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Resonance-fluorescence-localization microscopy with subwavelength resolution
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We evaluate the resonance-fluorescence spectrum of a bunch of two-level atoms driven by a gradient coherent
laser field. The result shows that we can determine the positions of atoms from the spectrum even when the
atoms locate within the subwavelength range and the dipole-dipole interaction is significant. This far-field
resonance-fluorescence-localization microscopy method does not require point-by-point scanning, and it may be
more time efficient. We also give a possible scheme to extract the position information in an extended region
without requiring more peak power of the laser. Finally, we also briefly discuss how to perform two-dimensional
imaging based on our scheme.
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I. INTRODUCTION

The resolution limit of traditional far-field optical mi-
croscopy is about a half wavelength of the light [1,2]. To get
a better resolution, one has to switch to a shorter wavelength
(e.g., electron microscope), which usually is invasive to the
system [3]. Near-field scanning microscopy can obtain an
optical imaging with subdiffraction resolution [4,5], but due
to the surface-bound nature, it is limited in application. Two-
photon fluorescence microscopy first was developed to achieve
a higher resolution than classical one-photon fluorescence
microscopy in the far field [6,7]. Stimulated emission depletion
and the related concept of ground-state depletion microscopy
then were developed to overcome the far-field diffraction
limit in fluorescence microscopy [8–11]. Space-dependent
dark states also were proposed to achieve subwavelength
resolution [12–17]. However, realization of these schemes is
based on point-by-point scanning, and it is time consuming.
Coherent Rabi oscillations also can be employed to break
the diffraction limit [18–20], but the effect of dipole-dipole
interaction has not been discussed well. Another method based
on resonance fluorescence is able to measure the separation of
two interacting atoms with a subwavelength resolution [21,22].

The question remains whether we can determine the
locations of multiple atoms with subwavelength resolution
even when dipole-dipole interaction is involved. In this paper,
we demonstrate that the collective resonance fluorescence can
provide the spatial information for a multiatom system, and
we can perform a far-field resonance-fluorescence-localization
microscopy (RFLM) with a subwavelength resolution.

This paper is organized as follows. In Sec. II, we evaluate
the general spectrum formalism for N interacting atoms
and illustrate how to extract position information from the
spectrum. In Sec. III, we numerically solve a three-atom
example without approximation to show that our method,
illustrated in Sec. II, works. In Sec. IV, we show how to image
a sample with a large area using just a few measurements and
without needing more peak power of the laser field. We also
briefly show how to image a sample in a two-dimensional
(2D) region. In Sec. V, we summarize our results. Finally,
calculations of eigenvalues and eigenvectors are given in
Appendix A, whereas, the linewidth evaluation is given in
Appendix B.

II. GENERAL FORMALISM FOR N ATOMS RFLM

For simplicity, we first consider that some identical atoms
are located in a line along the x axis. Our setup is shown
in Fig. 1. We shine two strong linear-polarized laser fields
with wavelength λ on these atoms from opposite directions,
and they form a standing wave. Assume that the polarization
orientation is in the ŷ direction, and the frequency is resonant
with the two-level atoms. We also assume that the atoms do not
move, and they locate within one wavelength. This assumption
is valid for the following situations: Atoms are trapped by
optical lattices, quantum dots, and nitrogen-vacancy centers in
diamond, and so on. We can stretch the standing wave where
the sample approximately is located within the linear region
between the node and the antinode [15,18]. In this region,
we can write E(x) = E0x/λ. We monitor the resonance-
fluorescence photons emitted by the system with a detector in
the ẑ direction. The resonance-fluorescence spectrum encodes
the spatial information of the systems from which we can
determine the positions of each atom.

The Hamiltonian of the system and the field is [21,23]

H = HA + HF + HAF + Hdd, (1)

where HA = h̄ω0
∑N

i=1 Sz
i is the energy of the atoms, with ω0

being the level separation and Sz
i is the z component of the

spin operator. HF = h̄ω0a
†a is the total energy of the photons,

where a(a†) is the annihilation (creation) operator of the
photon; HAF = (h̄/2)

∑N
i=1 gi(S

+
i a + S−

i a†) is the interaction
between the atoms and the field with S+

i (S−
i ) being the

raising (lowering) operator on the ith atom and the coupling
constants gi = gxi/λ and g = μ(2ω0/h̄ε0V )1/2 (μ is the
transition-dipole moment between ground state and excited
state); Hdd = h̄

∑
i �=j �ij (S+

i S−
j + S−

i S+
j ) is the dipole-dipole

interaction energy. All transition-dipole moments are polarized
in the y direction, and the dipole-dipole interaction energy �ij

is given by [21–23]

�ij = 3γ

4

[
−cos(kxij )

kxij

+ sin(kxij )

(kxij )2
+ cos(kxij )

(kxij )3

]
, (2)

with 2γ = 4ω3
0d

2
0/(3h̄c3) being the single-atom spontaneous

decay rate, k = ω0/c (c is the speed of light), and xij is the
distance between atoms [23–25]. The Rabi frequency for the
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FIG. 1. (Color online) Scheme for resonance-fluorescence mi-
croscopy. xi is the position of the ith atom.

ith atom is given by �i = gi

√
n (or μE0xi/h̄λ), where n is

the photon number.

A. �i � �i j

If the dipole-dipole interaction energy is not very strong,
we can apply a strong laser field such that �i � �ij . In this
case, we analytically can evaluate the collective resonance
fluorescence spectrum of the multiatom system based on
a dressed-state picture [26,27]. Let H0 = HA + HF + HAF ,
and treat Hdd as a perturbation term. The eigenvalues and
eigenfunctions of H0 are given by (Appendix A)

E0
α,n =
(

n − N

2

)
h̄ω0 + h̄

2

N∑
i=1

χα
i �i, (3)

|α,n〉 = 1√
2N

(
|bN,n〉 +

N∑
i=1

χα
i |aib

N−1,n − 1〉

+
∑
i �=j

χα
i χα

j |aiajb
N−2,n − 2〉

+ · · · +
N∏

i=1

χα
i |aN,n − N〉

)
, (4)

where N is the number of atoms, α = 1,2, . . . ,2N, |aib
N−1〉

means that the ith atom is in the excited state |a〉 while other
N − 1 atoms are in the ground state |b〉 and χα

i is a constant that
can be either +1 or −1. Counting the dipole-dipole interaction
term as a perturbation, the eigenenergy is shifted by

	α,n = h̄

2

∑
i �=j

χα
i χα

j �ij , (5)

and the correction to the zeroth-order eigenfunction is on the
order of �ij/�i , which can be neglected. The sublevel energy
is Eα,n = E0

α,n + 	α,n. The pictorial energy level for the
dressed-state picture is shown in Fig. 2. Coupling of the dressed
states to the vacuum results in the system’s cascade down the
ladder from the α state of one multiplet to the β state of the ad-
jacent multiplet [26]. The corresponding transition frequency
is ωαβ = (Eα,n − Eβ,n−1)/h̄, where α,β = 1,2, . . . ,2N .

The spectrum of resonance fluorescence can be evaluated
by [26,27]

S(ω) ∝ Re

[∫ ∞

0
dτ eiωτ lim

t→∞〈D+(t)D−(t + τ )〉
]

, (6)

where D+ and D− are the raising and lowering parts of the total
atomic-dipole operator. The lowering part can be written as

|1n>=|+ + + n>
|2n>=|- + + n>
|3n>=|+ - + n>
|4n>=|+ + - n>
|5n>=|- - + n>
|6n>=|- + - n>
|7n>=|+ - - n>
|8n>=|- - - n>

|1n-1>=|+ + + n-1>
|2n-1>=|- + + n-1>
|3n-1>=|+ - + n-1>
|4n-1>=|+ + - n-1>
|5n-1>=|- - + n-1>
|6n-1>=|- + - n-1>
|7n-1>=|+ - - n-1>
|8n-1>=|- - - n-1>

FIG. 2. (Color online) Dressed-state picture for three inter-
acting atoms. | ± ± ± n〉 = (|bn1〉 ± |an1 − 1〉) ⊗ (|bn2〉 ± |an2 −
1〉) ⊗ (|bn3〉 ± |an3 − 1〉) where n1 + n2 + n3 = n.

D− =∑αβn d−
αβ |β,n − 1〉〈α,n| =∑αβ D−

αβ , where d−
αβ is the

dipole matrix element of the transition from |α,n〉 to |β,n − 1〉
and it is defined by d−

αβ = 〈β,n − 1|∑N
i=1 S−

i |α,n〉 and D−
αβ =∑

n d−
αβ |β,n − 1〉〈α,n|.

We can write the two-time correlation function in Eq. (6)
as

〈D+(t)D−(t + τ )〉 =
∑
α �=β

〈D+(t)D−
αβ(t + τ )〉

+
∑

α

〈D+(t)D−
αα(t + τ )〉, (7)

where the first term corresponds to the sideband spectrum
while the second term corresponds to the central peak.
According to the quantum-regression theorem [28], the two-
time correlation function 〈D+(t)D−

αβ(t + τ )〉 satisfies the same
equation of motion as the single-time average 〈D−

αβ(t)〉. The
dynamics of 〈D−

αβ(t)〉 can be calculated from the master
equation,

d〈D−
αβ (t)〉
dt

= d−
αβ

dρ−
αβ

dt
= d−

αβ

{−i

h̄
[H,ρ]αβ − (Lρ)αβ

}
,

(8)

where ρ−
αβ = 〈α,n|ρ|β,n − 1〉, and L =∑N

i,j=1 γij (S+
i S−

j ρ +
ρS+

i S−
j − 2S−

j ρS+
i ) is the relaxation operator with γii being

the decay rate of atom i and γij being the cross-damping rate.
For the sidebands, we can expand (Lρ)αβ = αβραβ + · · · and,
from Eq. (8), we have

d

dt
〈D−

αβ(t)〉 � (iωαβ − αβ)〈D−
αβ(t)〉, (9)

where we have neglected the nonresonance terms on the
right-hand side in the secular approximation. For the central
peak, as all |α,n〉 → |α,n − 1〉, α = 1, . . . ,2N have the same
transition frequency, they couple to each other, and we can
expand (Lρ)αα =∑β 

′
αβρββ + · · ·. From Eq. (8), we get

d

dt
〈D−

αα(t)〉 = iω0〈D−
αα(t)〉 − d−

αα

∑
β


′
αβ

〈D−
ββ(t)〉
d−

ββ

. (10)
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According to the quantum-regression theorem and Eq. (6),
the spectrum is given by

S( R,ω) = S0(ω) + S±(ω)

∝ Re

⎡
⎣∫ ∞

0
dτ ei(ω−ω0)τ

∑
α,β

d−
αα(e−

′
τ )αβd+

ββ

⎤
⎦

+
∑
α �=β

|d−
αβ |2αβ

(ω − ωαβ)2 + 2
αβ

, (11)

where the first term yields the central peak spectrum and the
second term gives the sideband spectrum.

For the zeroth-order wave function [Eq. (4) or, equivalently,
Eq. (A1)], the transition dipole is given by

d−
αβ = 1

2N

N∑
i=1

⎧⎨
⎩χβ

i

∏
k �=i

[
1 + χα

k χ
β

k

]⎫⎬⎭ . (12)

We have three cases:
(1) β = α, d−

αβ =∑N
i=1 χα

i /2, which contributes to the
central peak ω = ω0;

(2) β = αp (αp is a state such that E0
α and E0

αp have
different signs only in the pth term), d−

αβ = χα
p /2, which

contributes to the sidebands,

ωααp = ω0 + χα
p �p +

∑
k �=p

χα
p χα

k �pk. (13)

From this equation, we see that the positive sideband peaks can
be divided into N groups: �p +∑k �=p ±�pk, p = 1, . . . ,N .
Averaging over the frequencies of each group, we can get
the Rabi frequencies �p from which we can determine
the positions of the atoms. The error is on the order of
�2

ij /�2
i � 1. This is our method for optical microscopy. In

the experiment, we may not know which peak belongs to
which group. However, if we change the gradient of the
laser field by a certain amount, the relative Rabi frequencies
for different atoms change, which causes the separations
between different groups of the spectrum shift. Because the
dipole-dipole interactions do not change, the splitting between
peaks belonging to the same group will not change. From
this phenomenon, we can identify peaks belonging to different
groups.

(3) α �= β and more than one term of E0
α and E0

β have
different signs, d−

αβ = 0, which corresponds to the forbidden
transition.

The method described above is valid under the conditions
�i � �ij and |�i − �j | − 2�ij � γ . Assuming that γ ∼
108 Hz and the maximum Rabi frequency is 1013 Hz, then the
smallest distance we can resolve in this method is about λ/50.

B. �i j � �i

When there are two atoms in the sample whose distances
are very close (e.g., rij < λ/50), the condition �i � �ij

cannot be satisfied. We cannot localize the positions of these
two atoms based on the method described in the previous
subsection. However, we still have some ways to extract
the position information of the two atoms if they are far
away from other atoms (e.g., larger than λ/10). In this

case, we apply a weak gradient field such that �i,�j �
�ij . If the Rabi frequency is �i ∼ γ , there are only two
sideband peaks located at ω0 ± �ij [21,23]. Therefore, from
the resonance-fluorescence spectrum, we can determine the
dipole-dipole interaction energy �ij . According to Eq. (2), we
then can determine the distance rij between these two close
atoms.

Then, we increase the gradient-field strength to a medium
value (for example, ∼100γ ), which still is much less than the
dipole-dipole interaction energy. In this case, each sideband
peak is split into two peaks [21,23]. For the positive sideband,
it splits into two peaks,

ω1
+ = ω0 + �ij + (�i + �j )2

2�ij

, (14)

ω2
+ = ω0 + �ij + �i�j

�ij

. (15)

From each equation and the relationship between �i and �j ,
we can calculate a value for positions ri and rj . Because we
have two equations, we can get two results. We can use one of
the results as the positions of the two atoms, or we can average
the two results and get the positions of the two atoms.

C. Linewidth

In general, the linewidth of the emitted radiation is difficult
to calculate exactly. However, we can evaluate the linewidth
approximately in some cases (Appendix B). From Eq. (2),
when the distance between two atoms is about λ/10, the
dipole-dipole interaction energy is comparable to the linewidth
of the sideband spectrum of the independent atoms. Therefore,
we can set λ/10 as a threshold and can evaluate the linewidth.
First, when all the atoms have distances much larger than λ/10,
the dipole-dipole interaction energies are much smaller than
the sideband spectrum linewidth of the independent atoms,
and we can neglect the dipole-dipole interaction energies. For
independent atoms, the linewidth of the sideband spectrum is
3γ /2 [27,28], i.e., αβ = 3γ /2 in Eq. (11). Second, when
all the atoms have distances much smaller than λ/10, all
dipole-dipole interaction energies �ij are larger than 3γ /2,
and the overlapped sideband spectrum splits. We can calculate
(Lρ)αβ ≈ (N/2 + 1)γραβ + · · ·, from which we can see that
αβ ≈ (N/2 + 1)γ (See Appendix B). The spectrum width is
about (N/2 + 1)γ , which is similar to super-radiance [29].

For the general case when some atoms have distances larger
than λ/10 and some atoms have distances smaller than λ/10,
the resonance fluorescence has the same transition frequencies
but has different linewidths, which are about (Neff + 2)γ /2
where Neff is the average number of atoms that couple to each
other, and its value is between 1 and N .

III. THREE-ATOM EXAMPLE

In the following, we numerically solve the resonance-
spectrum of a three-atom system to demonstrate how our
localization microscopy works. The dressed-state picture is
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shown in Fig. 2. From Eq. (3), the eigenvalues of the system
are

E1n =
(

n − 3

2

)
h̄ω0

+ h̄

2
(�1 + �2 + �3 + �12 + �13 + �23),

E2n =
(

n − 3

2

)
h̄ω0

+ h̄

2
(−�1 + �2 + �3 − �12 − �13 + �23),

E3n =
(

n − 3

2

)
h̄ω0

+ h̄

2
(�1 − �2 + �3 − �12 + �13 − �23),

E4n =
(

n − 3

2

)
h̄ω0

+ h̄

2
(�1 + �2 − �3 + �12 − �13 − �23), (16)

E5n =
(

n − 3

2

)
h̄ω0

+ h̄

2
(−�1 − �2 + �3 + �12 − �13 − �23),

E6n =
(

n − 3

2

)
h̄ω0

+ h̄

2
(−�1 + �2 − �3 − �12 + �13 − �23),

E7n =
(

n − 3

2

)
h̄ω0

+ h̄

2
(�1 − �2 − �3 − �12 − �13 + �23),

E8n =
(

n − 3

2

)
h̄ω0

+ h̄

2
(−�1 − �2 − �3 + �12 + �13 + �23).

For weak dipole-dipole interactions, according to
Eq. (12), the nonzero transition dipoles are d±

11 = 3/2,

d±
22 = d±

33 = d±
44 = 1/2,d±

55=d±
66 = d±

77 = − 1/2,d±
88= − 3/2,

d−
12 = d−

13 = d−
14 = d−

25 = d−
26 = d−

35 = d−
37 = d−

47 = d−
58 =

d−
68 = d−

78 = 1/2,and d−
21 = d−

31 = d−
41 = d−

52 = d−
62 = d−

53 =
d−

73 = d−
74 = d−

85 = d−
86 = d−

87 = −1/2. We also can calculate
(Lρ)αα = (3γ /2)ραα − (γ /2)

∑
α′ ρα′α′ , where α → α′ is

the allowed sideband transition. For example, if α = 1, then
α′ = 2,3,4. Thus, we have

′ = γ

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −1 −1 −1 0 0 0 0

−1 3 0 0 −1 −1 0 0

−1 0 3 0 −1 0 −1 0

−1 0 0 3 0 −1 −1 0

0 −1 −1 0 3 0 0 −1

0 −1 0 −1 0 3 0 −1

0 0 −1 −1 0 0 3 −1

0 0 0 0 −1 −1 −1 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

- 0)/

S
(

)(c)

S
(

)

- 0)/

(a) (b)

S
(

)

- 0)/

(d)

S
(

)

- 0)/

FIG. 3. (Color online) Resonance-fluorescence spectrum for (a)
x1 = 0.3λ, x2 = 0.5λ, x3 = 0.7λ, and �(x) = 100γ x/λ; (b) x1 =
0.45λ, x2 = 0.5λ, x3 = 0.56λ, and �(x) = 1500γ x/λ; (c) x1 =
0.485λ, x2 = 0.5λ, x3 = 0.6λ, and �(x) = 1γ x/λ; (d) same as (c)
but with �(x) = 200γ x/λ.

From Eq. (9), we get the central peak spectrum,

S0( R,ω) ∝ 3γ

2

[
1

(ω − ω0)2 + γ 2
+ 18

(ω − ω0)2 + 4γ 2

+ 9

(ω − ω0)2 + 9γ 2

]
. (17)

For the sidebands, we numerically can solve the eigenen-
ergy and eigenvectors of the dressed system and can calculate
the allowed transition frequencies. In the real experiment, we
measure the sideband peaks of the spectrum. According to
Eq. (13), there are three groups of the allowed sideband spec-
trum on the positive side: ω0 + �1 ± �12 ± �13, ω0 + �2 ±
�12 ± �23, and ω0 + �3 ± �13 ± �23. We can obtain the Rabi
frequencies for each atom by simply averaging over each
group of the spectrum. For example, if we have three atoms
and their positions are x1 = 0.3λ, x2 = 0.5λ, and x3 = 0.7λ,
the separation is λ/5. We shine a gradient electric field such
that �(x) = 100γ x/λ. The resonance-fluorescence spectrum
is shown in Fig. 3(a). From the spectrum, the sideband fre-
quencies are �1 = (30.00 ± 1.82)γ, �2 = (50.00 ± 1.82)γ ,
and �3 = (70.00 ± 1.72)γ . We can determine the positions of
the atoms as x1 = (0.300 ± 0.002)λ, x2 = (0.500 ± 0.002)λ,
and x3 = (0.700 ± 0.002)λ, which match the parameters we
set very well.

As a second example, we consider that the three atoms are
located at positions x1 = 0.45λ, x2 = 0.5λ, and x3 = 0.56λ.
The shortest distance is λ/20. We shine a strong gradient
electric field such that �(x) = 1500γ x/λ. The resonance-
fluorescence spectrum is shown in Fig. 3(b). From the
spectrum, we can determine the sideband frequencies as shown
in the following table (γ ):

648.4 ± 2.7 715.5 ± 2.6 825.7 ± 2.7
652.4 ± 2.7 741.3 ± 2.5 829.7 ± 2.7
694.3 ± 2.8 761.5 ± 2.7 851.4 ± 2.8
698.3 ± 2.8 787.2 ± 2.5 855.3 ± 2.8
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Then, we slightly increase the gradient laser field such that
�(x) = 1700γ x/λ, and the spectrum peaks are shown in the
following table (γ ):

693.6 ± 2.7 765.4 ± 2.6 881.7 ± 2.8
697.4 ± 2.7 791.2 ± 2.5 885.5 ± 2.8
739.5 ± 2.8 811.4 ± 2.7 907.4 ± 2.8
743.3 ± 2.8 837.2 ± 2.5 911.3 ± 2.8

Comparing these two tables, we find that the separations
between peaks in each column do not change significantly.
However, the separations between peaks in different columns
change significantly. From this result, we can determine that
the spectrum from each column belongs to same group.
By averaging over each column of the first table, we can
obtain �1 = (673.35 ± 2.75)γ, �2 = (751.38 ± 2.58)γ , and
�3 = (840.53 ± 2.75)γ . We then can determine the positions
of the atoms: x1 = (0.449 ± 0.002)λ, x2 = (0.501 ± 0.002)λ,
and x3 = (0.560 ± 0.002)λ, which also match the actual
positions of the atoms quite well.

If there are two atoms whose distances are smaller than this
limit, we should use the method described in Sec. II B. For
example, there are three atoms, and their positions are x1 =
0.485λ, x2 = 0.5λ, and x3 = 0.6λ. The distance between the
first atom and the second atom is 0.015λ, which is less
than λ/50. From Eq. (2), we can calculate the dipole-dipole
interaction energy is 891.92γ , which is very large. In this
situation, first, we apply a weak gradient laser field such
that the corresponding Rabi frequency is �(x) = 1γ x/λ.
We numerically solve the resonance-fluorescence spectrum,
and the result is shown in Fig. 3(c). We can see that only
two sideband peaks appear, and their positions are ω =
ωo ± 891.90γ , which match very well with the calculation
value. From Eq. (2), we can deduce that the distance between
these two close atoms is 	x12 = 0.015λ. Then, we increase
the gradient laser field to a medium value, for example,
�(x) = 200γ x/λ. The numerical result of the corresponding
resonance-fluorescence spectrum is shown in Fig. 3(d). From
the spectrum, we find that each sideband peak is split into
two peaks. For example, the positive sideband peak splits into
ω0 + 902.72γ and ω0 + 913.36γ . According to Eqs. (14) and
(15), we have

�12 + (�1 + �2)2

2�12
= 913.36γ, (18)

�12 + �1�2

�12
= 902.72γ, (19)

where �12 = 1794.84γ . Assuming that �1 = 200γ x1/λ and
�2 = 200γ (x1 + 	x12)/λ, we can get x1 = 0.4816λ from
Eq. (18) and x ′

1 = 0.4837λ from Eq. (19). Averaging these
two results, we get x̄1 = 0.483λ, which is very close to
the value 0.485λ we set, and the error is about 0.4%.
Additionally, we find there are two sideband peaks near the
central peaks that read (±120 ± 2.6)γ . They are the resonance
fluorescence from the third atom, and we can determine that
its position is (0.600 ± 0.013)λ, which also matches the right
value.

IV. EXTENSION TO LARGER AREA AND
HIGHER DIMENSIONS

In the previous section, we discussed how to resolve the
atoms located within one wavelength. For a region larger than
one wavelength, one simple way is to stretch the standing
wave with larger periods to cover the whole region. This
method is easy to operate, but one disadvantage is that the
field intensity increases as the working region increases. If
the region is too large, the field is incredibly large. Therefore,
for a working region beyond several wavelengths’ extension,
a new way may be needed. Here, we propose a possible way
by trying to extend this limitation via the divide-and-conquer
method. The scheme is shown in Fig. 4. We shine the sample
first by a standing wave denoted by a solid and red curve.
The red-marked regions on the object plane locate in an
approximately linear-field region, whereas, the blue-marked
regions do not. The resonance fluorescences are collected by
a lens. The fluorescence emitted by the red-marked regions
is focused on the red-marked detector pixels on the imaging
plane, whereas, the fluorescence emitted by the blue-marked
regions is focused on the blue-marked detector pixels. In
this step, only the spectrum of the fluorescence collected
by the red-marked detector pixels are analyzed, and we can
determine the positions of the atoms in the red-marked regions
on the object plane based on the method we illustrated in
the previous sections. Then, we shift our standing wave by a
phase π/2. At this time, the blue-marked regions locate in an
approximately linear field, whereas, the red-marked regions
do not. By applying a similar process, we can determine the
positions of the atoms in the blue-marked regions. Because the
image of a point in the object plane is not a point but a small
disk, which usually is described by the point-spread function of
the lens, there is a gap between neighboring detector pixels to
make sure that the fluorescence from the red-marked regions
does not shine on the blue-marked detector pixels and vise
versa. If we have an optical detecting array for each working
region on the order of several wavelengths, this method would
be possible.

We also can apply our method to a 2D image. The scheme
is shown in Fig. 5. Three steps are needed to obtain the 2D
spatial information. In the first two steps, we shine a gradient

Lens

Detector  array

Object  plane

Point-spread
function

FIG. 4. (Color online) Schematic for imaging atoms in an
extended region based on our RFLM.
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0

x

y

FIG. 5. (Color online) Two-dimensional RFLM.

laser field along the x(y) direction, and from the resonance-
fluorescence spectrum, we can obtain a discrete set of x(y)
position information of the atoms. After that, we still cannot
determine the positions of the atoms because all combinations
of x and y values are possible. We should shine a third gradient
field from a direction that avoids any two pairs of (x,y). From
the third resonance-fluorescence spectrum, we can pin down
the positions of the atoms.

V. SUMMARY

In this paper, we evaluated the resonance-fluorescence
spectrum of a bunch of two-level atoms driven by a gradient
coherent laser field. In the weak dipole-dipole interaction
region (separation less than λ/50), we can apply a very strong
laser field such that the Rabi frequency is much larger than the
dipole-dipole interaction energy. From the spectrum, we can
obtain the positions of each atom by just a few measurements.
Our subwavelength microscopy scheme was based entirely
on a far-field technique, and it did not require point-by-point
scanning, which indicated that our method may be more time
efficient.

For the case in which there are two atoms that were very
close to each other (less than λ/50), we still can get the position
information of each atom with very high accuracy provided
that they are not too close to other atoms. In addition, we
illustrated a possible way to extend our method to an arbitrarily
large region without requiring more peak power of the laser,
and only a few measurements were required. We also briefly
discussed how to image a 2D pattern.

In our scheme, uncertainty can be due to the linewidth of
the spectrum and the calibration of the light intensity. Less
density of atoms within λ/10 will give a narrower linewidth
and, therefore, less uncertainty. Good calibration of the light
intensity also was required in the experiment to extract more
precise position information. There was a limitation on the
number of atoms within one wavelength, which was about 50
in one dimension and 2500 in 2D space. Another limitation
for our scheme was that it still was not clear how to extract the
spatial information of atoms when more than two atoms were
very close to each other (less than λ/50).
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APPENDIX A: EIGENVALUES AND EIGENVECTORS

The eigenvalue and eigenvector for Hi
0 are

E+
i =
(

ni − 1

2

)
h̄ω0 + h̄�i

2
,

(A1)

|�+
i 〉 = |gi,ni〉 + |ei,ni − 1〉√

2
,

E−
i =
(

ni − 1

2

)
h̄ω0 − h̄�i

2
,

(A2)

|�−
i 〉 = |gi,ni〉 − |ei,ni − 1〉√

2
,

where �i = g
√

ni and ni is the mean number of photons
interacting with the ith atom. The eigenvalues of H0 are just
the summation of the eigenvalues of each atom,

E0
α =
(

n − N

2

)
h̄ω0 + h̄

2

∑
i

χα
i �i, (A3)

where α = 1,2, . . . ,2N, n =∑i ni , and χα
i = ±1. The corre-

sponding eigenvectors are

|α〉 = 1√
2N

N⊗
i=1

(|gi,ni〉 + χα
i |ei,ni − 1〉), (A4)

which is equivalent to Eq. (2).
The perturbation energy due to the dipole-dipole interaction

is

	α = 〈α|Hdd |α〉
= h̄
∑
i �=j

�ij 〈α|S+
i S−

j + S+
j S−

i |α〉

= h̄

4

∑
i �=j

�ij

(〈gi | + 〈ei |χα
i

)(〈gj | + 〈ej |χα
j

)
×(S+

i S−
j + S+

j S−
i )
(|gi〉 + χα

i |ei〉
)(|gj 〉 + χα

j |ej 〉
)

= h̄

4

∑
i �=j

�ij

(〈gi | + 〈ei |χα
i

)(〈gj | + 〈ej |χα
j

)
×(χα

j |ei〉|gj 〉 + χα
i |gi〉|ej 〉

)
= h̄

2

∑
i �=j

χα
i χα

j �ij , (A5)

where we have ignored the photon part because the dipole-
dipole Hamiltonian only depends on atomic operators.

APPENDIX B: LINEWIDTH

Assume that |α〉 → |β〉 is an allowed transition, i.e., α = β,
or they differ from each other by only one term. The relaxation
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term for the |α〉 → |β〉 transition is given by

(Lρ)αβ =
N∑

i,j=1

γij (〈α|S+
i S−

j ρ|β〉 + 〈α|ρS+
i S−

j |β〉

−2〈α|S−
j ρS+

i |β〉). (B1)

For i = j , we have

S+
i S−

i |α〉 = 1√
2N

⊗
k �=i

(|gk〉 + χα
k |ek〉
)(

χα
i |ei〉
)

= 1

2
(|α〉 − |αi〉), (B2)

S+
i S−

i |β〉 = 1√
2N

⊗
k �=i

(|gk〉 + χ
β

k |ek〉
)(

χ
β

i |ei〉
)

= 1

2
(|β〉 − |βi〉, (B3)

S+
i |α〉 = 1√

2N

⊗
k �=i

(|gk〉 + χα
k |ek〉
)|ei〉

= χα
i

|α〉 − |αi〉
2

, (B4)

S+
i |β〉 = 1√

2N

⊗
k �=i

(|gk〉 + χ
β

k |ek〉
)|ei〉

= χ
β

i

|β〉 − |βi〉
2

, (B5)

where |αi〉 and |α〉 have different signs only on the ith term
and |βi〉 and |β〉 have different signs on the ith term. There are
N − 1 pairs that satisfy this condition. From Eqs. (B2)–(B5),
we can get∑

i

γii(〈α|S+
i S−

i ρ|β〉 + 〈α|ρS+
i S−

i |β〉 − 2〈α|S−
i ρS+

i |β〉)

= γ

2

∑
i

{[
2 − χα

i χ
β

i

]
ραβ − [1 − χα

i χ
β

i

]
ραiβ

− [1 − χα
i χ

β

i

]
ραβi − χα

i χ
β

i ραiβi

}
, (B6)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Nγ

2
ραβ − γ

2

∑
i

ραiβi ,

(N + 2)γ

2
ραβ − γ

2

∑
i

ραiβi − ρβα − 2ρββ − 2ραα,

(B7)

in which the first equation in Eq. (B7) is for α = β, whereas,
the second equation is for α �= β but only differs by one term.
The last three terms in the second equation can be ignored
in the secular approximation because they have different
transition frequencies from ωαβ . The survival of the second
term depends on the coupling of the system. If all dipole-
dipole interaction energies are small and can be neglected,
the second term survives because ωαiβi = ωαβ and there are
N − 1 terms. When we repeat the calculation of Eq. (B6)
for other transitions, we can find that ραβ appears one time
with coefficient (N + 2)γ /2 and N − 1 times with coefficient

−γ /2. Therefore, when we perform the summation over the
whole set, we can find the coefficient of ραβ is (N + 2)γ /2 −
(N − 1)γ /2 = 3γ /2, which is exactly the linewidth of the
independent atoms. However, if all dipole-dipole interactions
cannot be neglected, then the second term goes away in the
secular approximation due to ωαiβi �= ωαβ , and the linewidth
in this case is (N + 2)γ /2.

In Eq. (B1), we also have correlated spontaneous emission
terms (i �= j ). These terms appear only when the dipole-dipole
interaction cannot be neglected. We consider an extreme case
when all dipole-dipole interactions cannot be neglected and no
spectrum is overlapped. In this case, we have

S+
j S−

i |α〉 = 1√
2N

⊗
k �=i,j

(|gk〉 + χα
k |ek〉
)(

χα
i |gi〉
)|ej 〉

= 1

4
χα

i χα
j |α〉 + · · · , (B8)

S+
i S−

j |β〉 = 1√
2N

⊗
k �=i,j

(|gk〉 + χ
β

k |ek〉
)|ei〉
(
χ

β

j |gj 〉
)

= 1

4
χ

β

i χ
β

j |β〉 + · · · , (B9)

S+
j |α〉 = 1√

2N

⊗
k �=j

(|gk〉 + χα
k |ek〉
)|ej 〉) = χα

i

2
|α〉 + · · · ,

(B10)

S+
i |β〉 = 1√

2N

⊗
k �=i

(|gk〉 + χ
β

k |ek〉
)|ei〉 = χ

β

i

2
|β〉 + · · · ,

(B11)

where · · · denote terms that have different transition fre-
quencies from ωαβ and they can be neglected in the secular
approximation. Then, we can have∑

i �=j

γij (〈α|S+
i S−

j ρ|β〉 + 〈α|ρS+
i S−

j |β〉 − 2〈α|S−
j ρS+

i |β〉)

=
∑
i �=j

γij

4

[
χα

i χα
j + χ

β

i χ
β

j − 2χα
j χ

β

i

]
ραβ + · · ·

=
{ ∑

i �=j �=p

γij

4

[
χα

i χα
j + χ

β

i χ
β

j − 2χα
j χ

β

i

]

+
∑
j �=p

γpj

4

[
χα

p χα
j + χβ

p χ
β

j − 2χα
j χβ

p

]

+
∑
i �=p

γip

4

[
χα

i χα
p + χ

β

i χβ
p − 2χα

p χ
β

i

]}
ραβ + · · ·

= 0. (B12)

The first summation vanishes because χα
i = χ

β

i and
χα

j = χ
β

j for i,j �= p. Because χα
p = −χ

β
p and χα

j = χ
β

j , the
first two terms in the second summation go away. Similarly,
the first two terms of the third summation also go away. The
remaining terms in the second and third summations are just
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the opposite because∑
j �=p

γpj

4

[− 2χα
j χβ

p

] =∑
i �=p

γpi

4

[− 2χα
i χβ

p

]

=
∑
i �=p

γpi

4

[+ 2χ
β

i χα
p

]
. (B13)

When we consider the first-order correction of the wave
function, this correlated spontaneous emission rate is nonzero.
However, their values are on the order of (�ij/�i)2, which is
very small in our assumption.
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