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A nonlinear interferometer uses nonlinear elements as beam splitters to split and to recombine optical waves
for interference. As a result, the interference fringe size has a nonlinear dependence on the intensity of the field for
phase sensing and leads to an enhanced phase signal. In this paper, a practical scheme of nonlinear interferometry
for precision phase measurement is analyzed with parametric amplifiers as the nonlinear beam splitters. It is
found that the signal due to phase shift is enhanced by a factor of the amplification gain as compared to a linear
interferometer with the same phase-sensing light intensity while the quantum noise is kept at the vacuum level,
thus, effectively increasing the signal-to-noise ratio (SNR) beyond the standard quantum limit. Furthermore, the
scheme is not as sensitive to the detection loss as the linear scheme with a squeezed state for noise reduction.
However, losses inside the interferometer limit the enhancement factor in SNR. We apply the concept to a
Michelson interferometer but with parametric amplifiers involved for gravitational-wave detection. We find that
effective power is increased by the gain of the amplifiers without actually increasing the cycling power inside the
interferometer. Furthermore, the full benefits with squeezed input and variational output or the combination of a
quantum nondemolition interferometer for sensitivity beyond the standard quantum limit apply here with even
better results. Such a nonlinear interferometer will find wide applications in precision measurements.
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I. INTRODUCTION

More than a century ago, Michelson and Morley [1]
performed a precision phase measurement with the invention
of their interferometer. The result played a critical role in
the development of Einstein’s special relativity. Since then,
optical interferometry has been refined with its sensitivity
ever increasing and now reaching the quantum limit. But the
fundamental design of an optical interferometer never has been
changed. Even with the advent of quantum sources, such as
squeezed states [2], the basic elements are still beam splitters
for splitting and recombining waves. The only difference is
the reduction in quantum noise via squeezed states [3–7]. The
state of the art is the Laser Interferometer Gravitational-Wave
Observatory (LIGO) project [8,9] whose application is to test
yet another theory of Einstein, i.e., the general relativity.

Another line of research follows the trail of a special kind
of state called the NOON state, which is a maximally entan-
gled state of photon numbers [10]. The phase-measurement
sensitivity is increased because the phase signal is enhanced
by N times with N as the photon number. However, practical
implementation is limited to a low number of photons because
of the difficulty in generating the NOON state with a large
photon number.

In the squeezed state approach mentioned above, at-
tention is payed to the quantum states that are used in
the interferometer but with the hardware structure of the
interferometer unchanged. This is straightforward thinking
after Caves pointed out, in a seminal paper [2], that quantum
noise is the limiting factor in a traditional interferometer.
So, most research effort is on finding the correct quantum
states with various quantum correlations in order to increase
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the phase-measurement sensitivity or the signal-to-noise ratio
(SNR) by reducing the noise.

On the other hand, there is another side to the story
concerning sensitivity, that is, the signal side. The increase
in the signal relies on the hardware or structure change
in an interferometer. As a matter of fact, precision phase
measurement is not confined to a traditional interferometer
composed of beam splitters. A proposal by Yurke et al. [11]
uses an SU(1,1) transformation (realized in parametric down-
conversion processes) to split and to recombine the fields that
carry phase information. Jacobson et al. [12] suggested using a
cavity QED device to split a coherent state into a Schrödinger
cat state and to form a nontraditional interferometer. Following
these, a general protocol [13] was suggested using an arbitrary
unitary transformation for phase measurement, that is, as
shown in Fig. 1,

|�〉out(ϕ) = Û †eiϕâ†âÛ |�〉in. (1)

Here, Û can be any unitary operator that involves the phase-
sensing mode â, and |�〉in is the initial input state. Thus,
precision measurement of phase shift ϕ relies on differentiating
states |�〉in and |�〉out(ϕ).

So, following our previous discussion on the SNR, input
state |�〉in is mostly responsible for quantum-noise reduction,
whereas, the unitary operator, as we see later in the paper,
is designed to increase the phase signal so as to enhance the
SNR. Although there is a vast amount of research on input
state |�〉in for noise reduction, there are only a few on the
unitary operator. As we see later, an appropriate unitary usually
gives rise to a nonlinear dependence of interference fringe
size on the phase-sensing field. It is the property that leads
to the enhancement in the phase signal. So, we assign the
name “nonlinear” to this type of interferometer. Note that it
should not be confused with the name “nonlinear phase shift,”
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FIG. 1. General phase-measuring scheme with an arbitrary uni-
tary operation as the generalized beam splitter.

which is introduced by a nonlinear interaction, such as the Kerr
effect [14–16].

For a traditional interferometer, which is the benchmark
to be compared to, beam splitters are used with Û being an
SU(2) transformation [17]. Besides the SU(1,1) and SU(2)
transformations, other unitary operators were proposed [12,13]
and even were realized experimentally [18]. Some of the
schemes can reach the ultimate quantum limit for phase
measurement, i.e., the Heisenberg limit [19]. But most studies
were at the theoretical level, and the sole experimental
investigation [18] was at the low-photon level. Recently, a
variation in the SU(1,1) interferometer with a coherent-state
input was studied [20], and the nonlinear property of such an
interferometer was demonstrated experimentally with signal-
enhancement ability [21]. Thus, it holds great promise for an
experimental implementation of the idea of using nonlinear
processes for interferometry with greater sensitivity.

In this paper, we consider an experimentally implementable
nonlinear interferometer studied in Refs. [20,21] that employs
two parametric amplifiers to split and to recombine a strong
coherent field. However, different from the analysis in Ref.
[20], which uses photon-number detection, our detection
scheme is the homodyne detection, which is the experimentally
preferred method for quantum-noise measurement. Compared
to Ref. [21], which only involves classical analysis, we
analyze the quantum-noise performance of the nonlinear
interferometer and find that, just as the argument in previous
paragraphs suggests, the signal due to phase change is greatly
enhanced because of the nonlinear nature of the interferometer.
The enhancement factor is the power gain of the parametric
amplifier. With its quantum-noise level at vacuum, the signal
enhancement effectively increases the SNR above the standard
quantum limit by the same factor. To imitate the environment
of an actual experiment, we also study the effect of the losses
on the enhancement factor and find that it is limited mainly by
the losses inside the interferometer. Because the interferometer
operates at vacuum-noise level, it is less sensitive to the loss
at detection than the traditional interferometric scheme with
squeezed-state input.

The paper is organized as follows. We first compare the
noise performance of the linear and the nonlinear interfer-
ometers in Sec. II. Then, we analyze the effect of losses,
both external and internal, in Sec. III. In Sec. IV, we apply
the concept of the nonlinear interferometer to a modified
Michelson interferometer for the application of gravitational-
wave detection. We conclude in Sec. V with a summary and a
discussion.

II. A NONLINEAR INTERFEROMETER WITH
PARAMETRIC AMPLIFIERS

Consider the conceptual sketch in Fig. 2 where the one
on the left [Fig. 1(a)] is a traditional linear interferometer,

whereas, the one on the right is a nonlinear interferometer with
parametric amplifiers as beam splitters. Assume that there is
a coherent-state input at both interferometers. For the linear
interferometer in Fig. 1(a), with the input-output relation for a
lossless beam splitter given by

Â = (âin + b̂in)/
√

2, B̂ = (b̂in − âin)/
√

2,
(2)

âout = (Â + B̂eiϕ)/
√

2, b̂out = (B̂eiϕ − Â)/
√

2,

it is straightforward to express the outputs of the interferometer
in terms of the inputs,

âout = t(ϕ)âin + r(ϕ)b̂in, b̂out = t(ϕ)b̂in + r(ϕ)âin, (3)

where t(ϕ) = eiϕ/2 cos ϕ/2 and r(ϕ) = ieiϕ/2 sin ϕ/2. Here,
ϕ is the phase change, and we assume the beam splitters are
identical with 50:50 transmissivity and reflectivity.

For a coherent state |α〉 input at âin and vacuum at b̂in, the
output of the interferometer is simply

〈b̂†outb̂out〉 = |α|2(1 − cos ϕ)/2 = Ips(1 − cos ϕ), (4)

where Ips ≡ 〈B̂†B̂〉 = |α|2/2 is the photon number of the
field subject to the phase shift (phase-sensing field). Note that
the phase-sensing field is what matters in phase-measurement
accuracy as shown in Refs. [15,19]. The interferometer usually
works at ϕ = 0 with a homodyne detection at the dark port,
i.e., b̂out. With a small phase shift δ for ϕ and α = i|α|, we
easily can find〈

X̂2
bout

〉 = 〈
X̂2

bin
(δ/2)

〉
cos2(δ/2) + 〈

Ŷ 2
ain

(δ/2)
〉
sin2(δ/2)

≈ 1 + |α|2δ2 for δ � 1, |α|2 � 1. (5)

Here, X̂b(δ/2) = b̂eiδ/2 + b̂†e−iδ/2 and Ŷa(δ/2) = (âeiδ/2 −
â†e−iδ/2)/i are the quadrature-phase amplitudes of corre-
sponding fields. Obviously, |α|2δ2 in 〈X̂2

bout
〉 corresponds to

the phase signal while the noise of the phase measurement is
simply 1 from vacuum quantum noise. Hence, the SNR of the
linear interferometer is

RL = |α|2δ2/1 = 2Ipsδ
2, (6)

which leads to the standard quantum limit (SQL) δSQL =
1/

√
N with N = 2Ips .

For the nonlinear interferometer in Fig. 1(b), a parametric
amplifier now acts as a beam splitter to split the input
signal beam (cin) into the amplified signal beam (C) and the
accompanying beam (D). Another parametric amplifier acts as
a beam combiner to complete the interferometer. Even though
there is no injection at mode din for the amplifier, vacuum
still contributes with quantum noise (see Ref. [2]). The full
input-output relation for the amplifiers is given by [22]

Ĉ = Gĉin + gd̂†
in, D̂ = Gd̂in + gĉ†in,

(7)
ĉout = GĈ + gD̂†e−iϕ, d̂out = GD̂eiϕ + gĈ†,

where we assume the amplifiers are identical with G as the
amplitude gain and |G|2 − |g|2 = 1. Here, we introduce a
phase shift in ϕ on mode D̂. Therefore, the output-input
relation of the interferometer is

ĉout = [GT (ϕ)ĉin + gT (ϕ)d̂†
in]e−iϕ,

(8)
d̂out = GT (ϕ)d̂in + gT (ϕ)ĉ†in,
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with GT (ϕ) = G2eiϕ + g2 and gT (ϕ) = Gg(1 + eiϕ). The
interferometer works best at a dark fringe with ϕ = π when
GT (π ) = 1 and gT (π ) = 0, i.e., at unit overall gain [11].

With a coherent-state input at cin and no input at din as
shown in Fig. 1(b), similar to Eq. (4), we easily can find the
dark output port (dout) intensity as

〈d̂†
outd̂out〉 = |GT (ϕ)|2 + |gT (ϕ)|2(|α|2 + 1)

≈ 2G2g2|α|2(1 + cos ϕ) for |α|2 � 1
= 2G2I nl

ps(1 + cos ϕ), (9)

where I nl
ps = 〈D̂†D̂〉 = g2(|α|2 + 1) ≈ g2|α|2(|α|2 � 1) is the

photon number of the phase-sensing field D̂. Comparing the
above with Eq. (4) for a linear interferometer, we find that the
fringe size is increased by a factor of 2G2.

For homodyne detection around the dark fringe with ϕ =
π + δ (δ � 1) and α = i|α|, we have, from Eqs. (7) and (8),

〈X̂2
dout

〉 = |GT (ϕ)|2〈X̂2
din

(ϕG)
〉 + |gT (ϕ)|2〈X̂2

cin
(ϕ/2)

〉
≈ 1 + G2g2(4|α|2 + 2)δ2 for δ � 1, (10)

where eiϕG ≡ GT (ϕ)/|GT (ϕ)|. Hence, the SNR for the non-
linear interferometer then is

RNL = G2g2(4|α|2 + 2)δ2/1 ≈ 4G2I nl
psδ

2 for |α|2 � 1.

(11)

Comparing this with Eq. (6), we find that, under the condition
of the same number of photons for the phase-sensing field,
the nonlinear interferometer has a better SNR than the linear
interferometer with an enhancement factor of

RNL/RL ≈ 2G2 for |α|2 � 1. (12)

The sensitivity of phase measurement for a linear interferom-
eter is usually at the so-called SQL. Then, the nonlinear inter-
ferometer improves upon the SQL by 2G2-fold. The physical
picture of this enhancement in sensitivity is straightforward if
we compare the output fringe intensities in Eqs. (4) and (9) for
the two interferometers: The fringe size is increased by a factor
of 2G2. In the meantime, at ϕ = 0 (dark output), d̂out = d̂in,
which is in vacuum, so the noise is simply vacuum noise
just as in the linear interferometer. Thus, the improvement in
sensitivity is achieved not by reducing the vacuum quantum
noise at the unused input port, which usually is performed with
a linear interferometer but rather by enhancing the signal level
via amplification in the nonlinear interferometer.

With a squeezed vacuum at the unused input port (d̂in), i.e.,
〈X̂2

din
〉 = e−r , Eq. (10) is modified to

〈
X̂2

dout

〉 = e−r + 4G2g2|α|2δ2. (13)

Then, the sensitivity of phase measurement can be increased
further from the SQL by a factor of

RS
NL/RL = 2G2er . (14)

Another interesting case is when there is no injection of the
coherent state at all. Setting |α|2 = 0 in Eq. (11), we have the
SNR without coherent injection,

Rnc
NL = 2G2g2δ2 = 2I nl

ps

(
I nl
ps + 1

)
δ2. (15)

This leads to the so-called Heisenberg limit [11,13],

δm = 1
/√

2I nl
ps

(
I nl
ps + 1

) ≈ 1/N, (16)

with N ≡ I nl
ps � 1 as the number of photons probing the phase

shift. Squeezed-vacuum injection in the idler port can increase
the SNR further, but the photon number also increases because
squeezed vacuum contains photons.

III. LOSS ANALYSIS FOR THE NONLINEAR
INTERFEROMETER

It is well known that loss is the limiting factor that
hinders the application of the squeezed state in precision
measurements. Next, let us examine the effect of loss on the
sensitivity of this scheme of a nonlinear interferometer. There
are two types of losses: inside and outside the interferometer.
We start with loss outside the interferometer first.

A. Effect of loss outside the nonlinear interferometer

Loss outside the interferometer can be from propagation
loss, less than perfect homodyne mode match, and most likely,
the finite-quantum efficiency of the detectors. We can sum up
all these losses to get an overall loss of L and model it by a beam
splitter of transmissivity (1 − L): d̂ ′

out = d̂out
√

1 − L + d̂0

√
L.

It is straightforward to find that Eq. (10) becomes
〈
X̂2

d ′
out

〉 = 1 + 4(1 − L)G2g2|α|2δ2. (17)

So the SNR is reduced by a factor of 1 − L. Such a reduction
can be compensated by the increase in gains (G,g). The
sensitivity enhancement is unlimited.

Recall that, for squeezed-state-based schemes, sensitivity
enhancement is limited by the loss even for a large amount of
squeezing. In this sense, our current scheme with the nonlinear
interferometer is less prone to detection loss than squeezed-
state-based linear interferometers. The underlining physics for
this insensitivity to loss is that the nonlinear interferometer is
operated at vacuum-noise level. So the introduction of vacuum
noise through losses will change its noise performance. On the
other hand, if we inject squeezed vacuum into the unused input
port (d̂in) to further increase the SNR as in Eq. (14), loss limits
the effect of squeezing just like squeezed-state-based schemes.

B. Effect of loss inside the nonlinear interferometer

For losses inside the interferometer, the situation is not so
good. We consider two situations: (i) losses in the propagation
between the two parametric amplifiers and (ii) losses inside
the parametric amplifiers. For the first case, we again model
the losses by beam splitters: Ĉ ′ = √

1 − L1Ĉ + √
L1Ĉ0 and

D̂′ = √
1 − L2D̂ + √

L2D̂0. We also assume the amplifiers
have different gains of G1,G2, respectively. Then, the idler
output port is

d̂out = G′(ϕ)d̂in + g′(ϕ)ĉ†in + g2

√
L1Ĉ

†
0 + G2

√
L2D̂0, (18)

with

G′(ϕ) = g1g2

√
1 − L1 + G1G2e

iϕ
√

1 − L2,
(19)

g′(ϕ) = g2G1

√
1 − L1 + g1G2e

iϕ
√

1 − L2.
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For strong coherent-state input with |α|2 � 1 and

g2G1

√
1 − L1 = g1G2

√
1 − L2 ≡ gG

√
1 − L (20)

for 100% visibility, we find the output intensity as

〈d̂†
outd̂out〉 ≈ 2G2g2(1 − L)|α|2(1 + cos ϕ)

= 2G2
2I

nl
ps(1 − L2)(1 + cos ϕ). (21)

So with loss, the fringe size is only reduced by 1 − L2.
However, the quantum noise is not so. With ϕ = π + δ (δ �
1), we find from Eq. (18),

〈
X̂2

dout

〉 = |g1g2

√
1 − L1 − G1G2e

iδ
√

1 − L2|2

+ |g2G1

√
1 − L1 − g1G2e

iδ
√

1 − L2|24|α|2
+G2

2L2 + g2
2L1. (22)

With the condition in Eq. (20) and δ � 1, Eq. (22) can be
simplified as

〈
X̂2

dout

〉 = 1 + 2g2
2L1 + (4|α|2 + 2)g2

1G
2
2(1 − L2)δ2. (23)

Hence, the SNR is

R′
NL = (4|α|2 + 2)g2

1G
2
2(1 − L2)δ2

/(
1 + 2g2

2L1
)

≈ 4I nl
psG

2
2(1 − L2)δ2

/(
1 + 2g2

2L1
)
. (24)

Compared to Eq. (11) for the case without losses, the
SNR is reduced by a factor of (1 − L2)/(1 + 2g2

2L1) and
is compared to the linear interferometer; the enhance-
ment in the SNR is 2G2

2(1 − L2)/(1 + 2g2
2L1) ≈ 2(1 −

L2)/L1 for large g2
2. Thus, like the linear interferometer

with a squeezed state, the enhancement is limited by the
loss L1.

Furthermore, for the case of no coherent-state injection, the
SNR becomes

Rnc′
NL = 2g2

1G
2
2(1 − L2)δ2

/(
1 + 2g2

2L1
)
, (25)

and, for the case of L1 = L2 ≡ L, is

Rnc′
NL = 2I nl

ps

(
I nl
ps + 1

)
(1 − L)δ2

/(
1 + 2I nl

psL
)
. (26)

So, the minimum measurable phase is at the Heisenberg limit
for a small photon number with I nl

ps � 1/L, but for the large
photon number of I nl

ps � 1/L, Eq. (25) becomes

Rnc′
NL = (

I nl
ps + 1

)
(1 − L)δ2/L, (27)

which only improves upon the SQL by (1 − L)/L, similar to
the case of strong coherent injection. This shows that loss is the
limiting factor for reaching the Heisenberg limit in precision
phase measurement.

The second type of loss of the interferometer is the loss
inside the parametric amplifiers. This type of loss cannot
be modeled as beam splitters, but parametric amplifiers with
internal losses can be characterized as

Ĉ = Ḡĉin + ḡd̂†
in + Ḡ′ĉ0 + ḡ′d̂†

0,
(28)

D̂ = Ḡd̂in + ḡĉ†in + Ḡ′d̂0 + ḡ′ĉ†0,

with Ḡ2 − ḡ2 + Ḡ′2 − ḡ′2 = 1. One example is the nonde-
generate optical parametric oscillator below threshold, which

acts as a nondegenerate optical parametric amplifier (NOPA)
with [23]

Ḡ = [(γ 2 − ρ2)/4 + |κ|2]/M, ḡ = κγ /M,
(29)

Ḡ′ = √
γρ(γ + ρ)/2M, ḡ′ = κ

√
γρ/M,

where κ is proportional to the pump amplitude and γ,ρ is
proportional to the cavity round-trip output coupling T and
loss L, respectively, and M ≡ (γ + ρ)2/4 − |κ|2. Assuming
the second parametric amplifier is identical to the first one,
with a phase shift ϕ on the D field, we have

d̂out = ḠT (ϕ)d̂in + ḡT (ϕ)ĉ†in + Ḡ′
T (ϕ)d̂01

+ ḡ′
T (ϕ)ĉ†01 + Ḡ′d̂02 + ḡ′ĉ†02, (30)

where ĉ01,d̂01,ĉ02,d̂02 are the vacuum modes coupled in
through the losses inside the two NOPAs and

ḠT (ϕ) = ḡ2 + Ḡ2eiϕ, ḡT (ϕ) = ḡḠ(1 + eiϕ),
(31)

Ḡ′
T (ϕ) = ḡḡ′ + ḠḠ′eiϕ, ḡ′

T (ϕ) = Ḡ′ḡ + Ḡḡ′eiϕ.

Then, for ϕ = π + δ(δ � 1) and the strong coherent state at
ĉin, similar to Eq. (22), we find〈

X̂2
dout

〉 = (ḡ2 − Ḡ2)2 + 4I nl
psḠ

2δ2 + (ḡḡ′ − ḠḠ′)2

+ (ḡḠ′ − Ḡḡ′)2 + Ḡ′2 + ḡ′2

= 4I nl
psḠ

2δ2 + 1 + 2(ḡḠ′ − Ḡḡ′)2 + 2ḡ′2. (32)

where I nl
ps = 〈D̂†D̂〉 ≡ ḡ2|α|2. Hence, the SNR is

Rnc′′
NL = 4I nl

psḠ
2δ2/(1 + 4ḡ′2) ≈ I nl

psδ
2γ /ρ for Ḡ � 1

= I nl
psδ

2T /L. (33)

Here, we used Eq. (29). This SNR is enhanced from the
SNR (RL) in Eq. (6) by a factor of T /2L. Notice thatL/T = S
is the maximum squeezing from one of the two NOPAs. So
the enhancement is limited by the overall vacuum noise leaked
into the two parametric amplifiers through intracavity losses.

IV. NONLINEAR MICHELSON INTERFEROMETER WITH
PARAMETRIC AMPLIFIERS

Next, let us consider a Michelson interferometer, which
is the prototype for gravitational wave detection. We insert
parametric amplifiers in its two arms as shown in Fig. 3
and investigate if the nonlinear elements can increase the
sensitivity of the interferometer.

In this case, however, we cannot use the parametric
amplifiers depicted in Fig. 2(b) because of the extra vacuum
noise entering from the unused input port. Instead, we consider
a degenerate type of parametric amplifier of the form

Ĉ = Gĉin + geiϕp ĉ†in, (34)

where we set d̂ = ĉ in Eq. (7) to make it degenerate and the
amplifier becomes phase sensitive [24] with ϕp as the phase
reference (G,g > 0). So, referring to Fig. 3, we have the field
operators at the free-mass mirrors,

d̂1,2 = (Gb̂1,2 + gb̂
†
1,2)eiϕ1,2/2, (35)

where ϕ1,2 = 2k(l1,2 + x1,2) with l1,2 as the arm length and
x1,2 as the displacement of the free masses (m). Then, with
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PA2

ϕ ϕ

PA1

(a) (b)

LO

δ

|α >

Ips
|α|2

2=
50:50

50:50 aout

ain

bin

A

B

bout

δ

Ips=g1
nl 2|α|2

G1,g1

G2,g2

cin

din

D

C

cout

dout

LO

|α >

FIG. 2. Comparison between a linear interferometer and a non-
linear interferometer: (a) A linear Mach-Zehnder interferometer. (b)
A nonlinear interferometer with parametric amplifiers (PA1, PA2) as
the equivalent beam splitters.

the d̂ fields propagating back to the parametric amplifier, the
outputs of the degenerate parametric amplifiers are

ĉout
1,2 = GT (ϕ1,2)b̂1,2 + gT (ϕ1,2)b̂†1,2, (36)

with

GT (ϕ) = G2eiϕ + g2e−iϕ,
(37)

gT (ϕ) = Ggeiϕp (eiϕ + e−iϕ).

As before, the nonlinear parts of the interferometer are
operated around unit gain by setting the arm length l1,2

such that 2kl1,2 = π/2 + 2πN1,2 with N1,2 as integers. So,
ϕ = π/2 + δ (δ ≡ 2kx1,2 � 1). After dropping the common
phase of π/2, Eq. (37) becomes

GT (ϕ) ≈ 1 + i(G2 + g2)δ, gT (ϕ) ≈ 2iGgeiϕp δ, (38)

with δ = 2kx1,2 � 1. For simplicity, we ignore all losses here.

We now send a coherent state |α〉 into the interferometer in
mode âin

1 and vacuum in the dark port of âin
2 (Fig. 3). Referring

to the inset of Fig. 3, we have

b̂1 = (
α + âin

2

)/√
2

(39)
b̂2 = (

âin
2 − α

)/√
2,

I
0
=(G+g)2|α|2/2

a
1
in^

m
|α >

m

a
2
out^

b
2

^

a
1
in^ b

1

^

a
2
in^

c
2
out^ c

1
out^

d
1

^

Homodyne detection

G,g,ϕ
p

d
2

^

x
1

x
2

G,g,ϕ
p

FIG. 3. (Color online) A modified Michelson interferometer with
a phase-sensitive amplifier inserted in each arm.

where we treat the strong field of âin
1 as a classical field. From

Eqs. (36) and (38), the outputs from the parametric amplifiers
are then

ĉout
1 ≈ âin

2 /
√

2+[1 + 2ikx1(G2 + g2+2Ggei(ϕp−2ϕα) )]α/
√

2,

ĉout
2 ≈ âin

2 /
√

2−[1 + 2ikx2(G2 + g2+2Ggei(ϕp−2ϕα ))]α/
√

2.

(40)

Hence, the dark output port of the modified Michelson
interferometer is

âout
2 = (

ĉout
1 + ĉout

1

)
/
√

2
≈ âin

2 + iα[G2 + g2 + 2Ggei(ϕp−2ϕα )]k
x, (41)

with 
x ≡ x1 − x2.
Due to light pressure, the displacement x1,2 is related to the

photon-number operators of the fields impinging on the free-
mass mirrors: x1,2 = Cd̂

†
1,2d̂1,2 with d̂1,2 as the fields irradiating

on the free masses (Fig. 3). C is the optomechanic constant of
free mass m: C = h̄kτ/m [25]. Then, we have


x = x1 − x2 = hGW + C(d̂†
1 d̂1 − d̂

†
2 d̂2), (42)

where hGW is the signal displacement due to the gravitational
wave. From Eq. (35), the photon number in each arm for
sensing the motion of the free masses is I0 ≡ 〈d̂†

1,2d̂1,2〉 =
|α|2[G2 + g2 + 2Gg cos(ϕp − 2ϕα)]/2. Then, from Eqs. (35)
and (39), it is straightforward to find


x = hGW + C|α|[(G2 + g2)X̂in
2 (ϕα) + 2GgX̂in

2 (ϕp − ϕα)
]
,

(43)

where X̂in
2 (ϕα) = âin

2 e−iϕα + â
in†
2 eiϕα .

The dependence on the phases ϕp,ϕα in Eqs. (41) and (43)
and in I0 for the photon number in each arm is because the
degenerate amplifier in Eq. (34) is phase sensitive [24]. So,
choosing the phase ϕp − 2ϕα = 0 and substituting Eq. (43)
into Eq. (41), we obtain the dark port output,

Xout
2 = Xin

2

Y out
2 = Y in

2 + K(G + g)2X̂in
2 +

√
2K(G + g)2(hGW/hSQL),

(44)

where Xin
2 ≡ X̂in

2 (ϕα), Ŷ in
2 ≡ X̂in

2 (ϕα + π/2), Xout
2 ≡

Xout
2 (ϕα) = âout

2 e−iϕα + â
out†
2 eiϕα , and Ŷ out

2 = X̂out
2 (ϕα + π/2).

hSQL ≡ √
h̄τ/m is the SQL, and K ≡ 4I0h̄k2τ/m with

I0 = |α|2(G + g)2/2 as the photon number in each arm.
The quantum-noise performance of a regular Michelson

interferometer was analyzed thoroughly in Ref. [9]. Compared
to Eq. (16) of Ref. [9], the nonlinear version discussed here
has the constant K increased by (G + g)2-fold under the
condition of the same photon number of I0 in the arms of
the interferometer. This will lead to a better performance at the
same phase-sensing photon number (I0). Since we use a single-
mode description of the interferometer, we cannot obtain the
frequency response for the modified Michelson interferometer
discussed here. However, because gravitational-wave band-
width is much narrower than the bandwidth of nonlinear optical
interaction, the gain bandwidth of the parametric amplifiers is
much larger than the response bandwidth of the regular Michel-
son interferometer for gravitational detection, i.e., parameters
G,g,ϕp can be treated as constants. So the frequency response
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of the modified interferometer should be the same as the regular
one without the amplifier. A more detailed multimode analysis
similar to Ref. [9] confirms this [26]. Therefore, all the benefits
for a quantum-non-demolition interferometer discussed in
Ref. [9] with a frequency-dependent squeezing angle and a
homodyne angle apply here with even better results because
of the enhanced K coefficient.

To be more specific and with full reference to Ref. [9], we
may rewrite Eq. (44) as

Y out
2 =

√
K′2 + 1

(
Y in

2 sin θ + X̂in
2 cos θ

)
+

√
2K′(hGW/hSQL), (45)

with K′ ≡ K(G + g)2 and cot θ = K′. If we measure Y out
2

for the detection of the gravitational signal hGW , the
quantum noise is from the first term in Eq. (45), i.e.,√
K′2 + 1(Y in

2 sin θ + X̂in
2 cos θ ). The equivalent noise power

in measuring hGW then is

Sh = h2
SQL

2K′ (1 + K′2)
〈[
X̃in

2 (θ )
]2〉

, (46)

with X̃in
2 (θ ) ≡ Y in

2 sin θ + X̂in
2 cos θ . So, if we can squeeze

the input field of âin
2 at the quadrature amplitude X̃in

2 (θ ) with
a power-squeeze factor of e−2R , i.e., the squeezing angle is at
θS = arccotK′ [27], Eq. (46) becomes

Sh = h2
SQL

2

(
1

K′ + K′
)

e−2R, (47)

which is exactly the same as Eq. (48) in Ref. [9] except
replacing K with K′ = K(G + g)2. So, with a squeezed-
state input at the dark port, the noise power is minimized
below the SQL at K′ = 1 with an optimized circulating
photon number of I

op

0 = ISQL/(G + g)2 (ISQL ≡ m/4h̄k2τ ).
This value is reduced by a factor of 1/(G + g)2 as compared
to a conventional Michelson interferometer.

For a variational-output interferometer [27], on the other
hand, we do not measure Y out

2 but rather a different quadrature
amplitude Ỹ out

2 (ζ ) at a homodyne angle of ζ ,

Ỹ out
2 (ζ ) ≡ Y out

2 sin ζ + Xout
2 cos ζ

= sin ζ
[
Y in

2 + Xin
2 (cot ζ + K′) +

√
2K′(hGW/hSQL)

]
.

(48)

In this case, we may completely get rid of the Xin
2 term

due to light pressure by choosing a homodyne angle of
ζ = −arccotK′,

Svar
h = h2

SQL

2K′
〈[
Y in

2

]2〉 = h2
SQL

2K(G + g)2
, (49)

if the dark input port is in vacuum. The noise power is reduced
further by a factor of 1/(G + g)2 beyond the SQL as compared
to a conventional variational-output interferometer.

For a squeezed-variational interferometer [27], the input
quadrature Y in

2 is squeezed, and in the meantime, quadrature
Ỹ out

2 (ζ ) is measured. From Eq. (49), we have

S
sq-var
h = h2

SQL

2K′
〈[
Y in

2

]2〉 = h2
SQL

2K(G + g)2
e−2R. (50)

To be better than the squeezed-input interferometer given in
Eq. (47), we need K′ > 1 or I0 > I

op

0 = ISQL/(G + g)2.
As discussed before, we do not have a frequency-dependent

K here because we use a single-mode treatment. A full multi-
mode treatment [26] can show that the modified Michelson
interferometer has the same frequency dependence for K
as the conventional Michelson interferometer as long as the
parameters G,g,ϕp are constant within the frequency-response
bandwidth of the conventional interferometer. Then, the
discussion above will lead to the same frequency-dependent
squeezing angle or homodyne angle given in Ref. [9] for
squeezed input or variational output or the combination
interferometer.

As for the practical implementation of the current scheme
for the LIGO project, it is limited by the availability of a
parametric amplifier of high-powered cw fields. Current tech-
nology in nonlinear optics only can provide stable parametric
amplification of a high-powered pulse field. Nevertheless, the
current scheme with nonlinear elements inside an interfer-
ometer may provide ideas to further improve upon the current
LIGO project based on conventional design of interferometers.

V. SUMMARY AND DISCUSSION

To summarize, a nonlinear interferometer with parametric
amplifiers as beam splitters has a better SNR in precision
phase measurement than a traditional linear interferometer.
This improvement is because of the signal enhancement in
the nonlinear interferometer. The enhancement factor is not
limited by losses outside the interferometer but by the losses
inside the interferometer. With squeezed-vacuum input to the
unused port, further enhancement can be achieved.

The idea of using nonlinear elements for beam splitting
and recombination is not limited to optical interferometry.
As a matter of fact, it may not be best suited for an
optical interferometer because the sensitivity of an optical
interferometer can reach a very high level without resorting to
quantum technology due to the availability of a large number of
photons, such as the LIGO project. In atomic interferometry, on
the other hand, the sensitivity indeed is limited by the number
of atoms [28]. Implementation of the ideas in the current paper
may well be in an atomic interferometer, which will help to
increase the sensitivity tremendously. Recent advances in atom
optics made it possible to implement a parametric amplifier for
matter waves [29,30].
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H. Vahlbruch, M. Mehmet, H. Müller-Ebhardt, and R. Schnabel,
Phys. Rev. Lett. 104, 251102 (2010).

[8] [http://www.advancedligo.mit.edu].
[9] H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P.

Vyatchanin, Phys. Rev. D 65, 022002 (2001).
[10] P. Kok, H. Lee, and J. P. Dowling, Phys. Rev. A 65, 052104

(2002).
[11] B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A 33, 4033

(1986).
[12] J. Jacobson, G. Björk, I. Chuang, and Y. Yamamoto, Phys. Rev.

Lett. 74, 4835 (1995).
[13] Z. Y. Ou, Phys. Rev. A 55, 2598 (1997).
[14] J. Beltrán and A. Luis, Phys. Rev. A 72, 045801 (2005).
[15] S. Boixo, S. T. Flammia, C. M. Caves, and J. M. Geremia, Phys.

Rev. Lett. 98, 090401 (2007).
[16] S. M. Roy and S. L. Braunstein, Phys. Rev. Lett. 100, 220501

(2008).
[17] R. A. Campos, B. E. A. Saleh, and M. C. Teich, Phys. Rev. A

40, 1371 (1989).

[18] D. Leibfried, B. DeMarco, V. Meyer, M. Rowe, A. Ben-Kish,
J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband,
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Nature (London) 464, 1165 (2010).

023815-7

http://dx.doi.org/10.1038/nphys920
http://dx.doi.org/10.1103/PhysRevLett.104.251102
http://www.advancedligo.mit.edu
http://dx.doi.org/10.1103/PhysRevD.65.022002
http://dx.doi.org/10.1103/PhysRevA.65.052104
http://dx.doi.org/10.1103/PhysRevA.65.052104
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://dx.doi.org/10.1103/PhysRevA.33.4033
http://dx.doi.org/10.1103/PhysRevLett.74.4835
http://dx.doi.org/10.1103/PhysRevLett.74.4835
http://dx.doi.org/10.1103/PhysRevA.55.2598
http://dx.doi.org/10.1103/PhysRevA.72.045801
http://dx.doi.org/10.1103/PhysRevLett.98.090401
http://dx.doi.org/10.1103/PhysRevLett.98.090401
http://dx.doi.org/10.1103/PhysRevLett.100.220501
http://dx.doi.org/10.1103/PhysRevLett.100.220501
http://dx.doi.org/10.1103/PhysRevA.40.1371
http://dx.doi.org/10.1103/PhysRevA.40.1371
http://dx.doi.org/10.1103/PhysRevLett.89.247901
http://dx.doi.org/10.1103/PhysRevLett.77.2352
http://dx.doi.org/10.1088/1367-2630/12/8/083014
http://dx.doi.org/10.1088/1367-2630/12/8/083014
http://dx.doi.org/10.1063/1.3606549
http://dx.doi.org/10.1063/1.3606549
http://dx.doi.org/10.1103/PhysRevA.40.913
http://dx.doi.org/10.1007/BF00325015
http://dx.doi.org/10.1007/BF00325015
http://dx.doi.org/10.1103/PhysRevD.26.1817
http://dx.doi.org/10.1103/PhysRevLett.47.815
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/PhysRevLett.107.075301
http://dx.doi.org/10.1103/PhysRevLett.107.075301
http://dx.doi.org/10.1038/nature08919

