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Losses in rotating degenerate cavities and a coupled-resonator optical-waveguide rotation sensor

Roman Novitski, Ben Z. Steinberg,* and Jacob Scheuer†

School of Electrical Engineering, Tel-Aviv University, Ramat Aviv, Tel-Aviv 69978, Israel
(Received 22 November 2011; published 13 February 2012)

We present a rigorous theory of rotating degenerate optical cavities and a coupled-resonator optical waveguide
(CROW) including the impact of material losses associated with practical cavities and resonators. The losses are
modeled as a perturbation of the material’s relative permittivity by adding to it a small imaginary component.
The Sagnac frequency shift in a single lossy cavity is shown to be lower than that of a lossless one. For CROWs,
the rotation-induced gap formed in the center of the transmission function of a lossy device is reduced compared
to that of a lossless one. The inclusion of propagation losses in the analysis of the CROW reveals a relatively
insensitive region (a dead zone) in the response of a finite device at low rotation rates. A periodic modulation of
the resonators’ resonant frequencies is shown to be an effective artificial CROW biasing technique to overcome
this problem. This biasing does not require any active control.
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I. INTRODUCTION

An electromagnetic wave propagating along a circular path
in a mechanically rotating medium accumulates an additional
phase shift proportional to the rotation rate of the medium
and the loop area [1]. This phenomenon is known as the
Sagnac effect [2]. Recently, much interest was shown in
studying the effect in resonant microcavities [3,4] and in
photonic structures supporting mode degeneracy such as ring
and coupled microring resonators [5–7]. It was shown that
rotation makes the resonant frequency split into M different
frequencies, where M is the order of the stationary system
mode degeneracy. This result is general and holds for any type
of cavity supporting mode degeneracy, be it a photonic crystal
cavity, disk resonator, or others. In another publication the
effect of rotation was studied in a coupled-resonator optical-
waveguide (CROW) rotation sensor consisting of doubly
degenerate resonators such as ring resonators [8]. Both of
those works did not account for losses existing in practical
devices, such as material and bending losses. Investigating the
influence of loss on the rotation-induced resonance splitting
is of particular scientific interest. Moreover, there are few
publications studying the effect of loss on the performance of
the miniature rotation sensors [9,10]. However, these studies
employed a simple model for losses assuming it is not affected
by the rotation of the device. In this paper, we present a
rigorous, ab initio, study of the impact of losses on the Sagnac
effect in degenerate cavities and the performance of CROW
rotation sensor.

The structure of this paper is as follows. In Sec. II we
study the resonance splitting in a lossy rotating M-degenerate
cavity, as seen in the cavity’s rest frame, where the losses
are introduced as a perturbation of the relative permittivity
of the medium. In Sec. III, we apply the theoretical results
to the common particular case of a second-order degenerate
lossy ring resonator. In Sec. IV we theoretically study a lossy
CROW subjected to rotation and lossy conditions using the
tight-binding theory. We show two major impacts of loss on the
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device characteristics. First, a new dispersion relation is found
and compared with that of a lossless CROW. Second, we show
the response of the CROW to rotation, where formation of a
dead zone at low rotation rates is observed and a possible
solution is proposed. Concluding remarks are provided in
Sec. V.

II. LOSSY ROTATING CAVITY WITH
DEGENERATE MODES

Let εc(r) = εr (r) + iεi(r) be the complex dielectric
permittivity of a stationary medium. The imaginary part of the
permittivity represents the losses associated with the medium.
We assume a low-loss material with εi � εr . We also assume
that the medium rotates slowly with the angular velocity �:

� = ẑ�. (2.1)

The assumption of slow rotation velocity implies that
neither relativistic effects nor geometrical transformations take
place. Therefore, operators such as ∇ are conserved in the
rotating rest frame of reference: ∇ = ∇′, and time is invariant
in both systems: t = t ′. According to a formal structure
of electrodynamics, the basic physical laws governing the
electromagnetic fields are invariant under any coordinate
transformations, including a noninertial one [11,12]. The
transformation to a rotating system is manifested only by an
appropriate change of the constitutive relations. Therefore,
under the slow rotation assumption, Maxwell equations in the
rotating frame R are given by

∇ × E = iωB, ∇ · B = 0
(2.2)∇ × H = −iωD, ∇ · D = 0

Assuming the material properties at rest are given by ε, μ, then
up to the first order in velocity the constitutive relations in R

take on the form [11]

D = εE − c−2� × r × H,
(2.3)

B = μH + c−2� × r × E.

In the above, c is the speed of light in vacuum, ω is the
frequency, and a time dependence exp(–iωt) is assumed
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and suppressed. The wave equation, up to first order in �,
describing the magnetic field in a lossy medium can be derived
following the procedure outlined in the previous work [13], and
it is given by

�cH�(r) = k2H�(r) + ikL�H�(r), (2.4)

where �c is the wave operator,

�c ≡ ∇ × 1

εc(r)
∇ × · · · , (2.4a)

L� is the rotation-induced operator,

L�H�(r) = ∇ × β

εc(r)
× H�(r) + β

εc(r)
× ∇ × H�(r),

(2.4b)

and k = ω/c, β = c−1� × r . In the development of Eqs. (2.4)
and (2.4b), only terms up to the first order in β are kept.

We assume a dielectric structure with a lossless cavity,
which resonates at a resonant frequency ω0 and supports M-
order mode degeneracy. At rest, the magnetic field in the cavity
is governed by the wave equation

�rH
(m)
0 (r) = k2

0H
(m)
0 (r) k0 = ω0

c
, m = 1,2, . . . ,M, (2.5)

where H
(m)
0 (r) is the mth degenerate mode, and the operator

�r is defined as

�r ≡ ∇ × 1

εr (r)
∇ × · · · . (2.5a)

Our goal now is to express the resonant frequency and
resonant field of a lossy cavity under rotation (ω, H�),
governed by Eq. (2.4), in terms of the resonant frequency
and modes of the lossless system at rest (ω0, H

(m)
0 ). To that

end we define the inner product between two vector fields as
the volume integration:

〈F,G〉 ≡
∫

F · Ḡd3r, (2.6)

where the overbar denotes the complex conjugate, and the dot
product is the standard scalar product between the two vectors
F and G. Performing an inner product of Eq. (2.5) with H�

and of Eq. (2.4) with each of the degenerate modes H
(m)
0 we

get the following set of equations:〈
�rH

(m)
0 ,H�

〉 = k2
0

〈
H

(m)
0 ,H�

〉
, (2.7a)〈

�cH�,H
(m)
0

〉 = k2
〈
H�,H

(m)
0

〉 + ik
〈
L�H�,H

(m)
0

〉
, (2.7b)

which hold for m = 1,2,. . .,M . By subtracting from Eq. (2.7b)
the complex conjugate of Eq. (2.7a), and using the fact that �r

is a self-adjoint operator, we obtain(
k2 − k2

0

)〈
H�,H

(m)
0

〉 + ik
〈
L�H�,H

(m)
0

〉
= 〈

�cH�,H
(m)
0

〉 − 〈
�rH�,H

(m)
0

〉
. (2.8)

Since slow rotation may only affect the phase accumulation
rate and the resonant frequency, but its effect on the mode shape
is completely negligible [14], we express H� as a linear sum
of the stationary modes:

H�(r) =
M∑

n=1

anH
(m)
0 (r), (2.9)

where n = 1,2,. . .,M and an are unknown coefficients.
Substituting Eq. (2.9) back into Eq. (2.8) results in the
following matrix equation:

(
ω2 − ω2

0

) M∑
n=1

anAmn−ωω0�

M∑
n=1

anB̃mn

= −ω2
0

M∑
n=1

anC̃mn m = 1,2,...,M, (2.10)

where

Amn = 〈
H

(n)
0 ,H

(m)
0

〉
,

B̃mn = ε0
〈
ẑ × r,ei

εi
εr

(
H̄

(n)
0 × E

(m)
0 +H

(m)
0 × Ē

(n)
0

)〉
, (2.10a)

C̃mn = ic2ε2
0

〈
εi

εc

E
(n)
0 ,εrE

(m)
0

〉
.

In the derivation of the last equation we used εc
∼=

|εc|ei(εi/εr ) and the identity ∇ × H
(m)
0 = −iω0ε0εrE

(m)
0 was

employed. Equation (2.10) is an eigenvalue problem, where the
eigenvector consists of the unknowns an with the eigenvalue
depending on the operation frequency ω which has been shifted
from ω0 as a result of both rotation and loss. Notice that for
the lossless case (εi = 0) Eq. (2.10) reduces to the result
given in Ref. [7]. In order to simplify Eq. (2.10) and to attain
more intuitive understanding, we assume that (a) the modes are
highly confined within the cavity; (b) the relative permittivities
are constant inside the cavity. Therefore, Eqs. (2.10) and (2.10)
can be simplified further as

[
ω2 − ω2

0

(
1 − i

εi

εc

)] M∑
n=1

anAmn

= ωω0�

(
1 − i

εi

εr

− ε2
i

ε2
r

)
M∑

n=1

anBmn

m = 1,2,...,M, (2.11)

where

Amn = 〈
H (n)

0 ,H (m)
0

〉
,

Bmn = ε0
〈
ẑ × r,

(
H̄ (n)

0 × E(m)
0 + H (m)

0 × Ē(n)
0

)〉
, (2.11a)

C̃mn
∼= i

εi

εc

〈
H (n)

0 ,H (m)
0

〉 = i
εi

εc

Amn.

In the transition from Eq. (2.10) to Eq. (2.11) the matrix
elements C̃mn were expressed by the elements Amn as shown in
Eq. (2.11a). The last equation can be rewritten as the eigenvalue
problem with A and B being square M × M matrices with
elements Amn and Bmn, respectively:

�A−1Ba =
[
ω2 − ω2

0

(
1 − i εi

εc

)]
ωω0

(
1 − i εi

εr
− ε2

i

ε2
r

) a, (2.12)
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where a is a column vector with the elements an. We rewrite
Eq. (2.12) as

Ca =
1
2

[
ω2 − ω2

0

(
1 − i εi

εc

)]
�ωω0

(
1 − i εi

εr
− ε2

i

ε2
r

) a = �a, C = 1

2
A−1B.

(2.12a)

Generally, the matrix C possesses M distinct eigenvalues
�j, j = 1,2,. . .,M . Note that Eq. (2.12a) is identical to
the eigenvalue problem of a lossless degenerate cavity [7],
meaning the eigenvectors are identical and the eigenvalues
must be real numbers. Therefore, the expansion in Eq. (2.9) is
identical for both lossy and lossless cavities, but the resonant
frequencies in each cavity’s wave equation are different.
Expressing the resonant frequency shift as

δω = ω − ω0, (2.13)

and substituting it back into Eq. (2.12a) we can approximately
express it in terms of the eigenvalues �j as

δωj (�,εi) = ω0

[
�j�

(
1 − i

εi

2εr

− ε2
i

ε2
r

)
− i

εi

2εr

− 3ε2
i

8ε2
r

]
.

(2.13a)

The last expression should be interpreted with caution, since
the last two terms in the square brackets are not rotation related
and they contribute to the change of the resonant frequency in a
stationary cavity as a result of loss only. On the other hand, the
other three terms in the inner brackets are due to rotation and
are modified by loss. Therefore, we can divide the different
contributions as follows:

δωj (εi)stat,re = δω(εi)stat,re = −3ε2
i

8ε2
r

ω0∀j,

δωj (εi)stat,im = δω(εi)stat,im = −i
εi

2εr

ω0∀j,

(2.13b)

δωj (�,εi)rot,re = �j�

(
1 − ε2

i

ε2
r

)
ω0,

δωj (�,εi)rot,im = −i
εi

2εr

�j�ω0.

From the above we can make three major observations:
(a) The resonant frequency of a stationary cavity is reduced
by δω(εi)stat,re having an imaginary part δω(εi)stat,im which
represents the attenuation coefficient; (b) when that cavity
rotates, the resonant frequency splits into M distinct frequen-
cies, where the Sagnac frequency splitting is δωj (ω,εi)rot,re for
the j th mode, and the attenuation coefficient is modified by
δωj (ω,εi)rot,im; (c) the Sagnac frequency splitting is reduced by
loss, and the specific attenuation coefficient is reduced for the
corotating modes or increased for the contrarotating modes,
all relatively to the stationary one.

III. CLASSICAL SAGNAC EFFECT IN A LOSSY
RING RESONATOR

The theory developed in the previous section holds for
a general lossy cavity that supports mode degeneracy. It,
therefore, holds also for the most familiar case: the ring

0 0.1 0.2 0.3 0.4 0.5
1.185

1.19

1.195

1.2

1.205

1.21

1.215

1.22

1.225

1.23
x 10

15

ε
i

R
e(

ω
) 

[r
ad

/s
]

 

 

Stationary − ωstat

Co−rotating mode − ω−

Contra−rotating mode − ω+

FIG. 1. (Color online) The real part of the resonant frequencies
of a lossy ring resonator when stationary and when rotating.

resonator. It has been shown previously [7] that the eigenvalues
for a large single lossless ring resonator, calculated from the
matrix C in Eq. (2.12a), are given by

�1,2 = ± R

nc
, (3.1)

where R is the ring’s radius, n = √
εr , and c is the speed of

light in vacuum. Therefore, using this result in Eq. (2.13a), the
resonance frequency shift as a result of loss and rotation is

δω1,2(�,εi)=ω0

[
± R

nc
�

(
1−i

εi

2εr

−ε2
i

ε2
r

)
−i

εi

2εr

− 3ε2
i

8ε2
r

]
.

(3.2)

For a lossless ring resonator, the above result reduces to the
classical Sagnac effect [15]. For a lossy rotating ring resonator
the real part of the resonant frequencies is given by

ω±
re = ω0

[
1 − 3ε2

i

8ε2
r

± R

nc
�

(
1 − ε2

i

ε2
r

)]
. (3.3)

The real part of the resonant frequencies for a stationary
and rotating lossy ring resonator as function of the imaginary
part of the relative permittivity is shown in Fig. 1. The
parameters used for all the figures in this section are εr =
2.25, ω0 = 1.216 × 1015 rad/s, R = 100 μm, ω = 3e–5ω0.
Such a high rotation rate is used solely for illustration
purposes, because of the extremely small Sagnac frequency
shift for such resonators. We see that the frequency of the
corotating mode is lowered by rotation, while the frequency
of the contrarotating mode is increased. Note also that as the
losses grow, the frequencies decrease.

The imaginary part of the resonant frequencies is

ω±
im = −i

εi

2εr

(
1 ± R

nc
�

)
ω0. (3.4)

The result is shown in Fig. 2. Interestingly, the corotating
mode, which takes a longer time to complete a round trip in
the resonator, has a lower specific attenuation coefficient, as
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FIG. 2. (Color online) The imaginary part of the resonant fre-
quencies of a lossy ring resonator when stationary and when rotating.

opposed to the contrarotating mode. This fact may indicate
that the round trip losses of both modes are the same, and are
equal to the round trip loss of the stationary ring resonator.
In order to explore that, we calculate the ratio between the
imaginary part and the real part of the resonant frequency of
a mode defined as the quality factor. The quality factors of a
rotating resonator normalized to that of a stationary one are
shown in Fig. 3. Surprisingly, the quality factors are different,
meaning the round trip losses of the rotating modes are not the
same. The round trip loss of the corotating mode in the rest
frame of the rotating resonator is lower (higher Q factor) than
that of the contrarotating mode (lower Q factor).

The Sagnac frequency splitting, which is the difference in
the resonant frequencies of the two modes, is shown in Fig. 4.
The splitting is getting lower for higher losses, but since it is
a second-order effect, it may not impose a practical limitation
for low-loss ring resonators.
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FIG. 3. (Color online) Quality factors of a rotating ring resonator
normalized to the quality factor of a stationary resonator.
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FIG. 4. (Color online) Sagnac frequency splitting of a ring
resonator, as a function of the imaginary part of relative permittivity.
The dashed line shows the value for a lossless resonator.

IV. STUDY OF THE LOSSY ROTATING CROW

In this section we study a rotating CROW consisting
of weakly coupled doubly degenerate lossy cavities, such
as ring resonators. For a lossless and stationary CROW
the counterclockwise (CCW) mode H+

0 in even-numbered
resonators couples to the clockwise (CW) mode H−

0 in odd-
numbered resonators, all having the same resonant frequency
ω0, as shown in Fig. 5. When the entire structure is rotating,
the resonant frequency of the mth resonator shifts to ω0+
(–1)mδω(�) where δω(�) is the Sagnac frequency shift of a
lossless ring resonator, and the modal fields in each resonator
are no longer H±

0 .
Our goal is to perform an analysis of the CROW dispersion

relation [8], while taking into consideration the practical losses
associated with the ring resonators comprising the CROW.
To that end, we solve the wave equation given by Eq. (2.4).
Since the CROW consists of weakly coupled resonators, the
tight-binding approach is a convenient solution technique.
Considering the previous observation that a CW rotating mode

(a)

(b)

FIG. 5. CROW consisting of doubly degenerate ring resonators:
(a) stationary, (b) rotating.
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in a given resonator couples only to the CCW rotating mode
of its neighbor, we expand the total field of the lossy rotating
system with the modes H±

� :

H�(r) =
∑
m

AmHm(r), Hm(r) =
{
H+

� (r − rm), m even

H−
� (r − rm), m odd

,

(4.1)

where rm is the location of the mth resonator center, and
H±

� are the rotation eigenmodes of a single lossless rotating
resonator comprised of a linear combination of the degenerate
modes of a stationary lossless resonator as given by Eq. (2.9).
For a thorough discussion and overview of their properties
the reader may refer to the previous works [3,4]. In this
representation of the solution, the modal fields H±

� are used
as mere building blocks, and the fact that they also satisfy
Eq. (2.5), since they form a combination of stationary modes,
will be exploited. The intercavity coupling, as well as the effect
of loss and rotation, will be manifested through the expansion
coefficients Am. We decompose now the relative permittivity
of the entire structure εc(r) = εr (r) + iεi(r) to that of the
background structure εb(r) (without the resonators) as

1

εc(r)
= 1

εb(r)
+

∑
k

d(r,rk), (4.2a)

where d(r ,rk) represents the variation in 1/εc(r) introduced
by the kth resonator:

d(r,rk) = 1

εd (r − rk)
− 1

εb(r)
. (4.2b)

Here εd (r) = εdr (r) + iεdi(r) represents the perfect back-
ground with a single lossy resonator located at the origin.
With this decomposition the operator �c can be decomposed
into a series of operators representing the contribution of the
background structure and of each of the resonators separately:

�c = �b +
∑

k

�k, (4.3a)

where

�b=∇ × 1

εb(r)
∇ × ,�k=∇ × d(r,rk)∇ × . (4.3b)

Moreover, each of the summed modes in Eq. (4.1) satisfies
the wave equation for a lossless resonator:

(�b + �rm)Hm =
(ω0

c

)2
Hm, (4.4a)

where

�rm = ∇ × 1

εdr (r − rm)
∇ × . (4.4b)

In order to obtain a rotating lossy CROW solution for the
coefficients Am, we substitute the expansion in Eq. (4.1) into
the wave equation (2.4) and perform an inner product of
the resulting equation with Hn, with n roaming over all the
resonators involved. The result is the following algebraic set
of equations for the coefficients Am:∑

m

Am 〈�c Hm,Hn〉 = k2
∑
m

Am 〈Hm,Hn〉

+ ik
∑
m

Am 〈L� Hm,Hn〉. (4.5)

Since the indices m, n indicate resonator locations, and
exploiting the same assumptions (a) and (b) from Sec. II,
regarding the high confinement and the constant permittivity
inside the cavities, the last equation can be approximated [up
to the second order in εi(r)/εr (r)] as[

k2
0

(
1 − i

εi

εr

− ε2
i

ε2
r

)
− k2

] ∥∥H+
�

∥∥2
An +

∑
m

τm−nAm

− ik
∑
m

Am 〈L� Hm,Hn〉 = 0, (4.6)

where τm−n is given by

τm−n =
〈∑

k 
=m

�k Hm,Hn

〉
. (4.6a)

For m − n 
= ±1 these elements are exponentially small and
negligible compared to the dominant elements τ1 = τ−1 [16].
The third term in Eq. (4.6), containing the inner product, can
be simplified the same way as Eq. (2.8) in Sec. II, so that the
Eq. (4.6) reads as[
ω2

0

(
1 − i

εi

εr

− ε2
i

ε2
r

)
− ω2

]∥∥H+
�

∥∥2
An + τ1An+1 + τ−1An−1

+ 2(−1)nδω(�)ω
∥∥H+

�

∥∥2

(
1 − i

εi

εr

− ε2
i

ε2
r

)
= 0, (4.7)

where δω(�) is the Sagnac frequency shift of a single lossless
rotating resonator, and the elements τ1, τ−1 are given by [8]

τ1 = τ−1 = 	ω
∥∥H+

�

∥∥2
ω0

c2
, (4.7a)

with 	ω being the stationary CROW bandwidth. Substituting
Eq. (4.7a) into Eq. (4.7) and rearranging, we get the following
eigenvector and eigenvalue problem for the vector coefficients
An:

1

2
(An+1 + An−1) + (−1)n

δω(�)ω

ω0	ω

(
1 − i

εi

εr

− ε2
i

ε2
r

)

=
[
ω2 − ω2

0

(
1 − i εi

εr
− ε2

i

ε2
r

)]
2ω0	ω

An. (4.8)

Expressing the eigenvector elements An as

An = A0e
iβn, (4.9)

and inserting it into Eq. (4.8), we can find the transmission
function of a CROW as a function of β. For example, we solve
Eq. (4.8) for the lossless case (εi = 0) and for a lossy case
(εi = 0.2) with the following set of parameters: εr = 2.25,
	ω = 1013 rad/s, ω0 = 1014 rad/s, δω(�) = 0.2	ω. The
calculated transmission functions are shown in Fig. 6. The
curve of the lossy CROW (lower) is shifted towards lower
frequencies compared to that of the lossless CROW (upper)
and the rotation-induced gap (RIG) is smaller by 0.8%. These
results are consistent with those of a single lossy ring resonator
shown in Sec. III, where we have shown that losses reduce
both the resonant frequency of a resonator and the Sagnac
frequency shift. However, it should be emphasized that the
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FIG. 6. (Color online) Transmission function of the rotating
lossless and lossy CROWs.

rotation-induced gap is barely affected even by such substantial
losses.

It can be shown that the bandwidth of rotation-induced gap
is given by

	ωr = 2δω(�)

(
1 − ε2

i

ε2
r

)
. (4.10)

This expression is consistent with the example above when
putting into it the values of the relative permittivity. We get a
reduction of 0.8% in the RIG bandwidth.

Next, we examine the transmission of a finite-length CROW
at the center of the rotation-induced gap as a function of the
Sagnac shift δω(�). By substituting ω = ω0 into Eq. (4.8)
and solving for An, we find the amplitudes of the fields in
each resonator of the CROW. Particularly, we are interested
in the amplitude in the last resonator, which represents the
rotation-induced attenuation of the entire CROW. For example,
assuming a CROW consisting of 20 resonators, with the
following set of parameters: εr = 2.25, 	ω = 1013 rad/s,
ω0 = 1014 rad/s, we get the transmission as a function of
a normalized Sagnac frequency shift (of a single lossless
resonator, linearly proportional to the rotation rate) for a
number of values of εi as shown in Fig. 7. For the lossless case
(upper curve), the transmission is linear, indicating exponential
attenuation. As the losses grow, we observe a formation of
a dead zone around zero rotation rates. At that region the
response becomes flat, meaning the device is insensitive to
rotation. But as the rotation rate increases, the transmission of
a lossy device becomes very close to that of a lossless one.
The last observation means that if a lossy device is biased at
a nonzero rotation rate, the achieved performance in terms of
sensitivity can be very close to that of a lossless device.

A simple solution for the dead-zone formation is to apply
a constant artificial biasing (without the actual physical
rotation) to the CROW, by tuning the odd- and even-numbered
resonators in the chain to different resonance frequencies. This
biasing basically mimics the effect of rotation and opens a
band gap in the transmission function even in the absence of
rotation. As a result the operation point of the CROW is shifted
away from the problematic range and the dead-zone formation
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FIG. 7. (Color online) Transmission of a 20-resonator CROW for
different loss values as a function of a normalized Sagnac frequency
shift.

is eliminated. The simplest constant modulation can be done
during the fabrication process of the device. For example, a
slight variation in the effective perimeters of the odd-numbered
resonators from those of the even-numbered resonators gives
the desired result. In case a dynamic modulation is required,
it is possible to fabricate a thermoelectric heater on top of
each resonator [17]. By periodically changing the refractive
index of the material through the thermoelectric effect, one
can “bias” the CROW as required to achieve the best possible
performance. We demonstrate this concept in the following
example. Consider a CROW consisting of 20 ring resonators
with a radius of 100 μm, with a Q factor of 104, made of a
dielectric material with εr = 2.25, and an intercavity power
coupling of 0.01. The CROW input and output terminals
consist of dielectric waveguides coupled to the first and
the last rings, both with power coupling coefficients of 0.1.
The odd-numbered rings resonate at ω0 = 12.152 × 1014

rad/s, which corresponds to the angular mode 608 with a
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FIG. 8. (Color online) Transmission (normalized units) of a
“biased” CROW as a function of frequency (normalized to the free
spectral range of a single resonator with ω0) for various rotation rates.

023813-6



LOSSES IN ROTATING DEGENERATE CAVITIES AND A . . . PHYSICAL REVIEW A 85, 023813 (2012)

vacuum wavelength of 1.55 μm, while the even-numbered
rings resonate at ω0 × (1 + 15 × 10−6). This resonant
frequency shift corresponds to a virtual rotation rate of
3.37 × 107 rad/s. We calculated the CROW transmission as a
function of frequency for various values of rotation rate using
the transfer matrix method [9]. The result is shown in Fig. 8. A
band gap is formed near ω0 for a stationary CROW (middle)
as a result of periodic modulation of the resonant frequencies
of the rings. When the CROW rotates, the gap becomes deeper
or shallower, depending on the rotation direction expressed
as the sign of �. Therefore, biasing the CROW makes it also
possible to detect the direction of rotation.

V. CONCLUSIONS

We theoretically studied a slowly rotating lossy microcavity
with mode degeneracy, and a lossy CROW subjected to
rotation. It was shown that the Sagnac frequency splitting is
reduced as a result of loss, and that reduction is a second-order

effect in the material’s imaginary part of the permittivity. Also,
each mode’s specific attenuation coefficient splits into two
different values. In the example of a rotating ring resonator,
the quality factor of the contrarotating mode is lower than
that of the corotating mode. The study of a lossy CROW
has shown that the rotation-induced gap is reduced and the
dispersion curve is lowered in frequency. The transmission
of the rotating CROW was shown to have a dead zone for
low rotation rates and that region, which is insensitive to
rotation, becomes wider for higher losses. In order to avoid
this performance degradation, we have shown that a virtual
biasing of the device by periodic modulation of the resonators’
resonant frequencies can be a simple, yet effective solution.
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