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Conservation relations and anisotropic transmission resonances in one-dimensional
PT -symmetric photonic heterostructures
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We analyze the optical properties of one-dimensional PT -symmetric structures of arbitrary complexity. These
structures violate normal unitarity (photon flux conservation) but are shown to satisfy generalized unitarity
relations, which relate the elements of the scattering matrix and lead to a conservation relation in terms of the
transmittance and (left and right) reflectances. One implication of this relation is that there exist anisotropic
transmission resonances in PT -symmetric systems, frequencies at which there is unit transmission and zero
reflection, but only for waves incident from a single side. The spatial profile of these transmission resonances
is symmetric, and they can occur even at PT -symmetry-breaking points. The general conservation relations
can be utilized as an experimental signature of the presence of PT symmetry and of PT -symmetry-breaking
transitions. The uniqueness of PT -symmetry-breaking transitions of the scattering matrix is briefly discussed by
comparing to the corresponding non-Hermitian Hamiltonians.
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I. INTRODUCTION

Motivated by fundamental studies of PT -symmetric quan-
tum Hamiltonians [1–3], PT -symmetric photonic structures
have attracted considerable interest in the past few years.
These are structures with balanced gain and loss; in the
case of a one-dimensional (1D) structure, this means that
there is a symmetry point (chosen to be the origin, x = 0)
around which the linear index of refraction satisfies n∗(−x) =
n(x). Such structures were first studied in Refs. [4,5] and
were shown to exhibit a variety of exotic photon transport
phenomena, such as double refraction [5], power oscillations
[5–7], and nonmonotonic behavior of the transmission loss
with increased dissipation [8]. The initial studies focused
on parallel waveguide structures with alternating loss and
gain, in which the transverse variation of the electrical field,
in the paraxial approximation to the wave equation, maps
precisely onto a 1D or discrete Schrödinger equation, similar
to the earlier quantum studies [4–9]. The parallel waveguide
realization of PT -symmetric photonic structures has recently
found a promising application to compact optical isolators and
circulators [10].

Recently, several authors have studied PT -symmetric
cavities and heterostructures [11–14], as well as general PT
scattering systems [13], using the full scalar wave equation,
in the case that it obeys at least one PT -symmetry operation.
The current authors in particular emphasized the existence in
such systems of PT -symmetric and PT -broken phases of the
electromagnetic scattering matrix (S matrix). For the 1D case,
the eigenvalues of the S matrix are unimodular in the PT -
symmetric phase, as they are in unitary systems, but photon
flux is not conserved for most scattering processes, whereas
in the PT -broken phase, the S-matrix eigenvalues have
reciprocal magnitudes, one greater than unity (corresponding
to amplification) and the other less than unity (corresponding to
attenuation). We and others [11–15] pointed out the existence
of novel singular points in the broken-symmetry phase, which

we refer to as CPA laser points. At these points, one of the S-
matrix eigenvalues goes to infinity (the usual lasing threshold
condition), while the other goes to zero. The latter phenomenon
corresponds to coherent perfect absorption (CPA) [16,17],
in which a specific mode of the electromagnetic field, the
time reversal of the lasing mode, is completely absorbed.
For PT -symmetric structures, these two phenomena must
coincide [12,13]; i.e., at the laser threshold, in addition to
a radiating mode of self-oscillation, there always exists an
incident field pattern, which, instead of being amplified, is
completely attenuated.

The rich behavior of 1DPT -symmetric photonic structures
violates the standard intuition that optical structures can be
characterized by their single-pass gain or loss, which is always
zero in these systems. The coincidence of both lasing and
perfect absorption, and more generally the reciprocal amplifi-
cation and attenuation displayed by the S-matrix eigenvalues,
is a strict consequence of the symmetry property of the
S matrix for such structures. In Ref. [13], this was expressed
in arbitrary dimensions by the relation

(PT ) S(ω∗) (PT ) = S−1(ω), (1)

where P is the parity operator (or indeed any discrete
symmetry operator with P2 = 1) and T is the time-reversal
operator (in the representation we will employ, this can be
taken as the complex conjugation operator). By comparison,
a T -symmetric unitary S matrix would obey T S(ω∗)T =
S−1(ω).

The set of S matrices obeying Eq. (1) can be shown to be
isomorphic to a pseudounitary group, which in the 1D case
is just U (1,1) [18]. In physical dimensions higher than one,
there can be more than two input and output channels, and it
is possible for the S matrix to be in a mixed “phase” with one
subset of the eigenvalues forming “PT -broken” amplifying
or attenuating pairs and the remaining eigenvalues being “PT
symmetric” and flux conserving. For 1D structures, however,
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there are only two eigenvalues, and they must either be both
unimodular, or a nonunimodular inverse conjugate pair, except
at the PT transition point, an exceptional point at which the
S matrix has only one eigenvector and eigenvalue [13].

Several specific cases of 1D PT -symmetric structures have
been studied [11–13,19], and in addition to the interesting CPA
laser behavior, other intriguing properties have been found,
such as unidirectional invisibility [19]. It is thus worthwhile
to see which specific properties PT symmetry imposes on
transmission and reflection in arbitrary PT structures, in
both the symmetric and broken-symmetry phases. That is
the goal of this work. In Sec. II, we show that 1D PT
structures obey certain strong conservation relations, which
could be employed experimentally to determine if a given
structure has realized PT symmetry. In Sec. III, we examine
a consequence of these conservation relations: the existence
of transmission resonances in which the reflectance vanishes
only for waves incident from one side of the structure, which
we refer to as anisotropic transmission resonances (ATRs). The
unidirectional invisibility phenomenon found by Lin et al. [19]
is a special case of these ATRs. In Sec. IV, we derive a separate
relation for the boundary between the PT -symmetric and
PT -broken phases of the S matrix, involving the reflectance
and transmittance for one-sided scattering processes. In Sec. V,
we show that our conventional definition of the S matrix and
its eigenvalues is physically meaningful, and in particular that
its phase boundary can be related to PT -breaking transitions
in the spectrum of some PT -symmetric Hamiltonian.

II. GENERALIZED UNITARITY RELATIONS

We begin, following Longhi [12], with the 1D transfer
matrix M , defined by (see Fig. 1)

(
A

B

)
= M

(
C

D

)
. (2)

For a PT -symmetric heterostructure, the components of M

obey the following properties [12]:

M22(ω) = M∗
11(ω∗), M12(21)(ω) = −M∗

12(21)(ω
∗), (3)

where ω is the frequency of the incident and scattered beams.
For real ω, these relations imply M22 = M∗

11 and Re[M12] =
Re[M21] = 0, which enables us to parametrize M as

M =
(

a∗ ib

−ic a

)
. (4)

B G L D

CA
GL

x=0 x=L/2x=-L/2

FIG. 1. (Color online) Schematic of a 1D PT -symmetric pho-
tonic heterostructure, consisting of an arbitrary number of layers
that are PT symmetric about x = 0, i.e., n(x) = n(−x)∗. G and
L indicate gain and loss regions, and different color tones indicate
different amplification or absorption strengths.

It is determined by three independent real quantities, i.e., b

and the phase and amplitude of a. The parameter c is related
to |a|,b by

bc = |a2| − 1, (5)

which arises from the quite general condition det(M) = 1 [20].
The parametrization using a,b is valid except when M12 = 0;
in that case, |a| = 1 and c replaces b as the third independent
parameter.

In the following discussion, we assume nonvanishing M11

and M22, which holds everywhere except at CPA laser points
[21]. The S matrix is defined by(

A

D

)
= S

(
B

C

)
≡

(
rL t

t rR

)(
B

C

)
, (6)

where rL and rR are the reflection coefficients for light incident
from the left and right, respectively, while t is the transmission
coefficient, which is independent of the direction of incidence.
The parametrization (4) gives

S = 1

a

(
ib 1

1 ic

)
. (7)

Thus, the reflection coefficients are rL = ib/a and rR = ic/a,
which are unequal in magnitude but can differ in phase by only
0 or π , and the transmission coefficient is t = 1/a. Note that
S satisfies the symmetry relation (1), with P = ( 0 1

1 0 ) and T
the complex conjugation operator. By using (5), we obtain the
following exact “generalized unitarity relation”:

rLrR = t2

(
1 − 1

T

)
. (8)

This leads to the conservation relation

|T − 1| =
√

RLRR, (9)

where RL or R ≡ |rL or R|2 are the two reflectances and T ≡
|t |2 is the transmittance. In addition, Eqs. (7) and (8) lead
to phase relationships among the reflection and transmission
coefficients

φR = φL, if T < 1

φR = φL + π, if T > 1 (10)

φL,R = φt ± π/2,

where φL,R,φt are the phases of the reflection and transmission
coefficients.

Equations (8) and (9) are the central results of this work.
They are valid for all 1D photonic heterostructures with PT
symmetry; two examples are shown in Fig. 2.

For T < 1, Eq. (9) becomes T + √
RLRR = 1. This is an

intriguing generalization of the more familiar conservation
relation R + T = 1, which applies to unitary (T -symmetric) S

matrices for which the left and right reflectances are necessar-
ily equal. In thePT -symmetric case, the geometric mean of the
two reflectances,

√
RLRR , replaces the single reflectance R.

Therefore, when T < 1, the scattering of a single incident wave
from one side of the structure is subunitary (some flux is lost)
and the scattering from the other side is superunitary (some
flux is gained). As an exception, there can be an accidental
degeneracy at which RL = RR , in which case the scattering
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FIG. 2. (Color online) (a) Reflectance and transmittance of a
1D PT -symmetric structure of index n = 2 ± 0.2i and length L.
RL,RR,T are labeled and indicated by the solid, dashed, and dotted
curves, respectively. Zeros of the reflectances and the corresponding
anisotropic transmission resonances (T = 1) are marked by vertical
dotted lines. The quantity RLRR + 2T − T 2 = 1 is plotted as the
horizontal dashed line to demonstrate the conservation relation (9).
(b) Phases of rL, rR , and t in (a), demonstrating the reflection
phase jumps at each ATR. (c) Same quantities are plotted as in
(a), but the structure now has a passive region of length 2L/5 in
the center. For this structure, we see that it is possible to have
“accidental” flux-conserving points at which RL = RR(≡ R �= 0)
and hence T + R = 1. Similarly, there are accidental pseudounitary
points for which T − R = 1. They are indicated by vertical dotted
and dashed lines, respectively. The speed of light in vacuum is taken
to be unity and ωL is dimensionless.

from both sides conserves flux. Such special cases do occur as a
continuous parameter such as frequency is varied for nontrivial
PT systems (Im[n(x)] �= 0), as shown in Fig. 2(c).

For T > 1, all single-sided scattering processes are supe-
runitary, and the conservation relation (9) can be rewritten
as T − √

RLRR = 1. Accidental reflectance degeneracies
(RL = RR) are also possible in this regime, giving the usual
pseudounitary conservation relation T − R = 1, as shown
in Fig. 2(c). All of these quantities actually diverge when
approaching the CPA laser points, but they still satisfy the
conservation relation (9).

Finally, we see that for T = 1, one of the reflectances must
vanish (the other typically does not). Hence, the scattering
for that direction of incidence is flux conserving, similar to
resonant transmission in unitary structures. This phenomenon
is analyzed in greater detail in Sec. III.

Interestingly, the S matrix describing three-wave mixing in
the undepleted pump approximation corresponds to the special
case where RL = RR [22,23]. The case T + R = 1 describes
frequency conversion by absorption or emission of a pump
photon, and T − R = 1 describes parametric amplification of
both signal and idler by down conversion of pump photons.
The relevance of a special case of PT symmetry to optical
parametric amplification and conversion has only very recently
been appreciated.

An experimental concern in all PT systems is how to
confirm that one has truly realized a structure with PT
symmetry, i.e., that the gain and loss are balanced and the real
index is symmetric. Equations (8)–(10) are strong constraints
on the allowed scattering processes with a single incident beam
for PT systems, and can be used to test how close one is to
the ideal symmetric structure.

III. ANISOTROPIC FLUX-CONSERVING
TRANSMISSION RESONANCES

As we have noted, Eq. (9) implies an interesting phe-
nomenon: there exists a flux-conserving scattering process for
incident waves on a single side if and only if T = 1, and one of
RL or RR vanishes. We refer to such a process as an anisotropic
transmission resonance (ATR). ATRs are different from the
accidental flux-conserving processes that can occur for T < 1;
those, as we have seen, are accessible from either direction
of incidence (RL = RR). ATRs are a generalization of the
flux-conserving transmission resonances of unitary systems,
which are independent of the incidence direction. In Fig. 3,
we show how two ATRs evolve out of a single transmission
resonance of the unitary system as balanced gain and loss is
added. Within the same structure, ATRs can occur for both left
and right incidence, as the frequency is varied, but generally
at different frequencies (to occur at the same frequency, a
“doubly accidental” degeneracy RL = RR = 0 would have to
occur, requiring a second tuning parameter).

A surprising property of ATRs is that their intensity profile
is spatially symmetric. This can be shown from the following
analysis. If E(x) is the spatial profile of a left- (right-) going
transmission resonance, then by a PT operation E∗(−x) is
also a left- (right-) going transmission resonance of the same
structure. Since these two states happen at the same frequency,
they must be identical (up to a phase φ) by the requirement of
uniqueness:

E∗(−x) = eiφE(x). (11)

Hence, the intensity satisfies I (x) ≡ |E(x)|2 = I (−x). This
result is consistent with the intuitive expectation that in order
to conserve flux, the photons must on average spend equal
amount of time in the loss and gain regions of the structure.
Except at the ATRs, intensities do exhibit asymmetry for
single-sided incidence, and in particular this is the case for
a wave incident from the side with nonvanishing reflectance
[see Figs. 3(e) and 3(f)].

Figure 3 shows two ATRs of a multilayer structure, one for
each incidence direction, occurring at different frequencies.
The frequencies are very similar because Im[n] is not very
large and both ATRs arise from a bidirectional transmission
resonance of the unitary (Im[n] = 0) heterostructure. As
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FIG. 3. (Color online) Asymmetric transmission resonances in a multilayer heterostructure. (a) Transmittance and reflectances as a function
of frequency for Im[n] �= 0 and (b) for Im[n] = 0. Mode 0 is a bidirectional transmission resonance in the latter case. The structure has a
constant Re[n] = 2 and consists of 50 layers with Im[n] increasing (decreasing) stepwise from 0.004 (−0.004) to 0.1 (−0.1) toward the center
in the loss (gain) half. The frequencies are ωL = 25.275, 25.139 in Modes 1 (wave incident from gain side) and 2 (wave incident from the
loss side). Spatial profiles shown are (c) the ATRs, (d) unitary bidirectional transmission resonance, (e) “wrong” side scattering at the ATR
frequencies, and (f) “wrong” side scattering at RR = 0 in the same structure, but with larger Max(Im[n]) = 0.17, showing a stronger asymmetry.

we add gain and loss to the unitary heterostructure, while
preserving the PT symmetry, the transmission resonances
separate and their spatial profiles become more distinct.
Figure 3(e) shows the asymmetric intensity profiles for waves
incident at the ATR frequency, but from the “wrong” side (the
side with nonvanishing reflectance). The asymmetry increases
as the two ATRs move further apart with increasing gain or
loss, as shown in Fig. 3(f).

Let us refer to the left and right halves of a PT -symmetric
heterostructure as U,V . We can write the reflection and
transmission coefficients coefficients for the whole structure
(rL, rR , and t) in terms of the reflection and transmission
coefficients for the U and V segments:

rL = rL,U − ei(αU +αV )r∗
L,U

1 − ei(αU +αV )r∗
L,U r∗

R,V

, (12)

rR = rR,V − ei(αU +αV )r∗
R,V

1 − ei(αU +αV )r∗
L,U r∗

R,V

, (13)

t = eiαU (1 − r∗
L,U rR,V )

1 − ei(αU +αV )r∗
L,U r∗

R,V

. (14)

Here, αU or V ≡ 2 Arg[tU or V ]. Note that if either rL,U = 0 or
rR,V = 0 at some ω, corresponding to a transmission resonance
of U (V ) in the right (left) direction, the transmittance for the
full structure will also be unity.

Thus, one type of ATR can arise from resonances of either
half of thePT system. This follows fromPT symmetry. First,
using the time-reversal operation, a transmission resonance of
S(nk) from the left must be a transmission resonance of S(n∗k)
from the right (interchange gain and loss regions and inter-
change incoming and outgoing amplitudes) [17]. Second, the
S matrix of the right-hand side of a PT structure is PS(n∗k),

so the right half of the PT structure must have a resonance for
waves incident from the left side as well, if its left side does.
Therefore, the composite structure will have an ATR if either
half does (rL,U = 0 or rR,V = 0). This argument is illustrated
graphically in Fig. 4; we refer to these as trivial ATRs.

ATRs also occur when Arg[rL,U ] or Arg[rR,V ] equal
(αU + αV )/2 and involve multiple scattering between the
subunits. It is straightforward to check that at such points,
T = 1 and RL(RR) = 0. It can be shown that a single layer
of gain or loss in a lossless environment (e.g., in air) does not
have transmission resonances in general, and we show in the
Appendix that all the ATRs in Fig. 2 are of this type and are
thus “nontrivial.”

As already noted, for an ATR to be bidirectional, a doubly
accidental degeneracy is needed either in the amplitude of
rL,U and rR,V (rL,U = rR,V = 0) or their phase (Arg[rL,U ] =
Arg[rR,V ] = (αU + αV )/2). This is highly unlikely, unless one

A
G

A’
L

A’PT A

Combined

A
G L

A

FIG. 4. (Color online) Graphical explanation of a trivial ATR
arising from the transmission resonance of the left half in the right
direction. PT symmetry requires that it also be a resonance of the
right half for left incidence (see argument in text). Depending on
the particular PT structure, there may or may not be trivial ATRs;
for example, the simple heterostructure of Fig. 2(a) has no such
ATRs. The ATRs of primary interest are those that arise from multiple
scattering between the left and right halves of the structure.
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can tune an additional continuous parameter other than the
frequency, so in the generic case all transmission resonances
of PT structures are unidirectional.

In a recent work, Lin et al. [19] have studied a 1D
PT -symmetric Bragg structure of alternating dielectric layers
with appropriate gain and loss, and discovered a series of very
closely spaced ATRs centered around the Bragg point, with
an additional property that they refer to as “unidirectional
invisibility.” Not only do they find T = 1,RL = 0,RR �= 0
(or vice versa), as dictated by Eq. (9), they also find that at
these ATRs, the transmission phase φt = 0, corresponding to
zero phase delay of the signal compared to free propagation.
The properties of the ATRs also hold approximately in
the neighboring frequency window, leading to a seemingly
“broadband ATR.” For these reasons, there would be no
signature of the presence of the structure in either the amplitude
or phase of the received wave packet, if the wave is sent from
the correct side (there would be a signature of course in the
reflected wave if sent from the wrong side). This condition, that
φt = 0 at the ATRs, is not required by our generalized unitarity
relations and is specific to their structure [24]. A similar
Bragg structure was studied before [25] and, recently, the
equivalent Hermitian problem in a complex coordinate system
was analyzed [26]. The “unidirectional invisibility” was shown
to break down as the number of unit cells increases at a fixed
modulation depth of the periodic refractive index [27], but a
number of ATRs still exist in the vicinity of the Bragg point.

The existence of nontrivial ATRs is independent of whether
the S matrix is in thePT -symmetric orPT -broken phase [13];
they can even occur at the symmetry-breaking exceptional
point (see the following section). However, we do find for the
simple gain-loss heterostructure of Figs. 2(a) and 2(b) that the
ATRs disappear soon after the lasing threshold is passed in
the broken-symmetry phase since in the large Im[n]kL limit,
RLRR approaches unity asymptotically. This is not the case for
more complicatedPT structures such as those of Fig. 2(c). The
different behaviors of the two cases are illustrated in Fig. 10
of the Appendix and their origin is discussed.

IV. PHASE TRANSITION BOUNDARIES

A 1D PT heterostructure can undergo a spontaneous
symmetry-breaking transition in the eigenvalues and eigen-
vectors of its S matrix, as either ω is increased at fixed gain or
loss or as gain or loss is increased at fixed ω [13]. In the
symmetric phase, the PT operation maps each scattering
eigenstate back to itself, whereas in the broken-symmetry
phase, each scattering eigenstate is mapped to the other. At
the symmetry-breaking exceptional point, there is only one
eigenvector and so both cases coincide.

Let λ1,2 be the eigenvalues of the S matrix of a PT -
symmetric heterostructure and ν1,2 be the ratios of the two
amplitudes of the corresponding eigenstates. It follows from
the S-matrix parametrization (7) that

λ1,λ2 = i

2a
[(b + c) ±

√
(b − c)2 − 4], (15)

ν1,ν2 = i

2
[(c − b) ±

√
(b − c)2 − 4]. (16)

These equations imply that λ1λ2 = −|a|2/a2,ν1ν2 = −1, and
the eigenvalues must have reciprocal moduli. In the symmetric
phase, both eigenvalues are unimodular, whereas the broken-
symmetry phase corresponds to the |λ1| > 1,|λ2| < 1 case.
The exceptional point occurs when b − c = ±2, and there
is a single eigenvector with eigenvalue λ = ±i|a|/a. Both
the eigenvalues and amplitudes ν1,2 meet and bifurcate at
the exceptional point, similar to the PT -breaking transitions,
which occur in the eigenvalue spectra of PT -symmetric
Hamiltonians [1–5].

Each eigenvector of the S matrix corresponds to a particular
choice of two coherent beams, simultaneously directed at
each side of the heterostructure. The S-matrix transition
can in principle be observed by tuning the complex input
amplitudes, measuring the output amplitudes, and hence
finding the scattering eigenvalues. One would actually need
to do such “two-sided” interference experiments to detect the
attenuating mode in the broken-symmetry phase, an interesting
possibility that is currently being explored [23]. However, such
experiments with two coherent input beams [17] are often
inconvenient and difficult to perform. Therefore, it would
be preferable to have a criterion for the transition based on
separate single-beam measurements.

In Ref. [13], two such criteria were given for the phase
boundaries in an arbitrary PT -symmetric heterostructure;
however, they both involve the relative phase of the reflection
and transmission coefficients. One of these conditions is
rL − rR = ±2it . Using the conservation relations (9), this can
be shown to lead to the simpler condition [28]

RL + RR

2
− T = 1, (17)

which involves only the transmittance and reflectances. The
left-hand side of Eq. (17) is greater than unity in the broken-
symmetry phase and less than unity in the PT -symmetric
phase. This provides a simple experimental criterion for
locating the PT -breaking transition point in 1D heterostruc-
tures. This criterion will be particularly useful if the quantity
(RL + RR)/2 − T varies rapidly near the transition point. This
appears to be the case for many heterostructures, as shown for
example in Fig. 5 for a three-layer structure.

1490 1510 1530
0.5

1.5

1.0

ωL
1550

|λ
|

FIG. 5. (Color online) Test of the criterion (17) for PT -
symmetry-breaking points of a three-layer heterojunction structure.
The thin solid lines represent the eigenvalues of the S matrix, which
exhibit five symmetry-breaking points as the frequency ω is tuned
over the selected range. The thick solid line indicates the left-hand
side of Eq. (17). The heterostructure has a constant Re[n] = 3, and the
first and last layers are filled with gain and loss of Im[n] = ±0.005.
The width of the central passive region is 4% of the total length L.
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FIG. 6. (Color online) Reflectances and transmittance along the
PT phase boundary for the 1D PT -symmetric structure studied in
Fig. 2(a), in the high-frequency regime (ωL � 1725). The plots are
given as a function of the gain or loss strength Im[n], while the
frequency ω is simultaneously varied to maintain the system at the
phase boundary. Vertical dotted lines indicate points where RR = 0,
for which RL = 4 and T = 1 as predicted by Eq. (17) and indicated
by horizontal dashed lines.

Equation (17) implies that for an ATR to coincide with
the exceptional point, the nonzero reflectance must be exactly
equal to 4, which is allowed but will not occur without specific
tuning. An example of such tuning is shown in Fig. 6. This plot
is obtained by tuning both the gain or loss strength (Im[n]) and
the frequency, to keep the system along the phase boundary,
and observing the reflectances and transmittance. Two ATRs
are found along the phase boundary. We note that a special
set of solutions of Eqs. (9) and (17) are given by RR,RL,T =
(p ± 1)2,p2,(p ∓ 1)2, where p is an arbitrary real number.
Interestingly, the maxima of RR,RL,T in this simple geometry
are given by this set of solutions with p = Re[n] in the high-
frequency regime where Im[n] � 1.

V. UNIQUENESS OF PT TRANSITION IN SCATTERING

The generalized unitarity relations (8)–(10) hold regardless
of whether the eigenvalues and eigenvectors of the S matrix
are in the PT -symmetric or PT -broken phase, although the
quantities in the generalized unitarity relations are related to
the phase of the PT scattering system through the relation
(17). There is, however, some freedom of choice in the
definition of the 1D S matrix, corresponding to permutation
of the outgoing channels. The definition we used in Ref. [13]
is given in Eq. (6), which is also widely used in mesoscopic
physics [29]. In this section, we will refer to the S matrix
defined in this way as S0. In S0, the reflection coefficients
are on the diagonal, and the outgoing channels are related to
the corresponding incident channels by time reversal, which
seems quite natural. In particular, the time-reversal operation
T in this definition is represented by the complex conjugation
operator.

There is, however, an alternate definition:(
D

A

)
= Sc

(
B

C

)
≡

(
t rL

rR t

) (
B

C

)
, (18)

which has also been used in the literature, including in one
of the earliest works on PT -symmetric scattering by Cannata
et al. [30]. This alternative definition of the S matrix, which
we will refer to as Sc, was subsequently used in the work
on unidirectional invisibility of Lin et al. [19]. Because the
permutation operation does not preserve the eigenvalues, these
two different definitions of the S matrix lead to different criteria
for the symmetric and broken-symmetry phases, as well as
for the phase boundary (exceptional points). This can lead
to confusion, as well as raising questions as to whether the
S-matrix eigenvalues and eigenvectors, and their transitions,
are physically meaningful.

Note first that both definitions lead to the same values
for t,rR,rL, so they will give the same scattered state for
the same input state. The issue is whether one or the other
definition more closely reflects the phenomena of spontaneous
PT -symmetry breaking, as already known from Hamiltonian
studies. In our earlier work on the PT transition in scattering
systems [13], we showed that the phase boundary of S0

corresponds closely to the anticrossings of the poles of the
S matrix in the complex ω plane (see also [15]). The locations
of these poles are independent of the definition of S; they
reflect the internal excitation frequencies of the scatterer, as
well as the coupling of these excitations to the continuum. This
suggested that thePT transition of S0 is indeed associated with
thePT transition of some underlying effectivePT -symmetric
Hamiltonian. We have recently verified this point of view
analytically and numerically, in collaboration with others. The
main part of that work will be presented elsewhere [31]; here,
we just state a few relevant results and show a numerical
example corroborating this point of view.

First, it is straightforward to show that the eigenvalues of Sc

have the same general properties as those of S0 (even though
they do not coincide). In particular, their product is −1 and they
are either both unimodular or of reciprocal modulus. However,
the criterion for their exceptional points differs from that of
S0. Using a similar a,b,c parametrization of Sc as used earlier
for S0, one finds that the eigenvalues are given by

λ1,λ2 = 1

a
[1 ± √−bc]. (19)

Since both b and c are real, this expression shows that
when bc > 0 both eigenvalues are complex (and unimodular),
whereas when bc < 0, both eigenvalues are real and satisfy
|λ1| = |λ2|−1 �= 1. Exceptional points occur when b = 0 or
c = 0. From Eqs. (7) and (8), one sees that bc = (1/T − 1) and
so bc > 0 → T < 1 and bc < 0 → T > 1, while b = 0(rL =
0) or c = 0(rR = 0) is the condition for T = 1. Thus, each ATR
is an exceptional point for Sc, and T > 1 corresponds to the
“broken-symmetry” phase, whereas T < 1 to the “symmetric”
phase. This is in contrast to S0 for which one has the criterion
of Eq. (17) involving both T and the average of RL and RR .

These two conditions for the transition and for the two
phases of the S matrix do not coincide [see Figs. 7 and
8(a)] unless an ATR is tuned to occur at the phase boundary
of S0 as we have shown in Fig. 6. We see that for this
simple heterostructure, S0 has a single transition to the broken-
symmetry phase (for a fixed Im[n]), while Sc has a series of
transitions corresponding to entering and leaving the broken-
symmetry phase in the high-frequency regime (Fig. 7). Each
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FIG. 7. (Color online) Logarithm of the modulus of the eigenval-
ues of S0 (thick line) and Sc (thin line) for the 1D PT heterostructure
studied in Fig. 2(a); case (a) is with Im[n] = 3.995 × 10−3 and case
(b) is with Im[n] = 4 × 10−3. |λ| = 1 indicates the PT -symmetric
phase, and reciprocal values for |λ| indicate the broken-symmetry
phase. Sc has multiple “transitions” spaced by the free spectral range
and insensitive to Im[n]; S0 has a single transition, which is highly
sensitive to small changes in Im[n].

of these transitions begins at one of the two ATRs and ends at
the other; thus, the centers of the broken-symmetry regions are
spaced by the free spectral range of the unitary cavity. These
“lozenges” of broken-symmetry phase barely change when
Im[n] is varied; Sc repeatedly enters and leaves the symmetric
phase as we tune ω. In contrast, the single transition point of
S0 moves substantially to lower frequency as Im[n] increases;
once it enters the broken-symmetry phase, it never reenters the
symmetric phase at any higher frequency. This indicates that
S0, not Sc, is measuring the breaking of PT symmetry.

In Fig. 8, we show the decisive comparison. If we simply
take the PT heterostructure shown in Fig. 2(a), and impose
Dirichlet or Neumann boundary conditions at the boundaries
to the continuum, we have a non-Hermitian discrete eigenvalue
problem with PT symmetry. Its energy spectrum (expressed
as complex frequencies) makes transitions between real and
complex conjugate pairs [Fig. 8(b)] in a manner that perfectly
follows the behavior of the eigenvalues of S0 and but not of Sc

[Fig. 8(a)]. Moreover, in Fig. 8(c) we show the poles and zeros
of the S matrix; their symmetric distribution around the Im[k]
axis is a consequence of the PT symmetry. Before the PT
transition of S0, the poles have approximately the same value
of Im[k] as for the passive system, but just at the transition of
S0, there is an anticrossing in the complex plane and half begin
moving toward the real axis and the other half recede further
down in the complex plane [13,15]. For Im[k] ≈ 17, the system
is very near the CPA laser point for which a pole and zero coin-
cide on the real axis. The eigenvalues of both S0 and Sc diverge
or vanish at this point because t, rR , and rL all diverge at the
lasing transition. Interestingly, for this value of Im[n], there are
no ATRs after the lasing transition and T < 1 for all larger k;
the reasons for this are discussed in the Appendix. The same
correspondence between the broken-symmetry phase of Sc

and the analogous closed-system Hamiltonian holds for more
complex PT heterostructures, such as that of Fig. 2(c), where
S0 has multiple broken phases [31]. Thus, we believe that at
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FIG. 8. (Color online) (a) PT phase transition of S0 (thick line)
and Sc (thin line) for the 1D heterostructure studied in Fig. 2(a) but
with n = 2 ± 0.208i. The broken-symmetry phase of S0 is indicated
by the shadowed area. (b) PT phase transition of the corresponding
finite non-Hermitian cavity Hamiltonian with Dirichlet boundary
conditions. Its broken-symmetry phase coincides with that of S0.
(c) Poles (red circles) and zeros (black crosses) of the S matrix (which
are the same for S0 and Sc); anticrossing of the poles occurs at the
phase transition of S0. At kL ≈ 17, the system is very near the CPA
laser threshold point, where the cavity both emits laser radiation and
perfectly absorbs the time reversal of the lasing mode.

least for the 1D case, there is a unique definition of the S matrix,
under which its PT transitions actually reflect the symmetry
breaking in the underlying non-Hermitian Hamiltonian.

VI. CONCLUSION

We have derived generalized unitarity relations for the
S matrix of arbitrary 1D PT -symmetric photonic heterostruc-
tures, including a conservation relation between the transmit-
tance and the left and right reflectances. This conservation
relation can be easily tested in experimental structures and
used as a criterion of how precisely one has realized the
PT symmetry. In addition, the conservation relation leads
to a simple criterion for identifying the exceptional point(s) at
which the PT symmetry is spontaneously broken or restored.
These exceptional points are shown to be closely related to the
PT -symmetry-breaking transition of the underlying effective
Hamiltonian of the system.
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APPENDIX: PROPERTIES OF SIMPLE GAIN-LOSS
HETEROJUNCTION

The PT heterostructure shown in Fig. 2(a), which consists
of two uniform slabs of equal length and index n,n∗, is
the simplest example one can study of the class of 1D
PT -symmetric photonic heterostructures, and it has been
treated previously in [11,13]. We will refer to this structure
as the “simple heterojunction” (SH), and it is described by
the transfer matrix (4) with a = (α + α∗) + i(β + γ ), b =
−i(α − α∗) + (γ − β), and c = i(α − α∗) + (γ − β), where

α = | cos 
|2
2

− n∗

2n
| sin 
|2, (A1)

β = 1

2|n|2 [n∗ sin 
 cos 
∗ + c.c.], (A2)

γ = 1

2
[n sin 
 cos 
∗ + c.c.], (A3)

and 
 ≡ nkL/2 is the complex optical path inside the left half.
Since β, γ are real, so are b and c, and it is straightforward
to check that (5) holds. This transfer matrix leads to certain
simple properties. First, as mentioned in the text, the SH has
no trivial ATRs as we will show in Sec. 1. Second, below
the PT -symmetry-breaking point, it has many ATRs, roughly
two per free spectral range of the passive resonator. Above the
symmetry-breaking transition, it still has ATRs until it passes
the lasing transition after which they disappear in the limit
Im[nkL] → ∞. We will discuss this behavior and contrast it
with more complex heterostructures in Sec. 2.

1. Absence of trivial ATRs

The SH can be treated as having an air gap of vanishing
width in-between the gain and loss regions. Hence, the
absence of trivial ATRs is a consequence of the absence
of reflectionless transmission resonances of such uniform
amplifying or attenuating slabs in air. In the following, we first
discuss in general the transmission resonances of a uniform
slab of refractive index n and length L/2 embedded in two
semi-infinite media of index nl and nr .

For this simple setup, the transfer matrix defined in Sec. II
[( A

B ) = M( C

D ); see Fig. 1] takes the form

M = 1

2

(
1 1

nlk

1 − 1
nlk

) (
cos 
 i sin 


nk

ink sin 
 cos 


)(
1 1

nrk −nrk

)
,

(A4)

where nl, nr , n can be complex. A transmission resonance of
an incident beam from the left side requires C = 0 and

A =
(

1 − nr

nl

)
cos 
 + i

(
n

nl

− nr

n

)
sin 
 = 0. (A5)

For the gain and loss regions in SH, when treated as being
separated by an infinitely thin air gap, nl = nr = 1 while
Im[n] ≡ τ �= 0. We immediately see that Eq. (A5) can not
be satisfied because sin 
 �= 0 due to the finite imaginary part
of n. This holds independent of n (τ �= 0) and k( �= 0) (see
Fig. 9). This finding is confirmed by calculating the reflectance
directly [see Fig. 9(a)]. The same analysis can be extended to
the slightly more complicated case shown in Fig. 2(c), where

ωL
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FIG. 9. (Color online) Reflectance of the gain (solid) and loss
(dashed) region in the heterostructure studied in Fig. 2(a). Two
values of the refractive index are considered: n = 2 ± 0.2i (thick),
n = 2.5 ± 0.1i (thin).

all the ATRs are also found to be “nontrivial” as confirmed
again by calculating the reflectances of the subunits directly.
We note, however, that trivial ATRs do exist in some PT
structures. An example is the concatenation of even numbers
of SHs.
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FIG. 10. (Color online) (a) Reflectances and transmittance same
as in Fig. 2(a) but at higher frequencies. Inset: Analysis of the
reflection coefficient from the “gain” side. Letters with arrow
represent the complex amplitude of the traveling waves at the nearest
interface. (b) Reflectances and transmittance same as in Fig. 2(c),
but at higher frequencies. Inset: zoomed in on the two ATRs near
ωL = 92.35. (c) Reflectances and transmittance of the central passive
region in Fig. 2(c) placed between two semi-infinite regions of gain
and loss with n = 2 ± 0.2i. The transmission resonances are given
by Eq. (A6) in which Im[nl] takes opposite signs depending on the
propagation direction. Solid curve represents T − 1 and its broken
parts indicate T < 1.

023802-8



CONSERVATION RELATIONS AND ANISOTROPIC . . . PHYSICAL REVIEW A 85, 023802 (2012)

2. Asymptotic properties of ATRs in the simple heterojunction

In this main text, we noted that ATRs for the SH disappear
soon after the lasing threshold is passed in the broken-
symmetry phase of S0 [see Fig. 10(a)]. To understand this
observation, we study the behaviors of RR and RT in the
large τkL limit. The reflection coefficient from the “loss”
side of the PT heterostructure approaches the value given by
the Fresnel formula (1 − n)/(1 + n) due to the suppression
of interference effects by strong absorption. Surprisingly,
the asymptotic value of the reflection coefficient from the
“gain” side, (1 + n∗)/(1 − n∗), turns out to be the inverse
of the Fresnel formula. This can be explained from the
analysis shown by the inset of Fig. 10(a). Due to the strong
loss inside the “loss” side of the cavity, D′ is given by
the Fresnel relation C ′(2n∗)/(n∗ − n) ≡ C ′r ′, implying |D| =
| exp[in∗kL/2]D′| = |r ′ exp[in∗kL]C| is much larger than |C|
in the large τkL limit. Therefore, the scattering at the air-gain
interface is approximately the time-reversed process as if the
“gain” side (which is the “loss” side in the time-reversed
picture) were semi-infinite, i.e., with incident amplitude r∗ and
reflected amplitude 1 in the air and transmitted amplitude D∗,
satisfying the Fresnel relation. The reflection coefficient in the
original problem is then (1 + n∗)/(1 − n∗). Thus, RLRR → 1
in this limit, which implies T → 0 from Eq. (9) and ATRs do
not exist.

In more complicated PT structures, ATRs can take place
in this limit. For example, the reflection coefficient connecting
C ′ and D′ approaches zero at the transmission resonances of
the passive region in Fig. 2(c). The analysis above then breaks
down and sharp changes of the transmittance and reflectances
take place at these frequencies as shown in Fig. 10(b). These
transmission resonances through the passive region are a
special set of solutions of Eq. (A5). They require nl = n∗

r

and Im[n] = 0, and the transmission resonances occur at


 = arctan

[
2 Im[nl]n

Re[nl]2 − Im[nl]2 − n2

]
. (A6)

In the frequency range shown in Fig. 2(c) where Im[nl]k is
small, these transmission resonances do not lead to ATRs of
the whole heterostructure due to the multiple interferences
taking place inside the gain and loss sub-units. In the large
Im[nl]k limit shown in Fig. 10(b), however, these multiple
interferences are suppressed due to strong absorption or
amplification, and ATRs arise from the resonances given
by (A6). Note that these ATRs are still “nontrivial” as
the frequencies given by (A6) are not the transmission
resonances of the gain or loss subunit in the absence of the
other.

For the purpose of completeness, we mention a few more
cases where transmission resonances of a single uniform slab
[i.e., the solutions of Eq. (A5)] exist. When nl, nr ,n can be
treated as real (with negligible absorption and no gain), two
types of solutions of (A5) can be found. The first one is well
known, nl = nr , which requires sin 
 = 0; the second one
is less well known, n = √

nlnr , which requires cos 
 = 0. It
is easy to convince oneself that no other types of solution
exist for real indices. As one slowly increases the gain or
loss strength in the scattering layer, approximate transmis-
sion resonances can still be found, but their reflectances
gradually increase and eventually become detectable. In
Ref. [32], a different case was studied where nr = 1, Im[n] =
0, Im[nl] �= 0. By noticing that cos 
 = 0 can not satisfy
the above equation and tan 
 is real, Eq. (A5) can be
reduced to

Im[nl]
2 = (Re[nl] − 1)(n2 − Re[nl]), (A7)

tan 
 = −n

(
Re[nl] − 1

n2 − Re[nl]

) 1
2

. (A8)

It describes the transmission resonance from a loss or
gain media to air through a passive slab, which gives
rise to the novel “surface” lasing modes introduced in
Ref. [32].
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