, and H. Paul, Jemna Mech. Opt. 11-12,
338 (1996).

[43] S. Brattke, B. T. H. Varcoe, and H. Walther, Phys. Rev. Lett. 86,
3534 (2001).

[44] E. Waks, E. Diamanti, B. C. Sanders, S. D. Bartlett, and Y.
Yamamoto, Phys. Rev. Lett. 92, 113602 (2004).

[45] M. Avenhaus, H. B. Coldenstrodt-Ronge, K. Laiho, W. Mauerer,
I. A. Walmsley, and C. Silberhorn, Phys. Rev. Lett. 101, 053601
(2008).

[46] D. Mogilevtsev, Z. Hradil, and J. Peřina, J. Mod. Opt. 44, 2261
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