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Circular differential scattering of polarized light by a chiral random medium
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Differential scattering of left- and right-handed circularly polarized waves is a general property of scattering
media lacking space-inversion symmetry. We show in this paper that this scattering difference has remarkable
properties in the case of an almost transparent chiral random medium. By tuning the refractive indices of the
materials composing the medium, this scattering difference can be varied and even inverted. Within the limit
of a dense scattering material, the difference of scattering cross sections between polarizations of opposite
handedness can be largely adjusted. These properties are illustrated by measurement of the difference between
the transmission of right- and left-handed polarized waves through a chiral Christiansen filter.
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I. INTRODUCTION

Chirality in a medium affects propagation of vectorial
waves. Pasteur first identified that molecular asymmetry in
a material causes rotation of the plane of polarization of a
linearly polarized wave [1]. This effect may be interpreted
as a consequence of the difference between the refractive
indices nR and nL of right- and left-handed circularly polarized
waves. A consequence of this index difference is illustrated
by the separation of a linearly polarized wave into two rays
of opposite handedness [2–4], or the difference of scattering
properties of an achiral grating embedded in a chiral material
[5]. Many fields of research have special interest in the
scattering properties of chiral media. For example, develop-
ment of metamaterials with adjusted dielectric properties has
motivated research on circular differential scattering (CDS) by
a two-dimensional (2D) chiral grating [6,7]. In biochemistry,
where chirality is a major issue, most characterizations use
diffusion methods, motivating CDS studies [8]. Moreover,
as biological systems are generally turbid, light transport in
heterogeneous chiral media has very practical applications.
For example, suspension of polystyrene beads in an optically
active liquid has been used to mimic the scattering properties
of biological tissues [9,10].

From a theoretical point of view, the effect of chirality
on the scattering properties of light in a disordered material
was first studied by Perrin [11]. For a material made of chiral
particles, the scattering matrix is no longer symmetric, and
the scattering properties are dependent on the handedness of
the waves. As the difference in scattered fields for right- or
left-handed incident waves depends on the difference nR − nL,
which is generally very small, systems exhibiting CDS are
considered to be uncommon. Nevertheless, this effect has
been put forward to explain distortion in circular dichroism
spectra [8,12]. CDS has mainly been reported in materials
where the chirality of the geometrical structure has a length
scale near the optical wavelength. Examples are the scattering
of light by helical objects with pitch of micrometric length [13],
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cholesteric liquid crystals [14], or chiral objects of millimetric
size illuminated by millimetric electromagnetic waves [15,16].

The object of this paper is to show that this difference
between the scattering of left and right circularly polarized
waves can become arbitrarily large even for a constant, small
difference nR − nL. The ellipticity of the transmitted wave
can then be tuned independently of the optical rotation. That
result is counterintuitive, as it seems to be in contradiction
with the Kramers-Kronig theorem linking circular dichroism
to optical rotation [17]. To demonstrate that effect, we use a
chiral Christiansen filter [18], where the difference in circular
scattering can be finely controlled by varying the refractive
indices of the constituent materials. The circular differential
scattering is then shown to strongly depend on the difference
between the refractive index n1 of the isotropic phase and the
average index n of the chiral phase. A theoretical description
is given, leading to the prediction of a nontrivial symmetry:
exchanging the chiral media with its enantiomer nR ↔ nL

[Fig. 1 (I) → (II)] is equivalent to the permutation of the
indices of the two phases n1 ↔ n [Fig. 1 (I) → (III)]. This
effect is evidenced experimentally.

II. EXPERIMENT

We use as the scattering medium a dispersion of dielectric
spherical particles in an optically active fluid. The particles are
polymethyl methacrylate (PMMA) beads (Atochem, diameter
d = 100–250 μm). The optically active fluid is an 85%:15%
mixture of limonene (R, S, or a mixture of R and S; Sigma-
Aldrich) with high-refractive-index microscopy oil (Santolight
noil = 1.62) in order to reach n � n1. The optical activity of
the fluid is measured by the optical rotation angle through
an L = 20 mm cell. The PMMA particles are poured into
the liquid, and the cell is gently tapped. The resultant solid
fraction is ∼0.60. n1 − n is varied continuously by controlling
the temperature of the composite material. The variation
of the refractive index of PMMA with temperature is ob-
tained from [19] dn1/dT = −1.20 × 10−4 K−1. The variation
of refractive index of the limonene-oil mixture is obtained
from the variations of the constituents [20]: dn/dT =
−4.28 × 10−4 K−1.
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FIG. 1. (Color online) (a) Middle: a chiral material (I) differ-
entially transmits right- and left-handed circular waves. Left (II):
Symmetry imposes that the difference in transmission of right- and
left-handed circular waves is reversed for the mirror material. Right
(III): Near index matching, the permutation of refractive indices also
reverses the transmission of right- and left-handed circular waves. (b)
(I): A chiral medium with dielectric constant ε and chiral parameter β

[see (1)] dispersed in a medium ε1 scatters an incident wave Ei . (II):
Same as (I) but the chiral medium has been changed to its enantiomer.
(III): Same as (I) but the refractive indices have been permuted.

A schematic drawing of the experimental setup is shown
in Fig. 2(a). The cell temperature T is controlled to a few
millikelvin precision, and the temperature is increased from 34
to 42 ◦C at a rate of 0.15 ◦C/min. The cell is illuminated with
a low-power He-Ne laser operating at λ = 633 nm, and the
transmitted light is collected by a 15 mm2 square photodiode
(PD), centered 50 cm after the exit of the cell. We first discuss
the transmission I/I0 as a function of n1 − n, for a linearly
polarized incident wave [Fig. 2(b), dotted line]. The value n1 −
n is set to 0 at the maximum of the transmission curve. The bell-
shaped curve is typical of transmission through Christiansen
filters. Near index matching, the medium is almost transparent,
and the transmission gradually decreases with the quality of
the index matching. The finite width of the transmission curve
and the imperfect transmission at index matching are due to
fluctuations of the refractive indices around their mean values.
Although models for transmission of Christiansen filters are
still unclear [18], we can use [21] I/I0 = exp{−A[(n1 − n)2 +
σ 2]} with A a constant dependent on L, λ, d, and the solid
fraction, and where σ is the variance of the solid refractive
index. From the experimental transmission for n1 � n [see the
inset of Fig. 2(b)], we deduce σ � 2.8 × 10−4.

The differential scattering between circular polarizations
is obtained by modulation of the incident polarization with
a photoElastic modulator (PEM). The imposed phase mod-
ulation is 42 kHz with a delay between the fast and slow
axes of the PEM of λ/4. The modulation of the transmitted

FIG. 2. (Color online) (a) Schematic of the experiment (see text
for details). (b) Dotted line, transmission of the cell as a function of
the refractive index difference. Solid line, difference of transmission
between left and right circular polarization. Inset: Dotted line,
transmission. Solid line, fit with exp{−A[(n1 − n)2 + σ 2]}.

intensity is measured with a lock-in amplifier (Stanford
Research SR830). The difference of transmission between
right and left circular polarization is plotted as a function of the
index matching n1 − n [Fig. 2(b), solid line]. We clearly see
that the difference of transmission between opposite circular
polarizations depends not only on the presence of asymmetry
but also on the contrast of the refractive indices n1 − n.

III. THEORY

The order of the chiral contribution to the scattered wave
can be estimated. The constitutive relations for an optically
active material are [22]

D = εE + γ ε∇ × E, B = μH + βμ∇ × H, (1)

where γ and β are parameters responsible for the optical
activity. For simplicity, we restrict ourselves to materials where
γ = β and μ = μ0, and without any circular dichroism [23].
The refractive indices for right nR and left nL monochromatic
circularly polarized waves satisfy the relations ( 1

nR
+ 1

nL
)−1 =

1
2

ω
k

√
εμ0 and 1

nR
− 1

nL
= 2βk, where k is the wave vector in

vacuum, and ω is the wave frequency. When such a material
is dispersed in a medium of dielectric constant ε1, Eq. (1) may
be written as

D = ε1E + P1, B = μ0(H + M) (2)

with P1 = (ε − ε1)E + βε∇ × E and M = β∇ × H, which
can be respectively considered as the polarization and
magnetization of the chiral medium with reference to the
isotropic phase. P1 and M may therefore be viewed as the
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source of the scattered field created by a plane wave prop-
agating with a wave vector k1 = n1k, with n2

1 = ε1/ε0. The
nonchiral contribution to the scattered field scales as (ε − ε1)E
and the chiral one as βεk1E. The ratio of those contributions
varies then as ∼ βk1ε/(ε − ε1) ≈ (nR − nL)/2(n2 − n2

1). If
the isotropic medium is a vacuum, n1 = 1, and, as |nR −
nL| 	 n, the contribution of chirality to the scattered field
stays very small. In contrast, for a dispersion approaching
phase matching, ε1 → ε, and the effect of chirality on the
scattered field becomes preponderant.

For analysis of the differential transmission between the
left- and right-handed circular polarization, we need to calcu-
late the variation of the amplitude of the scattered wave as a
function of (ε − ε1) and of β. Let us consider an incident wave
Ei(r,t) = Re[Ẽi(r,ω) exp (−jωt)], with a similar dependence
for Hi(r,t). The tilde indicates a complex quantity, and we
will ignore the ω dependencies in the following analysis.
The incident wave propagates into a homogeneous medium
with dielectric constant ε1 and magnetic constant μ0. Then
a perturbation medium characterized by polarization P̃1(r) =
(ε − ε1)Ẽ(r) + βε∇ × Ẽ(r) and magnetization M̃(r) = β∇ ×
H̃(r) is added to the homogeneous medium. The field
Ẽ(r) in the presence of the perturbation medium may be
written as Ẽ(r) = Ẽi(r) + Ẽs(r), where the scattered electric
field is [24]

Ẽs(r) = 1

ε1

[
∇ × ∇ × �̃e(r) + j

n1k1

c
∇ × �̃m(r) − P̃1(r)

]

(3)

with �̃e(r) = 1
4π

∫
V

P̃1(r′) exp(jk|r−r′|)
|r−r′| dr′ the electric Hertz

vector, �̃m(r) = 1
4π

∫
V

M̃(r′) exp(jk|r−r′|)
|r−r′| dr′ the magnetic Hertz

vector, and V the volume of the perturbation medium. At
a point r = rs far from the scattering medium, �̃e(r) and
�̃m(r) vary as exp(jk1r)

r
, and at any point outside the scattering

medium P̃1(r) = 0 and M̃(r) = 0. The scattered field may then
be written as

Ẽs(rs) ∼ Ã(s)
exp (jk1r)

r
, H̃s(rs) ∼ n1

μ0c
s × Ẽs(rs) (4)

with

Ã(s) = −k2

(
s × [s × P̂1(k1s)] + n1

c
s × M̂(k1s)

)
, (5)

where P̂1(k) = ∫
V

P̃1(r′) exp (−jk · r′)dr′ and M̂(k) =∫
V

M̃(r′) exp (−jk · r′)dr′. For weakly scattering media,
Es 	 Ei , and P̃1 and M̃ may be evaluated for the incident
field. For a plane circular wave, Ẽi(r) = Ẽi exp(jk1s0 · r),
where s0 is the incident direction. For scattering directions
s ≈ s0, we then obtain

Ã(s) ∼ s × {s0 × [(ε − ε1) ± k1β(ε + ε1)]	̂(s0,s)Ẽi} (6)

with 	̂(s0,s) = ∫
V

	(r) exp[−jk1(s − s0) · r′]dr′, where
	(r) = 0 if r is in the solvent and 1 otherwise; the
−(+) sign stands for right-handed (left-handed) circular
waves. The circular differential scattering is found in
the first Born approximation and not in the second Born
approximation as in [25] because we use nonisotropic
polarization. The total scattered intensity is obtained by

integration of Ã(s) · Ã∗(s) over all scattering directions and
is Is ∝ [(ε − ε1) ± βk1(ε + ε1)]2. With δn = n − n1 and
�n = nR − nL, we obtain for |nR − nL| 	 n

Is ∝
[
δn ± �n

2

]2

. (7)

The transmitted intensity being I0 − Is , the difference between
the transmission IR of right-handed and IL of left-handed
circularly polarized waves is then in our approximation
IR − IL ∝ �nδn. More generally, considering departure from
the weakly scattering case, we calculate that Is remains a
function of (δn ± �n

2 ) at successive orders, so that

IR − IL = �n
dI

dδn
, (8)

where I = (IR + IL)/2.

IV. DISCUSSION

We plot in Fig. 3(a) the experimental difference [IR −
IL]/I0 as a function of the derivative of I/I0 with respect
to δn. Each line corresponds to a different mixture of R and
S limonene. As expected, the scattering difference between
right- and left-handed circular polarization varies proportion-
ally to the derivative of the transmitted intensity. The value

FIG. 3. (Color online) (a) Experimental difference of transmis-
sion between left and right circular waves as a function of the
derivative of the total transmitted light with respect to the difference
of refractive indices δn. Solutions are oil with limonene (R) and
(S) and mixes (M1) and (M2) of (R) and (S). (b) Measured slopes
from (a) plotted as a function of �n; the solid line corresponds to
Eq. (8).
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of �n may be obtained from the slope [IR − IL]/(dI/dδn).
Figure 3(b) shows a plot of the deduced slopes as a function
of �n, measured independently from the rotation of the plane
of polarization of light propagation through the liquid alone.
We observe that Eq. (8) holds even far from the weakly
scattering region, showing that our generalization beyond the
weak-scattering limit is convincing.

The fluctuation σ of the refractive index of the beads
diminishes the intensity of the transmitted light. Remarkably,
the fluctuations do not modify the relation (8) even if �n 	 σ .
These fluctuations may be taken into account by considering
ε(r) = ε̄ + δε(r) = ε̄ + δεϕ(r), where ε̄ is the average of
ε(r), δε(r) is the fluctuation, δε is the amplitude of the
fluctuation, and ϕ(r) is a function of order unity. Integration
of Ã(s) · Ã∗(s) over all the scattering directions shows that
to the highest order Is ∝ [(ε − ε1) ± βk1(ε + ε1)]2 + α[δε]2

with α = ∫
s ϕ̂(s)ϕ̂∗(s)ds/

∫
s θ̂ (s)θ̂∗(s)ds. So the fluctuations of

ε(r) cancel out in the difference IR − IL and in the derivative
dI/dδn, and Eq. (8) still holds. Still, those fluctuations are
responsible for the limitation of CDS by preventing divergence
of dI/dδn near phase matching.

Finally, Eq. (7) shows that the same value of IR − IL can be
obtained by simultaneously exchanging the material with its
mirror image (�n → −�n) and by changing ε to ε1 (δn →
−δn). This may be simply understood. Let E(II)

s and E(III)
s be the

fields scattered in the two experiments (II) and (III) depicted
in Fig. 1(b). If we now consider the superposition of the two
sources of radiation, the medium is homogeneous, and the
total scattered field is null. Linearity of the Maxwell equations
and of the constitutive equations (1) gives E(II)

s + E(III)
s = 0.

Thus, the scattered intensities in the two experiments are
the same. That effect is indeed observed experimentally, as

shown by the measurements for enantiomeric solutions on
Fig. 3(a) and the symmetric form of the curves of Fig. 2(b).
That invariance can be seen as a macroscopic analog of the
CP symmetry [26]. A chiral medium lacks parity symmetry.
In order to obtain invariance, charge conjugation should also
be performed if time-inversion invariance is assumed [26,27].
Consider first the exchange of indices between two achiral
media: i.e., changing the index of the inclusions from ε1 + δε

to ε1 − δε while keeping the index of the surrounding medium
constant at ε1. The effect of the transformation will be to
change the sign of the polarization and consequently the sign
of the scattered electric field. Such a transformation then gives
the same result as a charge conjugation. Considering now
chiral inclusions, the combination of the two transformations
of charge conjugation and parity on the medium will result in
an identical response to an excitation.

V. CONCLUSIONS

To conclude we have shown that circular differential
scattering can be tuned in a weakly scattering material having a
small constant value of nR − nL: it can be canceled, inverted,
or adjusted in magnitude. Remarkable symmetry properties
have been evidenced and justified.
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