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Displaced dynamics of binary mixtures in linear and nonlinear optical lattices
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The dynamical behavior of matter-wave solitons of two-component Bose-Einstein condensates (BEC) in
combined linear and nonlinear optical lattices (OLs) is investigated. In particular, the dependence of the frequency
of the oscillating dynamics resulting from initially slightly displaced components is investigated both analytically,
by means of a variational effective potential approach for the reduced collective coordinate dynamics of the
soliton, and numerically, by direct integrations of the mean field equations of the BEC mixture. We show that
for small initial displacements binary solitons can be viewed as point masses connected by elastic springs of
strengths related to the amplitude of the OL and to the intra- and interspecies interactions. Analytical expressions
of symmetric and antisymmetric mode frequencies are derived and occurrence of beatings phenomena in the
displaced dynamics is predicted. These expressions are shown to give a very good estimation of the oscillation
frequencies for different values of the intraspecies interatomic scattering length, as confirmed by direct numerical
integrations of the mean field Gross-Pitaevskii equations (GPE) of the mixture. The possibility to use displaced
dynamics for indirect measurements of BEC mixture characteristics such as number of atoms and interatomic
interactions is also suggested.
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I. INTRODUCTION

Binary mixtures of Bose-Einstein condensates (BECs) are
presently attracting a great deal of interest in connection with
a series of interesting phenomena such as the formation of
segregate domains [1], polarized states [2], spin textures [3],
topological excitations [4], novel Josephson oscillations [5,6],
Rabi Josephson oscillations [7], four-wave mixing [8], etc.
Moreover, multicomponent BECs have been shown to support
nonlinear waves of novel type such as symbiotic solitons [9],
domain-wall solitons [10], and combinations of dark-dark [11]
and bright-dark solitons [12,13], the last one leading to long
lived oscillations which were experimentally observed in [14].
The possibility to trap binary mixtures in optical lattices (OLs),
experimentally demonstrated in [15], has added further interest
to the field. In particular, the interplay between the nonlinearity
induced by the interatomic interactions and the strength of
the OL has been shown to lead to interesting phenomena
such as Landau-Zener tunneling [16] and transitions from
superfluids to Mott insulators [17]. Moreover, existence of
nonlinear periodic waves on nonzero backgrounds [18], gap
solitons [19], mixed-symmetry modes, and breathers both in
continuous and discrete (arrays) mixtures [20].

Besides usual (e.g., linear) OLs, it is also possible to
introduce a periodic structure in the system by modulating the
scattering lengths in space by means of the Feshbach resonance
technique [21]. This allows us to create what is known as
a nonlinear optical lattice (NOL). BEC mixtures in NOLs
have been recently considered in connection with quantum
simulation of novel Hubbard models [22] and interesting
phenomena such as sonic analogs of black holes [23] and
control of soliton creation [24]. A possibility of observing
delocalizing transition even in one-dimensional BECs loaded
in OLs due to the presence of the NOL has been also suggested
[25]. For a fresh review on BECs in nonlinear optical lattices

we refer to the article in [26]. In all these studies, however, the
effects of a combined linear and nonlinear optical lattice on
the soliton dynamics and the link between dynamical behaviors
and interactions have been scarcely investigated.

The aim of the present paper is to study the mean field
dynamics of initially displaced soliton components of binary
BEC mixtures in the presence of a combined linear and non-
linear OL. In particular, the dependence of the frequency of the
resulting oscillating dynamics on the interspecies interaction
and on the number of atoms is investigated. This is done both
analytically, by means of a variational effective potential for
the displaced dynamics, and numerically, by direct integrations
of the mean field equations of the BEC mixture. We show
that in the limit of small initial displacements, the effective
potential leads to a mechanical interpretation of a binary
soliton motion in terms of two point masses connected by
elastic springs of strengths related to OL’s amplitude and
to the intra- and interspecies interactions. The displaced
dynamics, being the same as the one of coupled harmonic
oscillators, can be decomposed in term of a normal mode
analysis from which analytical expressions of the symmetric
and antisymmetric mode frequencies, are explicitly derived.
These expressions are shown to give a very good estimation
of the oscillation frequencies for different values of the in-
traspecies interatomic scattering length, as confirmed by direct
numerical integrations of the mean field Gross-Pitaevskii
equations (GPE) of the mixture. The occurrence of beating
phenomena for unequal and for equal numbers of atoms in the
mixture for small interspecies interactions is also discussed.
The stabilities of stationary and oscillating dynamics are
investigated by Vakhitov-Kolokolov (VK) criterion [27] and by
numerical simulations, respectively. These results suggest the
possibility of using dynamical behaviors of suitably prepared
initial multicomponent BEC solitons as a tool for extracting
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information about physical characteristics of BEC mixtures
such as interatomic interactions and species populations.

The paper is organized as follows. In Sec. II we introduce
the mean field model equations describing BEC mixtures in
combined linear and nonlinear optical lattices and derive a
variational effective potential formulation for the matter-waves
soliton dynamics. In Sec. III we consider the displaced binary
soliton dynamics in the framework of a coupled harmonic
oscillator model which is valid in the limit of small initial
displacements. Analytical expressions for the symmetric and
antisymmetric mode frequencies are explicitly derived. In
Sec. IV results of displaced soliton dynamics obtained by
direct numerical integrations of the GPE are compared with
the analytical predictions. The stability of stationary two-
component solitons and their slightly displaced dynamics are
also investigated. Finally, in Sec. V the main results of the
paper are briefly summarized.

II. MODEL EQUATION AND VARIATIONAL ANALYSIS

We consider as a mean field model for a mixture of
two homonuclear condensates [28] in an external trapping
potential, the following system of coupled Gross-Pitaevskii
equations

ih̄
∂φj

∂t
= − h̄2

2m

∂φj

∂x2
+ Vext(x)φj + 2h̄ω⊥a(1)

s |φj |2φj

+ 2h̄ω⊥a(12)
s |φ3−j |2φj , (1)

where φj (j = 1,2) denote the wave function of the binary
mixture and Vext(x) the external potential resulting from
harmonic and optical lattice confinement, in the following
taken of the form

Vext(x) = 1
2mw2

xx
2 + VL cos(2kLx). (2)

Here ωx and ω⊥ are the longitudinal and transverse trapping
frequencies of the harmonic confinement, a(1)

s and a(12)
s are the

intra- and interspecies scattering lengths, and VL and kL are,
respectively, strength and wave number of the optical lattice.
Since the longitudinal harmonic confinement introduces only
slight modifications to the longitudinal periodic potential (in
experimental settings ωx is of the order of a few Hertz), it will
be ignored in the following [29]. Introducing dimensionless
variables:

τ = t
h̄

Er

, Er = h̄2k2
L

2m
, s = xkL, and ψj = φj√

kL

,

(3)

Eq. (1) can be written in the form

i
∂ψj

∂τ
= −1

2

∂ψj

∂s2
+ V0 cos(2s)ψj

+ g11|ψj |2ψj + g12|ψ3−j |2ψj , (4)

where V0 = VL

Er
and g11 = 2a(1)

s kL and g12 = 2a(12)
s kL are

rescaled intra- and interspecies interaction strengths. In this
equation the order parameter ψj is normalized to the total
number of atoms such that

∫ +∞
−∞ (|ψ1|2 + |ψ2|2)ds = N1 + N2,

where Nj, j = 1,2 are the separately conserved numbers of
atoms in each component. In the following we fix kL = 2 and

assume a dependence of the intraspecies interaction of the
form

g11 = g
(0)
11 + g

(1)
11 cos(2s) (5)

with the spatial modulation part denoting a NOL of strength
g

(1)
11 . In an experimental context such a spatial modulation

could be produced by optically induced Feshbach resonances
[30], for example, by a laser field tuned near a photo association
transition. Virtual radiative transitions of a pair of interacting
atoms to this level can then change the value and even
reverse the sign of the scattering length. It can be shown
that a modulation of the laser field intensity of the form
I = I0 cos2(κx) reflects in a modulation of the scattering
length of the form a(1)

s (x) = a
(1)
s0 [1 + αI/(δ + I )], where a

(1)
s0

is the intraspecies scattering length in the absence of light, δ is
the frequency detuning of the light from the resonance, and α

is a constant factor [30,31]. For weak intensities I0 � |δ| the
real part of the scattering length can be then approximated as
a(1)

s = a
(1)
s0 + a

(1)
s1 cos2(κx) which is essentially the same form

assumed in Eq. (5).
Note that in the absence of the OLs and with g12 = 0,

Eq. (4) decouples into two nonlinear Schrödinger equations
which admit, for attractive intraspecies interactions, exact
bright soliton solutions with typical Gaussian-like function
shape. With the view to solve Eq. (4) within a variational
approach, we then adopt for the coupled soliton wave function
the following ansatz:

ψj (s,τ ) = Aj exp

{
− (s − s0j )2

2a2
j

+ i[ṡ0j (s − s0j ) + 
j ]

}
,

(6)
j = 1,2

with parameters Aj , aj , s0j , and 
j , denoting amplitude,
width, center of mass, and phase of the soliton, respectively,
taken in the following as time-dependent parameters. Note that
the wave function is normalized to the total number of atoms
Nj so that Aj =

√
Nj√
πaj

.

The effective Lagrangian for the system is written as 〈L〉 =∫ ∞
−∞ Lds with the Lagrangian density L given by

〈L〉 =
2∑

j=1

√
πajA

2
j

[
1

4a2
j

+ g
(0)
11

2
√

2
A2

j + V0e
−a2

j cos(2s0j )

+ g
(1)
11

2
√

2
e−a2

j /2A2
j cos(2s0j ) − 1

2
ṡ2

0j + 
̇j

]

+ g12a1a2A
2
1A

2
2

exp
[− (s01−s02)2

a2
1+a2

2

]
√

a2
1 + a2

2

. (7)

From the Ritz optimization conditions [32] we have δ〈L〉
δ
j

=
0, δ〈L〉

δAj
= 0, δ〈L〉

δaj
= 0, and δ〈L〉

δsoj
= 0. The first optimization

condition

d

dτ

[√
πajA

2
j

] = 0, (8)

in conjunction with the normalization condition of ψj , implies
that

√
πajA

2
j = Nj is a constant. This constrain when used in
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the relations obtained from the other optimization conditions
give

1

2a2
j

+ g
(0)
11

√
2

π

Nj

aj

+ 2V0e
−a2

j cos(2s0j ) − ṡ2
0j + 2
̇j

+ g
(1)
11

√
2

π
Nje

− a2
j

2 cos(2s0j )

+ 2g12√
π

N3−j

exp
[− (s01−s02)2

a2
1+a2

2

]
√

a2
1 + a2

2

= 0, (9)

− 1

2a3
j

+ g
(0)
11√
2π

Nj

a2
j

+ 2V0

aj

(
1 − 2a2

j

)
e−a2

j cos(2s0j )

+ g
(1)
11 Nj√
2πa2

j

(
1 − a2

j

)
e−a2

j /2 cos(2s0j ) − ṡ2
01

a2
1

+ 2
̇1

aj

+ g12N3−j√
πaj

[
a4

3−j + a2
j a

2
3−j + 2a2

j (s01 − s02)2
]

×
e− (s01−s02)2

a2
1+a2

2(
a2

1 + a2
2

)5/2
= 0, (10)

and

s̈0j − 2V0e
−a2

j sin(2s0j ) − g
(1)
11 Nje

−a2
j /2

√
2πaj

sin(2s0j )

+ (−1)j
2g12N3−j (s01 − s02)

√
π

(
a2

1 + a2
2

)3/2 e
− (s01−s02)2

a2
1+a2

2 = 0. (11)

In order to derive an explicit formula for the effective
interacting potential of the coupled solitons, we consider that
the condensates are symmetrically placed with respect to the a
OL minimum, that is, s0j = ±s0/2. In this case, Eq. (11) can
be combined to give

s̈0 − 2V0
(
e−a2

1 + e−a2
2
)

sin(s0)

− 2g12(N1 + N2)s0√
π

(
a2

1 + a2
2

)3/2 e
− s2

0
a2

1+a2
2

− g
(1)
11√
2π

(
N1

a1
e−a2

1/2 + N2

a2
e−a2

2/2

)
sin(s0) = 0 (12)

as the evolution equation for the separation s0 between center
of the solitons. Notice that Eq. (12) is the same as the dynamics
of a Newtonian particle in the effective potential

Veff(s0) =
[

2V0
(
e−a2

1 + e−a2
2
)

cos(s0)

+ g
(1)
11√
2π

(
N1

a1
e−a2

1/2 + N2

a2
e−a2

2/2

)
cos(s0)

+ g12(N1 + N2)
√

π
(
a2

1 + a2
2

)1/2 e
− s2

0
a2

1+a2
2

]
. (13)

Also notice that this potential has the absolute minimum in
the origin and that for small values of s0 around the minimum
of the potential can be approximated as a harmonic potential.

In such approximations, the small oscillation frequency of
displaced solitons dynamics can be written as

ω =
[
−2V0

(
e−a2

1 + e−a2
2
) − 2g12(N1 + N2)(

a2
1 + a2

2

)3/2√
π

− g
(1)
11√
2π

(
N1

a1
e−a2

1/2 + N2

a2
e−a2

2/2

)]1/2

. (14)

Moreover, one can show that the vanishing condition of δ〈L〉
δAj

gives the chemical potential μ of stationary components as

μj = 1

4a2
j

+ g
(0)
11 Nj

aj

√
2π

+ g
(1)
11 Nj

aj

√
2π

e−a2
j /2 cos(s0)

+V0e
−a2

j cos(s0) + g12N3−j√
π

e
− s2

0
a2

1+a2
2√

a2
1 + a2

2

(15)

[in writing Eq. (15) we have used 
j = −μjτ and ṡ0j = 0
in Eq. (9)]. This expression can be used (see below) to study
the stability of stationary two-component solitons through the
Vakhitov-Kolokolov (VK) criterion. From Eq. (13) we see
that the effective potential for the coupled solitons dynamics
is highly anharmonic and consists of three terms: the first
two arise from the linear and nonlinear optical lattices, while
the third one comes from the mutual interaction between the
solitons. The mutual interaction term depends both on the
number of atoms in the condensates and on the strength of the
interactions. This part of the potential will therefore change
sensitively with the variation of N and g12.

In Fig. 1 we show the effective potential as a function of
s0 for two attractively interacting solitons and different values
of −g12 (top and middle panels) and N = N1 = N2 (bottom
panel). More specifically, the top panel give Veff with N1 = 1
and N2 = 0.5, while middle panel shows Veff with N1 = N2 =
1 for different values of −g12. Note that the interspecies
interaction is effective mainly for BEC components with a
significant spatial overlapping, for example, when they are
very close to each other. In this situation an oscillatory
dynamics of the BEC components around their common center
of mass can be started by slightly displacing them from
the equilibrium position corresponding to the fundamental
minimum of the effective potential in Fig. 1. Also note that for
an attractive interspecies interaction the absolute minimum of
the effective potential becomes deeper and deeper as N |g12| is
increased. Therefore, the reduced equation of motion in (14)
implies that the solitons oscillate with respect to each other if
they are placed very close to the effective potential minimum
at s0 = 0. For repulsive interspecies interactions, however, the
effective potential will have the shape of a barrier (rather than
a potential well) with a maximum (rather than a minimum)
at the origin. In this case, the soliton components move away
from each other keeping their shapes unchanged [33].

III. NORMAL MODE ANALYSIS OF DISPLACED BINARY
SOLITON DYNAMICS

It is useful to gain some modeling insight of the displaced
binary soliton dynamics in the limit of small displacements
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FIG. 1. Effective potential vs separation for V0 = −0.5. Top
panel gives Veff with N1 = 1.0 and N2 = 0.5 for different values of
g12, namely, −0.2 (solid line), −0.4 (dotted line), and −0.6 (dashed
line). The middle panel gives Veff with N1 = 1.0 and N2 = 1.0 for
different values of g12, namely, −0.2 (solid line), −0.4 (dotted line),
and −0.6 (dashed line). The bottom panel shows Veff with g12 = −0.5
for different values of N = N1 = N2, namely, N = 0.4 (solid line),
0.8 (dotted line), and 1.2 (dashed line). Plotted quantities are in
dimensionless units.

s01 � 1 and s02 � 1. In this case Eq. (11) reduces to

s̈0j −
(

4V0e
−a2

j + 2g
(1)
11 Nj√
2πaj

e−a2
j /2 + 2g12N3−j√

π
(
a2

1 + a2
2

)3/2

)
s0j

+ 2g12N3−j√
π

(
a2

1 + a2
2

)3/2 s03−j = 0. (16)

Let us concentrate for simplicity on binary solitons with equal
number of atoms and equal widths, for example, N1 = N2 =
N and a1 = a2 = a. Introducing parameters

M =
√

2πa3

N
, κ12 = −g12, (17)

κ = −4V0

√
2πa3e−a2

N
− 2g

(1)
11 a2e−a2/2, (18)

we can rewrite Eq. (16) in the form

s̈01 = −κ + κ12

M
s01 + κ12

M
s02, (19)

FIG. 2. Mechanical model of displaced binary soliton dynamics
in terms of harmonic oscillators of elastic constant κ coupled by a
spring of elastic constant κ12.

s̈02 = −κ + κ12

M
s02 + κ12

M
s01, (20)

which are the same as the equation of motion of two coupled
identical harmonic oscillators of mass M and elastic spring
κ connected by a spring of elastic constant κ12 (see Fig. 2).
In the absence of interspecies interaction (as it is the case
when the interspecies scattering length is detuned to zero by
means of a Feshbach resonance), the system is decoupled and
the two masses (BEC components) oscillate with the same
frequency ω = (κ/M)1/2. For κ12 �= 0 the above equations are
readily decoupled in the normal mode coordinates: ξ1 = s01 −
s02, ξ2 = s01 + s02, this giving Mξ̈i = −ω2

i ξi , i = 1,2, with
characteristic frequencies

ω1 = ±
√

κ + 2κ12

M
, ω2 = ±

√
κ

M
(21)

and explicit normal mode solutions

ξi(t) = A+
i eiωi t + A−

i e−iωi t , i = 1,2. (22)

The most general solution of the displaced soliton dynamics in
the coupled harmonic oscillator approximation follows from
Eq. (22) as

s01(t) = 1
2 [ξ2(t) + ξ1(t)], s02(t) = 1

2 [ξ2(t) − ξ1(t)]. (23)

From these equations we see that the solution ξ1 associated
to the frequency ω1 ≡ ωasym corresponds to an asymmetric
(out of phase) oscillation of the displaced two-component
soliton, while the solution ξ2 corresponds to a symmetric (in
phase) motion of frequency ω2 ≡ ωsym in which the coupling
spring remains unstretched. Notice that ωasym is the same as the
expression of the frequency derived in Eq. (14). Also note that
in analogy with optical and acoustical vibrations of molecules,
this frequency for attractive inter- and intraspecies interactions
is always higher than the frequency ωsym of the symmetric
mode, for example, ωasym/ωsym � 1, with the equality holding
in the case g12 = 0. More explicitly, the following dependence
for the frequency ratio of asymmetric and symmetric modes
on parameters of the binary mixture is derived:

νr ≡ ωasym

ωsym
=

(
1 + Ng12e

a2/2/a2

2V0

√
2πae−a2/2 + Ng

(1)
11

)1/2

. (24)

Note that in the weak coupling limit |g12| � 1 the displaced
dynamics will display typical beating phenomena with a
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high frequency component oscillating inside a slowly varying
envelope, with beating frequencies ωbeat = ωasym − ωsym, plus
order combinations.

For the general case N1 �= N2 (equivalently a1 �= a2), the
dependence of characteristic frequencies of the oscillators on
parameters can be derived in a similar manner. In the next
section we shall compare the above predictions for the soliton
displaced dynamics with direct numerical integrations of the
coupled GPE in (4).

IV. DYNAMICS AND STABILITY OF DISPLACED BINARY
SOLITONS: NUMERICAL RESULTS

In the following coupled GPE numerical investigations we
assume that solitons prepared in such a manner that their
relative coordinates are located at small distances from the
minimum of Veff in Fig. 1. We remark that initial small
displacements of the two components of the mixture could be
experimentally induced by a rapid change of the interspecies
scattering length from negative to positive and then to negative
again, by means of the Feshbach resonance technique. The
inversion of the sign of the interaction for a small fraction of
time can be achieved with a properly designed time-dependent
external magnetic field. The component solitons will move
in opposite directions during the short repulsive interspecies
interaction time, and will become slightly separated (separa-
tion can be made small by properly reducing the repulsive
time). Taking into account detectable length scales of real
experiments [34], we use in most of the calculations s0 = 0.2,
although larger initial displacements (s0 ≈ 1) will also be used
for anharmonic effects.

In Fig. 3 we show typical dynamics of displaced binary
solitons arising from a symmetric initial displacement with
respect to the effective potential minimum. The top two panels
refer to the case of equal numbers of atoms. We see that
in this case the soliton components oscillate with the same
frequency which depends on interspecies interaction strength
and on a number of atoms in the condensates (compare
first two top panels). For N1 �= N2, however, the oscillation
frequencies of each component become unequal (see last two
bottom panels) with the appearance of well-known beating
phenomenon. The general solution in Eq. (23) shows that the
beating dynamics is expected also for equal numbers of atoms
and small interspecies interactions if the motion is started
with a generic initial displacement |s01| �= |s02|. This is exactly
what the PDE calculations in Fig. 4 show for the case N1 =
N2 = 1 and |s01| �= |s02|, in agreement with our normal mode
analysis.

The dependence of oscillation frequency ν on interspecies
interaction g12 is depicted in the top and middle panels of
Fig. 5. In particular, the top left and right panels display ν

vs −g12 for a small and a larger initial displacement of the
soliton components, respectively. We see that in both cases the
frequency increases as g12 is increased. This correlates with
the fact that the corresponding effective potentials become
more deep and acquire larger curvatures at the origin as these
parameters are increased, clearly leading to higher frequency
values.

Note that although the analytical values of ν are very close
to the exact numerical results (dotted curve), the variational

FIG. 3. (Color online) Oscillation of coupled BEC components
for V0 = −0.5, g

(0)
11 = −1, g

(1)
11 = −0.5, and s0 = 0.2. Here the num-

ber of panels is counted from the top. The first panel shows motion
of soliton profiles for N1 = N2 = 1.0 and g12 = −0.2. Second panel:
Same as in first panel but for N1 = N2 = 1.4 and g12 = −0.5. Third
panel: Motion of the centers of soliton components for unequal
number of atoms N1 = 1, N2 = 0.5, and for g12 = −0.2. The bottom
panel shows beatings arising from the superposition of the oscillatory
components displayed in thethird panel. In all panels curves with
big circles give results for PDEs in (4) while dashed curves represent
results for ODEs in (11). Plotted quantities are in dimensionless units.
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FIG. 4. Beating dynamics of displaced binary BEC solitons with
an equal number of atoms N1 = N2 = 1, for g12 = −0.2, s01 =
0.1, s02 = 1.3 (left panel) and g12 = −0.5, s01 = 0.1, s02 = −1.3
(right panel). Other parameters are fixed as g

(0)
11 = −1, g

(1)
11 =

−0.5, V0 = −0.5. Plotted quantities are in dimensionless units.

results tend to overestimate the numerical frequency for
the case of small displacements and to underestimate it in

FIG. 5. Top left panel. Frequency of the oscillation of the BEC
components vs the interspecies interaction strength for fixed number
of atoms N1 = N2 = 1 and s0 = 0.2. Top right panel: Same as that
in the left panel but for a larger initial displacement s0 = 1.0. Middle
left panel. Frequency of the oscillation of the BEC components vs
the interspecies interaction strength for the case of unequal number
of atoms N1 = 1 and N2 = 0.5. and s0 = 0.2. Middle right panel:
Same as in corresponding left panel but for s0 = 1.0. Bottom left
panel. Frequency of the oscillation of BEC components vs the number
of atoms for fixed interspecies interaction strength g12 = −0.5 and
s0 = 0.2. Bottom right panel. Same as in corresponding left panel
but s0 = 1.0. In all the panels the continuous curves represent
analytical expression in (14), the dashed curves stands for numerical
result obtained from the ODE in (12) and open circles denote
numerical GPE calculations. In all cases, other parameters are fixed
as V0 = −0.5, g

(0)
11 = −1, and g

(1)
11 = −0.5. Plotted quantities are in

dimensionless units.

the case of larger displacement. Also note that for almost
overlapped soliton components the results obtained from
analytical formula in (14) (full line) and from the numerical
solution of the ODEs in (12) (dashed line) are practically the
same while for larger displacements the deviation between
them becomes appreciable. Obviously this is due to the fact
that in our analytical expression the anharmonic effects were
neglected. Similar qualitative dependence of the oscillation
frequency on g12 is observed for unequal numbers of atoms
(see the middle panels of Fig. 5). Note that in this case,
however, the oscillation frequency is slightly smaller than for
previous cases. This might be associated with the fact that, for
the given parameters, the effective interspecies interaction for
N1 = N2 is relatively larger than for N1 �= N2 (see also Fig. 1).

The dependence of ν on the number of atoms in the
condensate has been investigated in the bottom panels of
Fig. 5 for the case of equal numbers of atoms and for a fixed
interspecies interaction: g12 = −0.5 (similar qualitative results
are found for N1 �= N2). In particular, bottom left and right
panels refer to the cases of small (e.g., s0 = 0.2) and a large
(e.g., s0 = 1.0) initial displacement of the soliton components.
For both cases we see that the frequency of the oscillation
increases with the increase of the number of atoms, a fact
that correlates with the dependence of ν on g12 (note that
an increase of N corresponds to an increase of the effective
interspecies interaction). Also notice that the analytical and
the numerical ODE calculations provide also in this case good
estimates of the frequency obtained from exact numerical
GPE integrations, and that the discrepancy between analytical
and ODE results is more prominent in the case of a large
displacement, as expected from the missing of the anharmonic
effects in our analytical expression.

We also checked the predictions of the normal mode
frequencies implied by our simple mechanical model in
Sec. III, for example, that the frequency of the asymmetric
mode is always greater than that of the symmetric one and that
the dependence of the ratio νr on system parameters is as in
Eq. (24). In Fig. 6 we compare the analytical dependence of νr

on g12 and on N with the one obtained from PDE calculations.
We see that for both cases a relatively good agreement is found.
It is also clear, both from analytical and numerical results, that
νr increases with the increase of either interspecies interaction
or number of atoms, and that the analytical results are slightly
overestimating this growth.

FIG. 6. Relative frequency (νr = ωasym

ωsym
) of antisymmetric and

symmetric modes vs number of atoms N (left panel) and interspecies
interaction g12 (right panel). In both panels the solid curve refers
to Eq. (24) while the open dots refer to GPEs numerical integra-
tions. Other parameters are fixed as V0 = −0.5, g

(0)
11 = −1, g

(1)
11 =

−0.5, s0 = 0.2. Plotted quantities are in dimensionless units.
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FIG. 7. (Color online) Time evolution of displaced component
binary soliton densities. In each contour plot we have taken slightly
perturbed initial conditions for parameter values V0 = −0.5, g

(0)
11 =

−1, g
(1)
11 = −0.5. Left and middle panels show density evolution for

N1 = N2 = 1 and g12 = −0.2 (left panel) and for N1 = N2 = 0.8
and g12 = −0.5. Right panel refers to the case of unequal number
of atoms N1 = 1, N2 = 0.5 for g12 = −0.2. Plotted quantities are in
dimensionless units.

The stability of the oscillatory soliton dynamics has been
checked with the time evolution of slightly perturbed initial
BEC profiles under GPE coupled equations. Stable dynamics
of the density profiles were confirmed when slightly varied
initial conditions still produced uniform evolutions in time.
Density plots for the evolution of soliton profiles for different
values of g12 and number of atoms is displayed in Fig. 7,
from which we see that during the time evolution the soliton
profiles remain stable for both equal (left and middle panels)
and unequal (right panel) numbers of atoms. The stability of
the soliton profile was also checked from the phase plot of the
coupled ordinary differential equation system in (11). We have
verified that for each considered case the phase plot exhibited
a stable focus.

V. CONCLUSION

In this paper we have studied the dynamics of matter-
wave solitons of two-component Bose-Einstein condensates
in combined linear and nonlinear optical lattices.

In particular, we have investigated the dependence of the
oscillating dynamics resulting from two initially displaced
BEC soliton components on the interspecies interaction and on
the number of atoms. We showed that for small initial displace-
ments binary solitons can be viewed as point masses connected
by elastic springs of strengths related to the amplitude of
the OL and to the intra- and interspecies interactions. The
displaced dynamics was decomposed in term of normal mode
analysis from which analytical expressions of the symmetric
and antisymmetric mode frequencies have been derived. The
occurrence of beating phenomena both for unequal and for
equal numbers of atoms for small interspecies interactions was
also predicted. The stability of the oscillating dynamics has
been investigated by direct numerical GPE integrations. The
predictions of the effective potential approach were found to
be in good quantitative agreement with numerical simulations.
These results suggest the possibility of using dynamical
behaviors of suitably prepared initial multicomponent BEC
solitons as a tool for extracting information about physical
characteristics of BEC mixtures such as interatomic interac-
tions and species populations. In this respect, we remark that
in contrast to intraspecies interactions, direct measurements of
the interspecies scattering lengths are more difficult to access.
The possibility of measuring interspecies scattering lengths
through dynamical behaviors of displaced BEC components
represents an interesting possibility to test in real experiments.
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