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Dissipative quantum-light-field engineering
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We put forward a dissipative preparation scheme for strongly correlated photon states. Our approach is based
on a two-photon loss mechanism that is realized via a single four-level atom inside a bimodal optical cavity. Each
elementary two-photon emission event removes one photon out of each of the two modes. The dark states of this
loss mechanism are given by NOON states and arbitrary superpositions thereof. We find that the steady state of
the two cavity modes exhibits entanglement and, for certain parameters, a mixture of two coherent entangled
states is produced. We discuss how the quantum correlations in the cavity modes and the output fields can be
measured.
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I. INTRODUCTION

The performance of optical technologies such as metrology,
communication, and imaging can be improved beyond the
limitations of classical physics if nonclassical light sources
are employed. The major challenge for the realization of these
quantum-enhanced schemes is the deterministic generation of
custom-tailored photon states for specific applications. For
example, quantum information schemes based on continuous
variable entanglement [1] have the advantage that entangled
light fields can be generated unconditionally, but high-quality
resources with a large degree of entanglement are difficult to
produce. Another example is given by optical interferometry,
a technique that is employed in applications like gravitational
wave detectors, laser gyroscopes or optical imaging. It usually
aims at the precise estimation of a relative phase acquired by
light on its way through the interferometer. The achievable
precision of the phase estimation with classical light sources
is bound by the standard quantum limit (SQL) and scales
as 1/

√
N , where N is the (mean) number of photons in the

input field [2]. On the contrary, a better precision with the
same amount of resources can be obtained with entangled
light fields. A prominent example for photon states that allow
one to beat the SQL is given by so-called NOON states [3,4],
which also give rise to phase super-resolution [5]. Realistic
scenarios that include photon losses of the interferometer
require states with a more complicated structure than NOON
states for breaking the SQL [2,6–8]. Another example is given
by coherent entangled states [9,10] (CES) that allow one to
beat the SQL in lossless interferometers [11,12]. These states
yield a better phase estimation than NOON states in lossy
interferometers [13] if the same mean number of input photons
are taken into account. However, it remains challenging to
produce NOON [14,15] and CES [13,16,17] states with a high
success rate and with a large number of photons.

One of the most successful techniques for the preparation of
quantum mechanical systems in a desired state is dissipation.
Prominent examples are given by laser- and evaporative
cooling that allow one to realize a Bose-Einstein condensate.
Recently, the concept of dissipative quantum state preparation
[18–20] was transferred to the many-body domain where
dissipation alone prepares strongly correlated states. The
challenge in dissipative quantum state preparation is to design

a suitable dissipative process L� such that the desired state
|ψ〉 is stationary with respect to L� (i.e., L�(|ψ〉〈ψ |) = 0).
For example, a dissipative contact interaction was investigated
in one-dimensional molecular [21–24] and polariton [25–27]
systems, where dissipation effectively results in a repulsion
between particles. The entanglement of two distant atomic
ensembles via spontaneous emission was investigated in
[28,29], and the simulation of open quantum systems with
ion systems was considered in [30,31].

Here we present a dissipative preparation scheme for
strongly correlated photon states inside an optical cavity with
two modes a and b. We engineer a two-photon loss term via a
single, laser-driven four-level atom that couples to the cavity
modes (see Fig. 1). Each elementary emission event induced by
this two-photon loss term removes one photon out of mode a

and one photon out of mode b. The dark states of the engineered
dissipator L� are given by all strongly entangled NOON states
and superpositions thereof, and the stationary state inside the
cavity can be well approximated by a mixture of two CES
states for specific parameters. We show that the steady state
of the cavity modes alone is entangled and point out how the
entanglement of the cavity modes and of the output field can
be measured.

This paper is organised as follows: We give a detailed
description of our system (see Fig. 1) in Sec. II. Here we
also derive an effective master equation for the cavity modes
alone, which we obtain by an adiabatic elimination of the
atomic degrees of freedom. In Sec. III we analyze the steady
state of this effective master equation and identify the dark
states of the engineered two-photon loss mechanism. The
entanglement of the two cavity modes is discussed in Sec. IV.
We employ the negativity [32] and an inequality [33] based
on Einstein-Podolsky-Rosen–type observables as sufficient
entanglement criteria. The predictions of both measures are
compared, and Sec. V indicates how the criterion based on
the inequality [33] could be measured experimentally. The
latter Sec. V is mostly concerned with the entanglement of the
output field. We identify two suitable modes of the output field
whose entanglement can be inferred from two-mode squeezing
spectra. Finally, we address the experimental realisation of our
scheme in Sec. VI and conclude with a summary and outlook
of our results in Sec. VII.
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FIG. 1. (Color online) A single four-level atom interacts with two
cavity modes and a classical laser field. Ain and Bin are coherent input
fields that drive the corresponding cavity resonantly, and Aout, Bout are
the output fields. The inset shows the atomic level scheme. The laser
field with frequency ωL and Rabi frequency �L couples to the |2〉 ↔
|3〉 transition, and the cavity mode with frequency ωa interacts with
the |3〉 ↔ |1〉 transition. The second cavity mode with frequency ωb

interacts with the |4〉 ↔ |2〉 transition. ga and gb are the single-photon
Rabi frequencies corresponding to mode a and b, respectively. The
parameters γij are the decay rates of the various transitions, δ and �

label the detuning of the cavity fields with transition |3〉 ↔ |1〉 and
|4〉 ↔ |2〉, respectively, and ε is the two-photon detuning.

II. REDUCED MASTER EQUATION FOR CAVITY MODES

We consider a single four-level atom that interacts with
two cavity modes and a classical laser field (see Fig. 1). It
was shown theoretically [34] and experimentally [35] that the
considered level scheme can give rise to a strongly enhanced
Kerr nonlinearity. In addition, this level configuration allows
one to engineer a two-photon absorption process [26,36].
Note that we chose the two-cavity setup in Fig. 1 because
it allows us to present our model in a clear and unambiguous
way. However, our setup could very well be realized with a
single cavity where the two modes can be either two different
polarization or frequency modes. In particular, the two modes
could have the same frequency and orthogonal polarizations.

The aim of this section is to derive an equation of motion
for the reduced density operator 
F of the two cavity modes.
We begin with a detailed description of the system shown
in Fig. 1. The input field Ain (Bin) is a coherent field that
resonantly drives the cavity mode with frequency ωa (ωb).
The corresponding Hamiltonian is

Hin = h̄�∗
ae

iωat a + h̄�∗
be

iωbtb + H.c., (1)

where H.c. stands for the Hermitian conjugate and a (b) is
the annihilation operator of the cavity mode with frequency
ωa (ωb). The Rabi frequencies �a and �b are determined
by the input power of the fields Ain and Bin, respectively.
The cavity mode with frequency ωa couples to the atomic
transition |3〉 ↔ |1〉, and the mode with frequency ωb interacts
with the atom on the |4〉 ↔ |2〉 transition. In the rotating-wave
approximation (RWA), the interaction of the atom with the
cavity modes is described by the Hamiltonian

HC = −h̄gaa|3〉〈1| − h̄gbb|4〉〈2| + H.c., (2)

where ga (gb) is the single-photon Rabi frequency on the |3〉 ↔
|1〉 (|3〉 ↔ |2〉) transition. The detuning of the first cavity mode
with the |3〉 ↔ |1〉 transition is denoted by δ, and � is the
detuning of the second mode with the |4〉 ↔ |2〉 transition,

δ = ωa − ω31, � = ωb − ω42. (3)

The resonance frequencies on the |3〉 ↔ |1〉 and |4〉 ↔ |2〉
transitions have been labeled by ω31 and ω42, respectively. In
addition, the atom interacts with a classical laser field with
frequency ωL and Rabi frequency �L, and this field couples to
the |3〉 ↔ |2〉 transition. In the rotating-wave approximation,
the atom-laser interaction reads

HL = −h̄�L|3〉〈2|e−iωLt + H.c.. (4)

The free time evolution of the cavity modes and of the atomic
degrees of freedom is given by HF and HA, respectively,

HF = h̄ωaa
†a + h̄ωbb

†b, (5)

HA = h̄[ω2|2〉〈2| + ω3|3〉〈3| + ω4|4〉〈4|], (6)

and we set ω1 = 0 in Eq. (6). With these definitions, we arrive
at the master equation for the combined system of the atomic
degrees of freedom and the two cavity modes,


̇ = − i

h̄
[HF + Hin + HA + HL + HC,
] +Lγ 
 +Lκ
. (7)

The term Lγ 
 in Eq. (7) describes spontaneous emission of
the atom and is given by

Lγ 
 = −γ31

2
(S+

1 S−
1 
 + 
S+

1 S−
1 − 2S−

1 
S+
1 )

− γ32

2
(S+

2 S−
2 
 + 
S+

2 S−
2 − 2S−

2 
S+
2 )

− γ42

2
(S+

3 S−
3 
 + 
S+

3 S−
3 − 2S−

3 
S+
3 ), (8)

where γij is the full decay rate on the transition |i〉 ↔ |j 〉 (see
Fig. 1). The atomic transition operators are defined as

S+
1 = |3〉〈1|, S+

2 = |3〉〈2|, S+
3 = |4〉〈2|, (9)

and S−
i = (S+

i )†. The last term Lκ
 in Eq. (7) accounts for
photon losses at the cavity mirrors and reads

Lκ
 = −κa

2
(a†a
 + 
a†a − 2a
a†)

− κb

2
(b†b
 + 
b†b − 2b
b†), (10)

where κa (κb) is the damping rate of mode a (b).
In Appendix A, we derive from Eq. (7) the master equation

for the reduced density operator 
F of the cavity modes alone,


F = TrA
 = 
11 + 
22 + 
33 + 
44, (11)
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and 
νν denotes 〈ν|
|ν〉. If the two-photon detuning ε = ωa −
ωL − ω2 vanishes, the master equation for the density operator

̃F of the cavity modes in an interaction picture with respect
to HF in Eq. (5) is given by

˙̃
F = Lin
̃F + Lκ 
̃F + LU 
̃F + L�
̃F, (12)

where

Lin
̃F = −i[�∗
aa + �∗

bb + �aa
† + �bb

†,
̃F] (13)

accounts for the coherent driving of the cavity modes and the
cavity decay term Lκ 
̃F is defined in Eq. (10). The two terms
LU 
̃F and L�
̃F in Eq. (12) represent the influence of the
single atom on the evolution of the two cavity modes. More
specifically,

LU 
̃F = −iU [(ba)†ba,
̃F] (14)

describes a coherent two-particle interaction between photons
in modes a and b. The strength of this interaction is determined
via the parameter

U = |ga|2|gb|2(
�2 + γ 2

42/4
)|�L|2 �. (15)

Note that the sign of U depends on the sign of the detuning �

defined in Eq. (3). It follows that the interaction described by
LU can be repulsive or attractive. The last term in Eq. (12) is
given by

L�
̃F = −�

2
[(ba)†ba
̃F + 
̃F(ba)†ba − 2ba
̃F(ba)†] (16)

and represents a two-photon loss term with decay rate

� = |ga|2|gb|2(
�2 + γ 2

42/4
)|�L|2 γ42. (17)

The dissipator L� gives rise to the emission of correlated pho-
ton pairs. In each elementary emission process, L� removes
one photon out of mode a and one photon out of mode b. In the
following, we focus on the quantum correlations between the
cavity modes that are induced by the two-photon loss term L� .
For the rest of this paper, we will thus consider the purely dis-
sipative scenario where the conservative photon-photon inter-
action vanishes (i.e., U = 0). This situation arises when mode
b is resonant with the |4〉 ↔ |2〉 transition and thus � = 0.

Next we summarize the conditions for the validity of the
reduced master Eq. (12). The adiabatic elimination of the
atomic degrees of freedom requires that the atomic decay rates
γij are large as compared to the other system parameters,

γ42, γ31, γ32 � κa, κb,
√

NaNb�,�a,�b,|δ|, (18)

where Na (Nb) is the largest relevant photon number in mode
a (b). The master Eq. (12) for the cavity modes holds under the
assumption that the two-photon detuning ε vanishes. Since ε =
0 can be adjusted only within a certain accuracy, we establish
conditions that ensure the validity of Eq. (12) for ε �= 0 in
Appendix B. Finally, the restriction to terms up to third order
in the expansion of the density operator (A7) requires

Na|ga|2
|�L|2 	 1,

Nb|gb|2
|�L|2 	 1, (19)

where Na (Nb) is the maximal photon number in mode a (b).

III. STEADY STATE ANALYSIS

In this section we characterize the steady state of the master
Eq. (12) with a purely dissipative two-photon interaction
(� = U = 0). Throughout this work we assume that the cavity
decay rates κa and κb are different from zero. In this case
and for time-independent input fields �a and �b, the master
Eq. (12) exhibits a unique steady state. If the two-photon decay
term � vanishes, this unique steady state is the pure state [18]

̃F = |ψ〉〈ψ |, where |ψ〉 = |αa,αb〉 and |αa〉 (|αb〉) denotes a
coherent state in mode a (b) with amplitude αa = −2i�a/κa

(αb = −2i�b/κb).
Next we turn to the general situation with � �= 0. In this

case, the analytical steady state of the master Eq. (12) is
difficult to obtain. A numerical study shows that the steady
state of Eq. (12) is in general a mixed state. In addition, an
intuitive understanding of the structure of this state can be
gained via the dark states [18] |D〉 of the two-photon loss term
in Eq. (16) that obey L�(|D〉〈D|) = 0. Since L� removes
one photon out of each cavity mode in every elementary
emission event, all pure dark states |D〉 must be of the
form

|D〉 = c1|φa,0〉 + c2|0,ϕb〉, (20)

where |φa〉 and |ϕb〉 are arbitrary states (including the vacuum)
of mode a and b, respectively. Note that L� supports an
infinite number of dark states, and the most general dark
state is given by a mixture of different pure dark states that
are of the form of |D〉 in Eq. (20). In the regime where the
two-photon decay rate � dominates the coherent drive terms
�a , �b and the cavity decay rates κ1, κ2, one can expect
that the stationary state of Eq. (12) is approximately a dark
state of L� alone. This is confirmed by Fig. 2, which shows
the population of the cavity Fock states |na,nb〉 in steady
state for various parameters. These results were obtained via
a numerical solution of Eq. (12). The relative importance
of the two-photon loss term (16) is the smallest in Fig. 2(a)
and the largest in Fig. 2(c). In the latter case it is apparent that
the steady state is comprised of the dark states in Eq. (20).
Only Fock states |0,nb〉 and |na,0〉 are significantly populated,
while the population of other states |na,nb〉 with na �= 0 and
nb �= 0 is strongly suppressed. This result can be understood
as follows: All Fock states |na,nb〉 with na �= 0 and nb �= 0
experience not only the cavity loss term Lκ , but the additional
(strong) two-particle lossesL� . This suppresses the population
of these states via the cavity input fields.

The cavity pump fields �a , �b induce transitions between
dark states |na,0〉, |0,nb〉 and neighboring Fock states |na,1〉,
|1,nb〉 (na �= 0 and nb �= 0). The latter states are not dark states
of L� and thus decay rapidly. However, we point out that
this mechanism does not induce an indirect decay of the dark
states |0,nb〉, |na,0〉 if � becomes much larger than all other
system parameters. The reason is that the transitions |0,nb〉 →
|1,nb〉 → |0,nb − 1〉 (|na,0〉 → |na,1〉 → |na − 1,0〉) occur
at an effective rate [37] �2

a/� 	 1 (�2
b/� 	 1) for �a 	 �

(�b 	 �) and are therefore negligible. This result can be
regarded as a manifestation of the quantum Zeno effect [22]
and explains the sharp population contrast between dark states
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FIG. 2. (Color online) Population of the cavity Fock states |na,nb〉 in steady state for (a) �a = �b = 1.32 × 10−2γ42, κa = κb = 10−2γ42,
(b) �a = �b = 6.26 × 10−3γ42, κa = κb = 0.5 × 10−2γ42, and (c) �a = �b = 1.16 × 10−3γ42, κa = κb = 10−3γ42. The common parameters
in (a)–(c) are � = γ42/100, � = U = 0, δ = 0, and ε = 0. The mean photon number for all states in (a)–(c) is 〈N̂〉 = 5.

|na,0〉, |0,nb〉 and neighboring Fock states |na,1〉, |1,nb〉 in
Fig. 2(c).

The most general pure dark state in Eq. (20) is a coherent
superposition of the states |φa,0〉 and |0,ϕb〉. This is a
remarkable feature since it implies that all strongly entangled
NOON states

|NOON〉 = 1√
2

(|N,0〉 + |0,N〉) (21)

and coherent superpositions thereof are dark states of the
dissipator L� . Next we investigate whether the steady state
of Eq. (12) contains entangled dark states or just a mixture of
the states |φa,0〉 and |0,ϕb〉. Note that this information is not
contained in Fig. 2 because it does not contain any information
about the off-diagonal matrix elements of the density operator.
We find that the steady state exhibits nonvanishing coherences
in the Fock basis if the modes a and b appear in a completely
symmetric fashion in the master Eq. (12). For example, for the
parameters in Fig. 2(c), the diagonalization of the numerically
computed density operator shows that the steady state is very
well approximated by a mixture of two coherent entangled
states (CES),


̃F ≈ p1|CES+(α1)〉〈CES+(α1)|
+p2|CES−(α2)〉〈CES−(α2)|, (22)

where p1 ≈ 0.499, p2 ≈ 0.459, α1 ≈ −2.23i, α2 ≈ −2.29i

and the CES states are defined as [9,13]

|CES±(α)〉 = 1√
2(1 ± e−|α|2 )

(|α,0〉 ± |0,α〉). (23)

The overlap between the approximate state in Eq. (22) and the
full numerical solution in the trace norm is 95.44%.

Recently, the performance of CES in interferometric pre-
cision measurements was discussed in [13]. Since it was
found that these states perform better than NOON states in
a lossy interferometer, we discuss the suitability of the state in
Eq. (22) for interferometric precision measurements. We find
that the mixture in Eq. (22) performs approximately as good
as classical light with a well-defined phase. Note, however,
that the performance of a pure CES and the mixture in Eq.
(22) differ only if the losses of the interferometer are smaller
than approximately 25%. In this regime of a near-perfect
interferometer, pure CES entangled states allow one to access

the quantum regime that is currently inaccessible with our
preparation method.

The previous discussion indicates that the steady state of
the two cavity modes can be prepared in an entangled state.
The entanglement properties of the cavity modes and of the
output field are discussed in the following Secs. IV and V,
respectively.

IV. ENTANGLEMENT OF CAVITY FIELD

The two modes of the cavity form a bipartite quantum
system. By definition, the quantum state 
F of the cavity field
is said to be entangled if and only if it is nonseparable, and 
F

is separable if and only if it can be written as


F =
∑

j

pj
a(j ) ⊗ 
b(j ). (24)

Here, 
a(j ) and 
b(j ) are normalized states of the modes a

and b, respectively, and the parameters pj � 0 are constrained
by

∑
j pj = 1.

We employ two criteria that are both sufficient for the
entanglement of the cavity modes. We begin with the negativity
[32], which is defined as

N (
F) = 1
2

(
1 − ∥∥


Ta

F

∥∥
1

)
, (25)

where 

Ta

F denotes the partial transpose of 
F with respect to the
subsystem a. The trace norm ‖A‖1 = Tr(

√
A†A) of an operator

A is equal to the sum of its singular values. Note that the
negativity is an entanglement monotone, and henceN (
F) > 0
is a sufficient criterion for the entanglement of the two field
modes. The second criterion is derived in [33] and states that
the system is in an entangled quantum state if the total variance
of two Einstein-Podolsky-Rosen–type (EPR-type) operators û

and v̂ of the two modes satisfy the inequality

〈(δûcav)2 + (δv̂cav)2〉 < 2, (26)

where

ûcav = x̂a + x̂b, v̂cav = p̂a − p̂b. (27)

For any operator X, we define δX̂ = X̂ − 〈X̂〉, and x̂k and p̂k

are local operators which correspond to mode k ∈ {a,b} with
frequency ωk . The only restriction imposed on the operators
x̂k and p̂k is that they must obey the commutation relation

[x̂k,p̂l] = iδkl, (28)
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but are otherwise arbitrary. Here we choose for x̂k and p̂l the
quadrature operators of the cavity fields

x̂a = 1√
2

(ãe−iφ + ã†eiφ), (29)

p̂a = 1√
2i

(ãe−iφ − ã
†
ke

iφ), (30)

x̂b = 1√
2

(b̃e−iφ + b̃†eiφ), (31)

p̂b = 1√
2i

(b̃e−iφ − b̃
†
ke

iφ), (32)

where ã = eiωata and b̃ = eiωbtb are slowly varying in time.
Since ûcav and v̂cav can be identified with the operators
corresponding to the center-of-mass motion and the relative
momentum of two quantum mechanical oscillators, respec-
tively, they are called EPR-type operators. The phase φ is
arbitrary and will be optimized such that a maximal violation
of the inequality (26) is achieved.

The inequality in Eq. (26) is equivalent to

〈: [(δûcav)2 + (δv̂cav)2] :〉 < 0, (33)

where : : denotes normal ordering (all creation operators to
the left) with respect to the operators a, b and their adjoints.
For reasons that will become clear later (see Sec. V), we will
employ Eq. (33) instead of Eq. (26). With the help of Eqs. (27)
and (29)–(32), we find

〈: [(δûcav)2 + (δv̂cav)2] :〉 = 2[〈δã†δã〉 + 〈δb̃†δb̃〉
+ 〈δãδb̃〉e−2iφ + 〈δã†δb̃†〉e2iφ].

(34)

We numerically solve for the steady state of the den-
sity operator of the two cavity modes via the master
equation (12) for various parameters � and different intensities
of the coherent input fields. The result for the entanglement
criteria in equations (25) and (34) is shown in Figs. 3(a) and
3(b), respectively. It follows that the steady state of the system
exhibits entanglement. The negativity and the normally or-
dered variance of the EPR-type operators show a qualitatively
similar (but mirrored) behavior in the weak-driving regime.
A different situation arises if the Rabi frequencies �a and
�b become comparable to the cavity decay rates. Although
the cavity modes are entangled for all parameters in Fig. 3(a)
(the negativity is larger than zero), the sufficient entanglement
criterion in Eq (33) is not fulfilled for larger values of �/γ42.
We show in Sec. V and Appendix C that the quantity in
Eq. (34) and hence the entanglement criterion in Eq. (33)
can be measured experimentally. The discussion above shows
that this approach allows one to capture the entanglement for a
large range of parameters, but it fails to detect the entanglement
in some cases.

V. ENTANGLEMENT OF OUTPUT FIELD

The output field of the cavity is a multimode field.
The question of whether the output field is entangled thus
requires us to specify the corresponding modes. In standard
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FIG. 3. (Color online) Numerical evaluation of (a) the negativity
and (b) the inequality in Eq. (33) for the two cavity modes in steady
state. The results are shown as a function of the two-particle loss
rate � and for different intensities of the coherent driving fields. The
parameters are φ = π/2, κa = κb = 10−2γ42, � = U = 0, δ = 0, and
ε = 0. The red dashed line corresponds to �a = �b = 0.2 × 10−2γ42,
the blue dotted line stands for �a = �b = 0.4 × 10−2γ42, the green
dashed-dotted line corresponds to �a = �b = 1 × 10−2γ42, and the
black solid line stand for �a = �b = 1.6 × 10−2γ42.

input-output theory [38,39], the output fields Aout and Bout (see
Fig. 1) are defined as

Aout(t) = 1√
2π

∫
dωe−iω(t−t1)A(ω,t1), (35)

Bout(t) = 1√
2π

∫
dωe−iω(t−t1)B(ω,t1). (36)

Here A(ω,t1) and B(ω,t1) are the Heisenberg operators of the
continuous output modes taken at time t1 → ∞. The latter
operators obey the equal-time commutation relations

[A(ω,t),A†(ω′,t)]= [B(ω,t),B†(ω′,t)]=δ(ω − ω′). (37)

Here we focus on the entanglement between two modes
corresponding to the central frequencies ωa and ωb of Aout and
Bout, respectively. Our aim is to follow a similar approach as in
Eq. (33) where we employ the variance of EPR-type operators
as a sufficient criterion for entanglement [33]. Therefore, we
have to define position- and momentum-like operators that
obey the canonical commutation relation (28). In order to
achieve this, we have to construct a discrete mode of Aout

from the continuous mode operator A(ω,t1). This transition

023812-5



MARTIN KIFFNER, UWE DORNER, AND DIETER JAKSCH PHYSICAL REVIEW A 85, 023812 (2012)

can be achieved if we average A(ω,t1) over a small frequency
interval �ω centered at ωa ,

A0 = 1√
�ω

∫ �ω/2

−�ω/2
dωei(ωa+ω)t1A(ωa + ω,t1),

= 1√
2π�ω

∫ �ω/2

−�ω/2
dω

∫ ∞

−∞
dtÃout(t)e

iωt , (38)

where the output field Ãout(t) = eiωatAout(t) is slowly varying
in time. Similarly, we define a discrete mode of the output field
Bout centered at ωb:

B0 = 1√
2π�ω

∫ �ω/2

−�ω/2
dω

∫ ∞

−∞
dtB̃out(t)e

iωt , (39)

where B̃out(t) = eiωbtBout(t). The modes A0 and B0 represent
modes of the output fields Aout and Bout that are experimentally
accessible via spectral filtering. Furthermore, we note that
〈A†

0A0〉 can be interpreted [40] as the mean number of photons
emitted into the mode A0 within the time 1/�ω (the same
statement holds for the mode B0).

Since the two discrete modes A0 and B0 obey the commu-
tation relations

[A0,A†
0] = [B0,B†

0] = 1, [A0,B†
0] = [A0,B0] = 0, (40)

we can define position- and momentum-like operators for each
mode that obey the canonical commutation relation (28),

x̂A = 1√
2

(A0e
−iφ + A†

0e
iφ), (41)

p̂A = 1√
2i

(A0e
−iφ − Ã

†
0e

iφ), (42)

x̂B = 1√
2

(B0e
−iφ + B†

0e
iφ), (43)

p̂B = 1√
2i

(B0e
−iφ − B†

0e
iφ). (44)

The phase φ in Eqs. (41) and (44) is arbitrary and later
on chosen such that the necessary separability condition is
maximally violated. We can now proceed as in Sec. IV and
define EPR-type operators

û0 = x̂A + x̂B, v̂0 = p̂A − p̂B. (45)

With the help of Eqs. (45) and (41)–(44), we find that the
normally ordered total variance of the operators û0 and v̂0 is
given by

〈: [(δû0)2 + (δv̂0)2] :〉= 1

�ω

∫ �ω/2

−�ω/2
dω[Su(ω) + Sv(ω)],

(46)

where Su(ω) and Sv(ω) are related to the two-mode squeezing
spectra of the output fields. A definition of these functions
and how they can be calculated numerically and measured
experimentally is provided in Appendix C. According to the
entanglement criterion in [33], the modes A0 and B0 are
entangled if the left-hand side of Eq. (46) is smaller than zero.
If �ω is sufficiently small, this means that modes A0 and B0

are entangled if Su(0) + Sv(0) < 0. The numerical evaluation
of the squeezing spectra Su and Sv in Fig. 4 demonstrates
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FIG. 4. (Color online) Squeezing spectra. The blue dashed line
corresponds to Su(ω), the red dotted line to Sv(ω), and the black
solid line shows Su(ω) + Sv(ω). The parameters are φ = π/2, κ =
κa = κb = 10−2γ42, � = γ42/100, �a = �b = 0.7 × 10−2γ42, � =
U = 0, δ = 0, and ε = 0.

clearly the entanglement of the output modes. For the chosen
parameters, we find a two-mode squeezing of −1.3 dB in Su

and −6.1 dB in Sv at the central frequency ω = 0.
So far we considered the entanglement between the two

central-frequency components at ωa and ωb. Note that our
approach can be generalized to modes centered around ωa − ω

and ωb + ω if the output spectra of modes a and b are com-
pletely symmetric and if the two modes are interchangeable
in the master Eq. (12). In previous works [1,41,42], EPR-type
operators other than those in Eqs. (45) with (41)–(44) were
defined, and their variances can also be related to squeezing
spectra. However, in the latter approach it is not obvious to
identify the modes of the output field that are entangled.

Finally, we address the experimental verification of the
entanglement inside the cavity. To this end, we note that

1

κ

∫ ∞

−∞
dω[Su(ω) + Sv(ω)] = 〈: [(δûcav)2 + (δv̂cav)2] :〉, (47)

and hence it follows that the field inside the cavity is entangled
if the sum of Su(ω) + Sv(ω), integrated over all frequencies,
is negative [see Eq. (33)]. Note that the variance of the
cavity fields can be measured directly without recording the
squeezing spectra [43].

VI. EXPERIMENTAL REALIZATION

Next we discuss the experimental implementation of our
scheme in Fig. 1. A key requirement of our scheme is that
the single atom should have a very well defined position that
changes very little over the range of an optical wavelength.
Ideal candidates are therefore single trapped neutral atoms
[44,45] or ions [46–50] inside an optical cavity. Recently,
several experiments with 40Ca+ ions inside a high-finesse
optical cavity have been reported [46–49]. A suitable candidate
would also be given by a 138Ba+ ion [50], where the level
scheme in Fig. 1 could be realized between two J = 1/2
Zeeman manifolds via polarization and frequency selection.
Alternatively, the level scheme in Fig. 1 can be realized with
artificial atoms [51] coupled to microwave fields.
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In our approach we obtain an effective, engineered master
equation for the cavity modes alone via an adiabatic elimi-
nation of the atomic degrees of freedom. In particular, this
requires that that the cavity decay rates are much smaller than
the atomic spontaneous emission decay rates [see Eq. (18)]. In
a recent experiment [46,47] with a 40Ca+ ion in a high-finesse
cavity, the ratio between the atomic decay rate and the
corresponding cavity decay rate is γ /κ ≈ 16. At the same
time, the coupling constant g was larger than the atomic decay
rate, g/γ ≈ 2 [46]. However, we show in Appendix D that
it is advantageous to realize our scheme with g/γ < 1. This
opens up the possibility to increase the length L of the cavity
which will reduce the magnitudes of the coupling constant
|g| ∼ 1/

√
L and of the cavity decay rate κ ∼ 1/L. From the

above example, we conclude that values of γ /κ ≈ 100 should
be achievable with current technology. Valid choices for the
remaining system parameters that comply with the conditions
(18) and (19) of our model are discussed in Appendix D. In
summary, an increase in the number of photons in the cavity
requires a reduction in the two-photon decay rate �. Note
that this does not necessarily result in a smaller entanglement
between the cavity modes. On the contrary, Fig. 3 indicates that
the maximal entanglement is attained for smaller two-photon
decay rates � if the number of photons increases (see Sec. IV).

VII. SUMMARY AND OUTLOOK

This paperinvestigates a scheme for dissipative quantum
state preparation for two optical cavity modes a and b.
We engineer an effective reservoir via a single, laser-driven
four-level atom that interacts with both cavity modes on
separate transitions. The adiabatic elimination of the atomic
degrees of freedom gives rise to a master equation for the
cavity modes alone and contains a two-photon loss term. Each
elementary emission event induced by this two-photon loss
term removes one photon out of mode a and one photon out of
mode b. We find that the dark states of this loss term are given
by all entangled NOON states and superpositions thereof. If
the two cavity modes are interchangeable in the corresponding
master equation, the steady state of the cavity field exhibits
entanglement. We employ the negativity as well as an inequal-
ity [33] based on Einstein-Podolsky-Rosen–type observables
as sufficient entanglement criteria. While the former is an
entanglement monotone, the latter can be measured via two
balanced homodyne detection setups of the output fields.
Furthermore, we define suitable modes of the output fields and
show that they can be entangled as well. The entanglement
of the output modes can be verified experimentally via the
measurement of two-mode squeezing spectra.

The stationary state inside the cavity can be well approxi-
mated by a mixture of two CES states for specific parameters.
While a pure CES state is able to access the quantum regime
in interferometric precision measurements with small photon
losses inside the interferometer, the mixture prepared by our
dissipative scheme does not perform better than classical light
with a well-defined phase. However, modifications of our
scheme may pave the way toward the dissipative preparation of
NOON states and CES that are relevant for quantum-enhanced
technologies. In the ideal case, it may help to prepare photon
states that allow one to achieve the ultimate quantum limit

[7] in interferometric precision measurements with realistic
photon losses.
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APPENDIX A: DERIVATION OF REDUCED
MASTER EQUATION

Here we outline the derivation of the effective master
equation for the cavity modes in Eq. (12). The starting point
for our derivation is the full master equation in Eq. (7). Next,
we apply a unitary transformation W = WF ⊗ WA to Eq. (7),
where WF = exp[iHFt/h̄] acts only on the cavity modes, and

WA = exp{i[HA/h̄ + ε|2〉〈2| + δ|3〉〈3| + (� + ε)|4〉〈4|]t}
(A1)

acts only on the atomic degrees of freedom. The density
operator in the new frame is denoted by 
̃ = W
W † and obeys
the equation of motion

˙̃
 = − i

h̄
[H0 + HC,
̃] + Lγ 
̃ + LIO
̃, (A2)

where

H0 = −h̄[ε|2〉〈2| + δ|3〉〈3| + (� + ε)|4〉〈4|
+�L|3〉〈2| + �∗

L|2〉〈3|], (A3)

and ε = ωa − ωL − ω2 is the two-photon detuning. The
superoperator LIO = Lin + Lκ in Eq. (A2) accounts
for the external driving via the input fields and the damping of
the cavity modes, where Lin and Lκ are defined in Eqs. (13)
and (10), respectively. The master equation for the transformed
density operator 
̃F of the cavity modes is obtained if we trace
over the atomic degrees of freedom in Eq. (A2),

˙̃
F = (ig∗
a [a†,
̃31] + ig∗

b [b†,
̃42] + H.c.) + LIO
̃F. (A4)

In order to eliminate the coherences 
̃31 and 
̃42 from Eq. (A4),
we solve Eq. (A2) perturbatively in the Hamiltonian HC

describing the interaction between the atom and the cavity
modes. In order to obtain the desired expansion of the full
density operator 
̃ in the coupling constants ga and gb, we
rewrite Eq. (A2) in a form where the atom-cavity interaction
is separated from the other terms,

˙̃
 = L0
̃ − i

h̄
[HC,
̃], (A5)

and the superoperator L0 is defined by

L0
̃ = − i

h̄
[H0,
̃] + Lγ 
̃ + LIO
̃. (A6)

Expansion of the density operator in Eq. (A5) as


̃ =
∞∑

k=0


̃(k), (A7)

where 
̃(k) denotes the contribution to 
̃ to kth order in HC,
leads to the following set of coupled differential equations:

˙̃
(0) = L0
̃
(0), (A8)
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˙̃
(k) = L0
̃
(k) − i

h̄
[HC,
̃(k−1)], k > 0. (A9)

Equation (A8) describes the interaction of the atom with the
classical laser fields to all orders and in the absence of the
cavity fields. Higher-order contributions to 
̃ can be obtained
if Eq. (A9) is solved iteratively. Equations (A8) and (A9) must
be solved under the constraints Tr(
̃(0)) = 1 and Tr(
̃(k)) = 0
(k > 0). We employ a Markov-type approximation and assume
that the atom reaches its steady state on a timescale that is
fast compared to the typical evolution time of 
̃F induced
by the atom-cavity coupling. In addition, we suppose that
the cavity decay rates κa , κb and the Rabi frequencies �a ,
�b are small compared to the atomic decay rates γij and
hence neglect the contribution of the superoperator LIO to
L0. Under these conditions, the set of Eqs. (A8) and (A9) can
be solved in a straightforward manner if L0 is represented by
a matrix. However, the procedure is tedious since HC contains
the operators a and b, and hence one has to keep track of the
operator ordering. Up to third order, 
̃ ≈ 
̃(0) + 
̃(1) + 
̃(2) +

̃(3), and for vanishing two-photon detuning ε = 0 we find


̃31 = Aga|gb|2b†ba
̃F, (A10)


̃42 = Agb|ga|2ba
̃Fa
†, (A11)

where

A = −1

(� + iγ42/2)|�L|2 . (A12)

Finally, we substitute Eqs. (A10) and (A11) in Eq. (A4) and
obtain the master equation (12).

APPENDIX B: FINITE TWO-PHOTON DETUNING ε �= 0

Here we establish conditions that ensure the validity of
Eq. (12) for nonzero two-photon detuning. For simplicity we
limit the discussion to the case of a purely dissipative photon-
photon interaction (U = � = 0). In the ideal case ε = 0, only
the third-order term contributes to the coherences in Eqs. (A10)
and (A11). The first-order term for ε �= 0 gives rise to an
additional term L1
F on the right-hand side of Eq. (12). Up to
second order in ε, we find

L1
F = − i

h̄
[H1,
F] − �1

2
(a†a
F + 
Fa

†a − 2a
Fa
†), (B1)

where

H1 = −h̄|ga|2 δε2 + ε|�L|2
2|�L|4 a†a, (B2)

�1 = γ3
|ga|2
|�L|4 ε2, (B3)

and γ3 = γ31 + γ32 is the full decay rate of state |3〉. Here, H1

is just a frequency shift of mode a, and the term proportional to
�1 describes an additional decay channel for photons in mode
a. This term can be neglected provided that

�1 = γ3
|ga|2
|�L|4 ε2 	 κa. (B4)

The second-order contribution 
̃(2) is equal to zero for all
parameters. On the other hand, other third-order terms occur
for ε �= 0 that give rise to other two-particle processes in

Eq. (12). The magnitude of these terms relative to the terms
proportional to � in Eq. (12) is negligible provided that
|ε|, |δ| 	 γ31, γ32, γ42 and

|ε|(γ3 + γ42)

|�L|2 	 1,
|δε|

|�L|2 	 1. (B5)

APPENDIX C: DEFINITION AND MEASUREMENT OF
SQUEEZING SPECTRA

The two-mode squeezing spectra are defined as

Su(ω) = 2
∫ ∞

0
dτ cos ωτ 〈T : δûout(t + τ )δûout(t) :〉, (C1)

Sv(ω) = 2
∫ ∞

0
dτ cos ωτ 〈T : δv̂out(t + τ )δv̂out(t) :〉, (C2)

where

ûout = x̂A + x̂B, v̂out = p̂A − p̂B, (C3)

and the quadratures of the output field are given by

x̂A = 1√
2

(Ãoute
−iφ + Ã

†
oute

iφ), (C4)

p̂A = 1√
2i

(Ãoute
−iφ − Ã

†
oute

iφ), (C5)

x̂B = 1√
2

(B̃oute
−iφ + B̃

†
oute

iφ), (C6)

p̂B = 1√
2i

(B̃oute
−iφ − B̃

†
oute

iφ). (C7)

The operator T in Eq. (C2) orders products of annihilation
operators such that their time arguments increase from right to
left, and products of creation operators are ordered such that
time arguments increase from left to right. Since the definition
of Su and Sv comprises only expectation values of normally
and time-ordered products of the output fields, we can easily
represent Su and Sv in terms of the cavity fields [38],

Su(ω) = 2κ

∫ ∞

0
dτ cos ωτ 〈T : δûcav(t + τ )δûcav(t) :〉, (C8)

Sv(ω) = 2κ

∫ ∞

0
dτ cos ωτ 〈T : δv̂cav(t + τ )δv̂cav(t) :〉, (C9)

where ûcav and v̂cav are defined in Eq. (27). The general
setup for the measurement of the two-mode squeezing spectra
[41,42] is shown in Fig. 5. The output field Aout (Bout) is
superimposed with a strong coherent field at a 50 : 50 beam
splitter, and the photocurrents of each detector are subtracted.
A similar measurement is performed for the output field Bout.
The local oscillator fields are given by Aloc = |α|eiθ and
Bloc = |β|eiθ , where |α| = |β| and the phase θ = φ − π/2
determines the phase φ occurring in the definition (C5)–(C7)
of the quadrature operators. The photocurrents of the two
balanced homodyne detections are added and the resulting
current i is fed into a spectrum analyser. The recorded spectrum
is then given by [52]

Pu(ω) = 1

π

∫ ∞

0
dτ cos ωτ lim

t→∞[〈i(t)i(t + τ )〉 − 〈i(t)〉2]

= Pshot[1 + ηSu(ω)], (C10)
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−

−

Aloc

Bloc

Aout

Bout

+ spectrum
analyzer

FIG. 5. (Color online) Measurement of the two-mode squeezing
spectrum Su(ω) in Eq. (C8). The output field Aout (Bout) is super-
imposed with a strong coherent field at a 50 : 50 beam splitter, and
the photocurrents of each detector are subtracted. The photocurrents
of the two balanced homodyne detections are added and fed into a
spectrum analyzer. The resulting spectrum is given by Eq. (C10) and
directly proportional to Su(ω).

where Pshot is the shot-noise limit and η is the detection
efficiency. The spectrum Sv(ω) can be measured with the
same setup if the phases of the local oscillators are changed
according to θ → θ + π/2, and the photocurrents of the two
homodyne detections have to be subtracted rather than added.

APPENDIX D: PARAMETER CHOICES

The validity of our approach requires that the conditions
in Eqs. (18) and (19) are fulfilled. Here we discuss the
possible choices for the system parameters that comply with
these conditions. For simplicity, we assume that the coupling
constants, cavity decay rates, Rabi frequencies, and the Fock

state cutoffs are identical for both modes. We thus set |ga| =
|gb| = |g|, κ1 = κ2 = κ , �a = �b = � and Na = Nb = N .
Furthermore, all atomic decay rates are assumed to be the
same, γ = γ31 = γ32 = γ42, and we introduce dimensionless
parameters p̃ = p/γ that are denoted by a tilde. Since we
are only interested in the purely dissipative situation, we limit
the discussion to the case � = 0 such that the conservative
photon-photon interaction U vanishes. We begin with the
cutoff N in the Fock state basis that is determined by the
Rabi frequency �̃ driving the cavity modes, the cavity decay
rate κ̃ , and the two-photon decay rate �̃. Note that Eq. (18)
requires these parameters to be much smaller than unity,
and thus N cannot be arbitrarily large for realistic values of
κ̃ . Next we discuss the condition for the two-photon decay
rate �̃ in Eq. (18) and the inequality in Eq. (19). For a
given cutoff N of the Fock state basis, these two conditions
read

N�̃ 	 1, x = N |g̃|2
|�̃L|2 	 1. (D1)

The two small parameters x and N�̃ determine the absolute
values of the coupling constant g̃ and of the Rabi frequency
�̃L corresponding to the external laser that drives the ion. With
the explicit expression for �̃ in Eq. (17), we find

|g̃| = 1

2

√
N�̃

x
, |�̃L| = N

√
�̃

2x
. (D2)

Since x and N�̃ are both small parameters, one can achieve
|g̃| < 1 and therefore the strong-coupling regime of cavity
QED is not required. This is advantageous because Eq. (D2)
implies that |�̃L/g̃| = √

N/x, and hence |�̃L| can be much
larger than |g̃|. It follows that small values of |g̃| ensure that
the scaled Rabi frequency |�̃L| remains reasonably small. In
addition, a smaller coupling constant facilitates the realization
of cavity decay rates that are much smaller than the atomic
decay rates (see Sec. VI).
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