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Merging and alignment of Dirac points in a shaken honeycomb optical lattice
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Inspired by the recent creation of a honeycomb optical lattice and the realization of a Mott-insulating state in
a square lattice by shaking, we study here the shaken honeycomb optical lattice. For a periodic shaking of the
lattice, Floquet theory may be applied to derive a time-independent Hamiltonian. In this effective description, the
hopping parameters are renormalized by a Bessel function, which depends on the shaking direction, amplitude, and
frequency. Consequently, the hopping parameters can vanish and even change sign, in an anisotropic manner, thus
yielding different band structures. Here, we study the merging and the alignment of Dirac points and dimensional
crossovers from the two-dimensional system to one-dimensional chains and zero-dimensional dimers. We also
consider next-nearest-neighbor hopping, which breaks the particle-hole symmetry and leads to a metallic phase
when it becomes dominant over the nearest-neighbor hopping. Furthermore, we include weak repulsive on-site
interactions and find the density profiles for different values of the hopping parameters and interactions, both in
a homogeneous system and in the presence of a trapping potential. Our results may be experimentally observed
by use of momentum-resolved Raman spectroscopy.

DOI: 10.1103/PhysRevA.85.023637 PACS number(s): 67.85.−d, 73.22.Pr

I. INTRODUCTION

The study of Dirac points, i.e., the contact points between
different energy bands with an approximately linear dispersion
relation, has become a major issue since the experimental
breakthrough in graphene-based electronics [1,2]. Indeed, the
low-energy electronic properties of graphene are governed
by a pseudorelativistic two-dimensional (2D) Dirac equation
for massless fermions situated at the K and K ′ corners of
the Brillouin zone [3]. The Dirac points are topologically
protected, and a gap is opened only when the inversion
symmetry of the lattice or the time-reversal symmetry is
broken.

The possibility of generating topological phase transitions
in graphenelike systems has recently attracted a great deal
of attention. Within a tight-binding description, an anisotropy
in the nearest-neighbor hopping parameters makes the Dirac
points move away from the high-symmetry K and K ′ points
and, under appropriate conditions, merge at time-reversal-
invariant points in the first Brillouin zone [4–6]. Most saliently,
this merging of Dirac points is associated with a topological
phase transition between a semimetallic phase and a gapped
band-insulating phase. An experimental investigation of the
merging transition in graphene turns out to be problematic,
since in order to appropriately modify the hopping parameters,
an unphysically large strain needs to be applied to the graphene
sheet [7].

An alternative system for the study of such topological
transitions is that of ultracold atoms trapped in a honeycomb
optical lattice. Since the seminal realization of the superfluid–
Mott-insulator transition in the Bose-Hubbard model, ultracold
atoms in optical lattices have become promising systems
to emulate condensed-matter physics. Indeed, the lattice
geometry, the dimensionality, and the atomic species, as well
as the interactions, can be engineered with a high degree
of precision. The more involved triangular and honeycomb
geometries were recently realized experimentally, and exotic

correlated states of matter have been observed experimentally
[8] or predicted theoretically [9–12].

The application of a time-periodic perturbation on the
optical lattice introduces yet another parameter scale into
the system. A periodic shaking of the optical lattice, up to
the kilohertz frequency range, has been implemented by
placing one of the mirrors used to create the optical lattice on a
piezoelectric material, such that the mirror can be moved back
and forth in the direction of the beam [13,14]. The Floquet
formalism shows that the hopping energy of the atoms in
the shaken lattice is renormalized by a Bessel function, as a
function of the shaking frequency and amplitude, thus allowing
both the magnitude and the sign of the hopping parameter to
change. This rather counterintuitive phenomenon, as compared
to the standard tight-binding physics, has been experimentally
observed in a one-dimensional cold-atomic system [14].

In this paper, we consider ultracold fermions trapped
in a shaken honeycomb optical lattice. Within the Floquet
formalism, we derive an effective Hamiltonian that generalizes
that of a graphenelike material under strain. In particular,
we find that the alignment and merging of Dirac points in
momentum space are now accessible with ultracold fermions
in the shaken optical lattice, and the phase diagram consists
of various phases of the corresponding solid-state system that
are otherwise difficult to realize. Furthermore, by taking into
account a Hubbard-like interaction for spinful fermions, we
study the density profiles for the homogeneous and the trapped
gases within Hartree-Fock theory.

The outline of this paper is the following: In Sec. II A we
introduce the time-dependent Hamiltonian and in Sec. II B we
derive the time-independent one, by applying the Floquet for-
malism. In Sec. III we investigate the merging and alignment of
Dirac points, when the optical lattice is shaken along specific
directions. The description is extended to include interactions
in Sec. IV, where we derive the dependence of the density
on the chemical potential. Implications of our results for
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experiments are discussed in Sec. V. Finally, our conclusions
are presented in Sec. VI.

II. THE SHAKEN HONEYCOMB LATTICE

In this section, we derive a time-independent effective
description for ultracold atoms trapped in a periodically
shaken honeycomb optical lattice by utilizing Floquet theory.
For simplicity, we focus on a system of single-component
fermionic atoms and consider only single-particle terms in
this section. The results from the Floquet theory are valid for
fermionic atoms with internal degrees of freedom as well as for
bosonic atoms. In particular, the hyperfine state of fermionic
atoms, playing the role of an effective spin-1/2 degree of
freedom for electrons, will be considered when interaction
effects are taken into account in Sec. IV.

A. Time-dependent Hamiltonian

In the tight-binding limit, the system of ultracold fermionic
atoms trapped in a 2D shaken honeycomb optical lattice can
be described by the Hamiltonian

H (t) = H0 + W (t), (1)

which consists of two distinct parts. The static part

H0 = −γ

3∑
j=1

∑
r∈A

(
a
†
rbr+dj

+ b
†
r+dj

ar
)

−γ ′
3∑

i=1

3∑
j=1,j �=i

( ∑
r∈A

a
†
r ar+di−dj

+
∑
r∈B

b
†
rbr+di−dj

)

−μ

( ∑
r∈A

a
†
rar +

∑
r∈B

b
†
rbr

)
(2)

is simply the tight-binding Hamiltonian in the honeycomb
lattice, where a

†
r (b†r) and ar (br) are, respectively, fermionic

creation and annihilation operators on the lattice site r in the
A (B) sublattice. The three vectors

d1 = dêx, d2 = d

2
(−êx +

√
3êy), d3 = d

2
(−êx −

√
3êy),

(3)

connect an A-lattice site with its three nearest-neighbor (NN)
B-lattice sites and are given in terms of the distance d =
8π/3

√
3k between NN sites, where k is the laser wave number

(see Fig. 1). Here, γ,γ ′ > 0 characterize the energy gained in
hopping to the NN and next-nearest-neighbor (NNN) sites,
respectively, and μ is the on-site energy. We remark that the
NNN hopping is taken into account because the NN hopping
may be rendered vanishingly small in the effective time-
independent description. In this regime, the NNN hopping
may become the dominant kinetic term. In a square lattice,
where the potential is separable into independent êx and
êy components, the NNN hopping is identically zero [15].
However, the NNN hopping can be nonzero in the honeycomb
lattice, since its potential is not separable into êx and êy

components. Nevertheless, it may be expressed as the sum
of two triangular lattices.

  

 

FIG. 1. (Color online) Laser configuration used to create the hon-
eycomb lattice, which consists of two triangular sublattices (A, black
crosses, and B, white crosses). The vectors d1, d2, and d3 connect a
site on the A sublattice to its nearest neighbors on the B sublattice.

The time-dependent part of the Hamiltonian (1),

W (t) = m�2 cos(�t)

(∑
r∈A

r · ρ a
†
rar +

∑
r∈B

r · ρ b
†
rbr

)
,

(4)

describes the harmonic shaking of the lattice in the direction
ρ with a driving frequency � in the comoving frame, as
described in Ref. [16]. As a consequence of the transformation
to the comoving frame, W (t) describes atoms of mass m

experiencing a position-dependent sinusoidal force.

B. Effective Hamiltonian

The unavoidable complexity that arises when dealing with
a quantum many-body system out of equilibrium has recently
motivated the development of new theoretical tools, for
example, the time-dependent density matrix renormalization
group [17], time-dependent dynamical mean-field theory [18],
and exact diagonalization [19]. However, for a periodically
driven quantum system, the Floquet theory offers a simplified
description of the system, in the form of a time-independent
effective Hamiltonian, if the period T = 2π/� is the shortest
time scale in the problem [20]. In this limit, the atoms
cannot follow the shaking motion adiabatically and remain
thus at their average lattice positions, albeit with renormalized
hopping parameters. The system is thus considered to be in a
stationary state and knowledge of the equilibrium physics can
be employed.

Let us consider the Floquet Hamiltonian defined by HF =
H (t) − ih̄∂t , where H (t + T ) = H (t) is periodic in time [20].
The eigenvalue equation is then given by

HF |φ(q,t)〉 = εφ|φ(q,t)〉, (5)

where εφ is the quasienergy defined uniquely up to a multiple
of h̄�. Any solution |φ(q,t)〉 is part of a set of solutions
exp(in�t)|φ(q,t)〉 with integer n, which all correspond to the
same physical solution. Hence, the spectrum of the Floquet
Hamiltonian possesses a Brillouin-zone-like structure [20].
The interest therefore lies with the states in the first Brillouin
zone, i.e., states with quasienergies −h̄�/2 < εφ � h̄�/2.
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The space in which the states |φ(q,t)〉 are defined is a
composite of the Hilbert space spanned by square integrable
functions on configuration space, |α(q)〉, and the space of
T -periodic functions. The state |φ(q,t)〉 may be written down
in an orthonormal basis in the composite space according to

|φ(q,t)〉 =
∞∑

n=0

∑
α

cn,α exp[−iF̂ (t) + in�t]|α(q)〉, (6)

where cn,α are coefficients to normalize |φ(q,t)〉 and the opera-
tor F̂ (t) can be any T -periodic Hermitian operator. Therefore,
we can conveniently choose F̂ (t) to be F̂ (t) = h̄−1

∫ t

0 dt ′W (t ′),
such that H (t) − h̄∂t F̂ (t) = H0. If the condition

〈α′(q)|〈exp[iF̂ (t)] exp[i(n − n′)�t] H0

× exp[−iF̂ (t)]〉T | α(q)〉 	 h̄� (7)

is satisfied for any two states |α(q)〉 and |α′(q)〉, then the
eigenvalues εφ are approximately

εφ = 〈φ(q,t)|〈HF 〉T |φ(q,t)〉
≈

∑
α,α′

c0,α′c0,α〈α′(q)|〈exp[iF̂ (t)]H0 exp[−iF̂ (t)]〉T |α(q)〉.

(8)

Here, 〈O(t)〉T = T −1
∫ T

0 dt O(t) denotes the time average of
the operator O(t) over the period T . The condition (7) will
hold for n �= n′, if H0 is nearly constant during the period T ,
which is small if � is large. In this case, states with different
n do not mix. If � is large enough, such that the condition
(7) also holds for n = n′, then the energy spectrum will split
up into energy bands labeled by an index n, where the details
within the energy band are determined by H0. Because the
states with different indices n are separated by an energy
which is a multiple of h̄� and because the spectrum possesses
a Brillouin-zone-like structure, only the terms with n = 0
need to be taken into account. The effective Hamiltonian
Heff , which gives rise to the same spectrum as the Floquet
Hamiltonian, is then defined by [21]

Heff = 〈exp[iF̂ (t)] H0 exp[−iF̂ (t)]〉T

=
〈 ∞∑

n=0

in

n!
[F̂ (t),H0]n

〉
T

. (9)

Here, [F̂ ,Ĝ]n denotes the multiple commutator, which is
defined by [F̂ ,Ĝ]n+1 = [F̂ ,[F̂ ,Ĝ]n] and [F̂ ,Ĝ]0 = Ĝ.

Effective Hamiltonians corresponding to Eq. (9) have been
derived for linear shaking of a one-dimensional lattice [22]
and for elliptical shaking of a triangular lattice [23]. For the
shaken honeycomb lattice studied here, the condition (7) is
satisfied if γ 	 h̄�, and the effective Hamiltonian becomes

Heff = −
3∑

j=1

∑
r∈A

γj

(
a
†
rbr+dj

+ b
†
r+dj

ar
) −

3∑
i=1

3∑
j=1,j �=i

γ ′
i,j

×
( ∑

r∈A

a
†
r ar+di−dj

+
∑
r∈B

b
†
rbr+di−dj

)

−μ

( ∑
r∈A

a
†
rar +

∑
r∈B

b
†
rbr

)
, (10)

where the renormalized NN hopping parameters γj are given
by

γj = γ J0

(∣∣∣∣dj · ρ
m�

h̄

∣∣∣∣
)

, (11)

and the renormalized NNN hopping parameters by

γ ′
i,j = γ ′J0

(∣∣∣∣(di − dj ) · ρ
m�

h̄

∣∣∣∣
)

(12)

(see the Appendix for detailed calculations). In these expres-
sions, J0(x) denotes the zeroth-order Bessel function of the
first kind, which shows a damped oscillation around zero.

In terms of the renormalized NN and NNN hopping
parameters, the diagonalization of the effective Hamiltonian
(10) yields the dispersion relation

ελ(q) = h(q) + λ|f (q)|, (13)

where λ = ± is the band index, and we have defined the
functions

f (q) =
∑

j

γj exp(−iq · dj ) (14)

and

h(q) = 2
∑
i<j

γ ′
i,j cos[q · (di − dj )]. (15)

III. MERGING AND ALIGNMENT OF DIRAC POINTS

In this section, the honeycomb lattice with anisotropic
hopping is studied. In the first two subsections, only NN
hopping is considered for illustrative reasons. Indeed, this
allows for a simple understanding of the main effects of
shaking on Dirac-point motion and dimensional crossover. In
Sec. III C, we discuss how the picture evolves when NNN
hopping is included, and the sign of the hopping parameters is
investigated in Sec. III D. Since the system with two equal NN
hopping parameters and a single independent one captures
the essential features of systems with three independent
NN hopping parameters, we will focus on this system. The
numbering of the γj ’s is chosen such that |γ2| = |γ3| = γ2,3,
which can be achieved by shaking in a direction parallel or
perpendicular to d1.

Although the atoms in the optical lattice are charge-neutral
objects, we shall adopt the language of condensed-matter
physics and call a zero-gap phase with a pair of Dirac cones
and a vanishing density of states at the band-contact points a
semimetal, whereas a gapped phase is called a band insulator.
Furthermore, NNN hopping induces a metallic phase for small
values of γj because of an overlap between the two bands that
yields a nonvanishing density of states at the energy level of
the band-contact points.

A. Merging of Dirac points

If the lattice is shaken in the direction perpendicular to
d1 (direction 1 in Fig. 1), γ1 remains equal to γ , whereas γ2

and γ3 are renormalized to a smaller value. An increase in
the shaking amplitude results in a decrease in γ2,3 = γ2 = γ3,
which is depicted by the arrow M in Fig. 2(a). When the
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FIG. 2. (Color online) (a) Phase diagram, showing the phase
transition between the zero-gap semimetallic phase and the insulating
phase, which happens at γ1 = 2γ2,3. Here, we have chosen γ ′ = 0.
(b) Dirac-point motion in the first Brillouin zone for a shaking
direction perpendicular to d1 [direction M in the phase diagram (a)].
(c) Dirac-point motion in the first Brillouin zone for a shaking
direction parallel to d1 [direction A in the phase diagram (a)]. The
contour plots depict the dispersion of the isotropic system with an
arbitrary color scale. The area with higher contrast is the first Brillouin
zone.

hopping parameters change according to this arrow M , the
energy spectrum evolves from that of Fig. 3(a) to that shown
in Fig. 3(b). The Dirac points, originally situated at the corners
K and K ′ of the first Brillouin zone, start to move in the qy

direction along the vertical edges of the latter. This motion is
depicted by the arrows in Fig. 2(b). Even though the two Dirac
points are no longer located at the high-symmetry points K and
K ′, they remain related by time-reversal symmetry, such that
their Berry phases π and −π are opposite. This nonzero Berry

FIG. 3. (Color online) Energy dispersion (13) for the shaken
honeycomb optical lattice in units of γ , with γ ′ = 0. The labels qx and
qy represent the x and y components of the momentum, respectively.
The x and y axes have been chosen such that the NN vectors are
given by Eq. (3). (a) The isotropic case, where γ1 = γ2,3. (b) The
merged Dirac points, where γ2,3 = γ1/2. (c) The zero-dimensional
case, where γ2,3 = 0. (d) The aligned Dirac points, where γ1 = 0.

phase topologically protects each of the Dirac points and thus
the semimetallic phase remains robust until γ2,3 = γ1/2, where
the two points merge at a time-reversal-invariant momentum,
i.e., half of a reciprocal lattice vector [6]. In the present
example, this point is situated at the center of the vertical edges
of the first Brillouin zone, and the band dispersion becomes
parabolic in the y direction while remaining linear in the x

direction [see Fig. 3(b)]. The merged Dirac points are no longer
topologically protected due to the annihilation of the opposite
Berry phases. Consequently, a further increase of the shaking
amplitude, which results in a further decrease of γ2,3, leads to
the opening of a gap between the two bands. Thus, the system
undergoes a topological phase transition from a semimetal to
a band insulator. This merging transition was also studied in a
static setup in Ref. [24], where it was proposed that the hopping
amplitudes γ were modified by a change in the intensity of
one of the lasers used to create the optical lattice. In contrast
to this static setup, shaking the honeycomb lattice allows one
to completely annihilate some of the NN hopping parameters
and even to change their sign. This sign change occurs at the
zeros of the Bessel function [see Eq. (11)]. For an example
system of 40K atoms in a lattice created by lasers with a
wavelength of 830 nm, which is shaken in the direction
perpendicular to d1, the situation γ2,3 = 0 is encountered for

ρ = 180 nm, �/2π = 6 kHz, (16)

which corresponds to the first zero of the Bessel function.
At this particular point, and if γ ′ = 0 in addition, the system
consists of a set of effectively decoupled horizontal bonds
along which the atoms are solely allowed to hop. This yields
two flat bands at ±γ1 [see Fig. 3(c)] that may be viewed as
the extreme limit of the band-insulating phase. Alternatively,
one may view this situation upon decrease in the value of
γ2,3 as a dimensional crossover from a 2D band insulator to a
zero-dimensional (0D) system. A small nonzero value of γ2,3

simply provides a weak dispersion of these decoupled bands
(not shown).

B. Alignment of Dirac points

Another dimensional crossover, from 2D to 1D, may be
obtained if the lattice is shaken in the direction parallel to one
of the NN vectors (direction 2 in Fig. 1). Here, we choose
d1 to maintain the symmetry γ2,3 = γ2 = γ3. In this case,
both γ1 and γ2,3 are renormalized by Bessel functions, albeit
with different arguments. Since all hopping parameters are
renormalized, the trajectory of the system in the phase space
upon increase in the shaking amplitude is not a straight line, as
was the case for shaking perpendicular to a hopping direction,
and has a new feature: the alignment of Dirac points, which
occurs for γ1 = 0. The first zero of γ1 is found at

ρ = 92 nm, �/2π = 6 kHz (17)

for the same system of 40K atoms mentioned above. Here,
for illustrative purposes, a simplified trajectory of the system
is depicted in Fig. 2(a) by arrow A, which corresponds to
the motion of the Dirac points in reciprocal space as shown in
Fig. 2(c). As γ1 approaches zero, the Dirac points align in lines
parallel to the x axis at qy = ±π/

√
3d, and the energy barriers

between the aligning points are lowered. Consequently, when
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γ1 = 0, the energy spectrum contains lines where the two
energy bands meet and the dispersion is linear, as is shown
in Fig. 3(d). The dispersion relation (13) then reads simply

ελ(q) = 2λγ2,3

∣∣∣∣ cos

(√
3

2
qyd

)∣∣∣∣, (18)

and one clearly sees the 1D character. Indeed, there is no
dispersion in the qx direction, as is also evident from Fig. 3(d),
and the system may be viewed as completely decoupled 1D
chains in which the zigzag arrangement is of no importance. In
this particular limit, the sites A and B are therefore no longer
inequivalent such that the unit cell is effectively divided by 2,
and the size of the first Brillouin zone is consequently doubled.
The aligned Dirac points may thus, alternatively, be viewed as
due to an artificial folding of the second (outer) half of the first
Brillouin zone into its inner half. However, this aspect is very
particular in that the Brillouin zone immediately retrieves its
original size when γ1 is small, but nonzero, or if NNN hoppings
are taken into account. In both cases, one needs to distinguish
the two different sublattices and one obtains a dispersion in
the qx direction.

The actual behavior of the system for an increasing shaking
amplitude is discussed in Sec. V. This behavior is more
complicated because all three NN hopping parameters are
renormalized, which, beyond the alignment, leads to the
merging of Dirac points and the opening of a gap also in
the case of shaking parallel to one of the NN vectors. In the
absence of NNN hopping, the 0D limit can be reached in
addition.

C. Next-nearest-neighbor hopping

The major consequence of NNN hopping is to break
particle-hole symmetry, as may be seen from Eq. (13), where
nonzero values of γ ′

i,j yield ελ(q) �= −ε−λ(q). Its relevance
depends sensitively on the shaking direction, because of
the different renormalization of the NN hopping parameters.
The band structure with NNN hopping included is depicted in
Fig. 4 for different shaking directions.

1. Shaking in the direction perpendicular to d1

In the case of a shaking perpendicular to d1, only γ2,3 are
decreased, whereas γ1 = γ remains the leading energy scale in
the band structure.1 The band structure for the unshaken lattice
is depicted in Fig. 4(a) for γ ′/γ = 0.1, and one notices that the
main features of the band structure, namely, the Dirac points,
are unaltered with respect to the case γ ′ = 0 in Fig. 3(a),
apart from the flattening of the upper band as compared to
the lower one. When the merging transition γ2,3 = γ1/2 is
approached, the value of which is determined by the zeros
of f (q) in Eq. (14) and therefore does not depend on the
NNN hopping parameters, the bandwidth remains dominated
by the largest hopping parameter γ1, such that the band
structure [Fig. 4(b)] at the transition is essentially the same

1We concentrate on d1 as a reference direction, but it may naturally
be replaced by any other direction dj , in which case γj = γ remains
constant.

FIG. 4. (Color online) Energy dispersion (13) for the shaken
honeycomb optical lattice in units of γ , with γ ′ = 0.1γ . The labels
qx and qy represent the x and y components of the momentum,
respectively. The x and y axes have been chosen such that the
NN vectors are given by Eq. (3). (a) The homogeneous case,
where γ1 = γ2,3. (b) The merged Dirac points, where γ2,3 = γ1/2.
(c) The zero-dimensional case, where γ2,3 = 0. (d) The aligned Dirac
points, where γ1 = 0. (e) An example of the metallic phase with
ρ = 5.2(h̄/m�d)êx . (f) Another example of the metallic phase with
ρ = 4.8(h̄/m�d)êx .

as in Fig. 3(b) for γ ′ = 0. In the 0D limit, with γ2,3 = 0 the
originally flat bands [Fig. 3(c)] acquire the weak dispersion
of a triangular lattice as a consequence of the nonzero NNN
hopping parameters. However, as expected from the above
arguments, the dispersion is on the order of γ ′ and thus small
as compared to the energy separation ∼2γ1 = 2γ between the
two bands.

2. Shaking in the direction parallel to d1

In contrast to a shaking direction perpendicular to d1, NNN
hopping has more drastic consequences if the lattice is shaken
in the direction parallel to d1. In this case, all NN hopping
parameters are decreased, and the relative importance of NNN
hopping is enhanced. Notice further that the NNN lattice
vectors ±(d2 − d3) are now perpendicular to the shaking
direction such that γ ′

2,3 = γ ′ = 0.1γ remains unrenormalized.
Also in this case, the system is approaching the 1D limit,
with γ1 = 0 [see Fig. 4(d)]. However, in contrast to Fig. 3(d),
here the chains remain coupled by NNN hopping which yields
a dispersion in the qx direction. Furthermore, as mentioned
above, the A and B sites are now not equivalent from a
crystallographic point of view, such that the outer parts of
the first Brillouin zone cannot be folded back into the inner
one, as may be seen from Fig. 4(d).

Finally, for particular values of the shaking amplitude in
the direction parallel to d1, the NN hopping parameters can be
decreased in such a manner as to render γ2,3 more relevant. In
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this case, the two bands can overlap in energy, as depicted in
Figs. 4(e) and 4(f) for ρ = 5.2(h̄/m�d)êx (in which case γ1 ≈
γ2,3) and ρ = 4.8(h̄/m�d)êx (with γ2,3 ≈ 0), respectively. In
the latter example there are no band-contact points, in spite of
the overlap between the two bands, and the system would be
in an insulating phase if NNN hopping terms were not taken
into account. This overlap in energy between the two bands
yields a nonzero density of states at any energy, such that the
semimetallic (or insulating) phase vanishes and yields, at half
filling, a metallic phase with particle and hole pockets in the
first Brillouin zone.

D. The signs of the hopping parameters

As already alluded to in the previous sections, the shaking of
a honeycomb lattice can lead to a sign change of the hopping
parameters. Quite generally, Fig. 5 shows that changing the
relative signs of the NN hopping parameters results in a
translation of the energy spectrum in momentum space. This
effect was also mentioned in Ref. [4]. Indeed, the relative
signs determine at which of the four time-reversal-invariant
momenta in the first Brillouin zone the merging of Dirac
points and the semimetal-insulator transition take place when
|γ1| = 2|γ2,3|. However, the sign change of the NN hopping
parameters can be transformed away by a gauge transformation
[4]. Nevertheless, the sign of the NNN hopping parameter is
important, since it determines whether the upper or the lower
band is flattened.

IV. INTERACTIONS

Until now, we have considered single-component fermionic
atoms and, due to the Pauli principle, the absence of s-wave

FIG. 5. (Color online) Phase diagram and contour plots of the
energy bands, showing the effects of the renormalized NN hopping
parameters γj . (a)–(h) Contour plots of the energy bands, where the
color scaling is arbitrary and the first Brillouin zone is the area with
higher contrast. The values of the NN hopping parameters for each
contour plot are given by the positions of the corresponding letters
in the phase diagram and γ ′ = 0. The dark regions indicate energies
close to zero, whereas brighter regions are further away in energy
from the Fermi level at half filling.

interaction naturally results in an ideal Fermi lattice gas, albeit
with an unusual band structure. By trapping two hyperfine
states of the fermionic atoms, Hubbard-like interaction terms
arise,

Hint =
∑
r∈A

∑
σ,σ ′

U

2
a
†
r,σ a

†
r,σ ′ar,σ ′ar,σ

+
∑
r∈B

∑
σ,σ ′

U

2
b
†
r,σ b

†
r,σ ′br,σ ′br,σ , (19)

where the fermionic operators now acquire an additional
spin index σ = {↑ ,↓}, which is summed over, and U is the
interaction energy. Naturally, in order to be able to apply the
Floquet theory in the presence of interactions, the Hamiltonian
H0 in Eq. (7) must now be replaced by H = H0 + Hint. This is
the case in our study because we investigate the weak-coupling
limit with U 	 γ . Since the interaction term commutes with
the shaking, it is not renormalized, similarly to the on-site
energy term proportional to μ in Eq. (2). However, it has been
shown that complications may arise when a multiple of the
energy U is in resonance with a harmonic of h̄�, mh̄� = nU ,
for integer m and n. Whereas the limit [25] m 	 n is
not considered here because it is in contradiction with the
small-U large-frequency limit, critical resonances may occur
for m � n [26]. Nevertheless, it has been shown in Ref. [26]
that these resonances, which occur in higher-order perturbation
theory, are strongly suppressed in the large-m limit.

In the weakly interacting regime considered here, the
ground state is adiabatically connected to that of the nonin-
teracting system, with no broken symmetry. First, we use the
Fourier transform of the creation and annihilation operators,
ar,σ = N−1/2 ∑

q exp(iq · r)aq,σ , to find the Hamiltonian in
momentum space. Within Hartree-Fock theory, we introduce
a mean-field decoupling of the interaction terms,

a
†
q1,σ a

†
q2,σ ′aq3,σ ′aq4,σ

≈ 〈
a
†
q2,σ ′aq3,σ ′

〉
a
†
q1,σ aq4,σ − 〈

a
†
q2,σ ′aq4,σ

〉
a
†
q1,σ aq3,σ ′

+ a
†
q2,σ ′aq3,σ ′

〈
a
†
q1,σ aq4,σ

〉 − a
†
q2,σ ′aq4,σ

〈
a
†
q1,σ aq3,σ ′

〉
− 〈

a
†
q2,σ ′aq3,σ ′

〉〈
a
†
q1,σ aq4,σ

〉+〈
a
†
q2,σ ′aq4,σ

〉〈
a
†
q1,σ aq3,σ ′

〉
,

(20)

such that the expectation values of both sides are equal. For
the mean value we take

〈a†
q,σ aq′,σ ′ 〉 = 〈b†q,σ bq′,σ ′ 〉 = Nnq,σ δq,q′δσ,σ ′ , (21)

where N is the number of sites per sublattice, nq,σ is the
density of atoms with momentum q and spin index σ , and
δα,α′ is the Kronecker delta. We then obtain the mean-field
Hamiltonian

HMF = Heff − UNn2

8
+ Un

4

∑
σ,q

(a†
q,σ aq,σ + b

†
q,σ bq,σ ),

(22)

where the total density is defined by n = ∑
q,σ nq,σ .

023637-6



MERGING AND ALIGNMENT OF DIRAC POINTS IN A . . . PHYSICAL REVIEW A 85, 023637 (2012)

The Hamiltonian (22) may be rewritten in a matrix form:

HMF = −UNn2

8
+

∑
σ,q

(a†
q,σ b

†
q,σ )

×
(

h(μ,q) f (q)
f ∗(q) h(μ,q)

) (
aq,σ

bq,σ

)
, (23)

where we have introduced the functions

h(μ,q) = Un

4
− μ − γ ′

3∑
i=1

3∑
j=1,j �=i

exp[−iq · (di − dj )],

(24)

and f (q) is defined in Eq. (14) The Hamiltonian (23) can then
be diagonalized by the unitary operator

Û = 1√
2

(
1 if (q)/|f (q)|

f ∗(q)/|f (q)| −i

)
, (25)

which yields

HMF = −UNn2

8
+

∑
σ,q

( c
†
q,σ d

†
q,σ )

×
(

h(μ,q) − |f (q)| 0
0 h(μ,q) + |f (q)|

) (
cq,σ

dq,σ

)
.

(26)

Because the c and d quasiparticles are free, the partition
function corresponding to the Hamiltonian (26) reads

Z = exp

[∑
σ,q

(ln{1 + exp[−β(h(μ,q) − |f (q)|)]}

+ ln{1 + exp[−β(h(μ,q) + |f (q)|)]})
]
, (27)

where β = (kBT )−1 with kB denoting the Boltzmann constant
and T the temperature.

The total number of particles N is given by (1/β)∂lnZ/∂μ,
and one obtains

N =
∑
σ,q

(
1

1 + exp[β(h(μ,q) − |f (q)|)]

+ 1

1 + exp[β(h(μ,q) + |f (q)|)]
)

. (28)

Since the expression inside the sum does not depend on
spin, summing over σ yields a factor of 2. One recognizes
in Eq. (28) the Fermi-Dirac distribution function NFD(x) =
[1 + exp(x)]−1. The number of particles N is related to the
density n, which is defined here as the number of particles per
lattice site, i.e., n = N/2N . Converting the sum over q into an
integral, we derive the following self-consistent equation for
the density:

n(μ) = 1

V1BZ

∫
1BZ

d2q{NFD[β(h(μ,q) − |f (q)|)]
+NFD[β(h(μ,q) + |f (q)|)]}, (29)

where the integral is restricted to the first Brillouin zone (1BZ),
the surface of which is V1BZ.

FIG. 6. (Color online) Density n as a function of the chemical
potential μ. Unless specified otherwise in the figure, the NN hopping
parameters γ2,3 = γ1 = γ = 1, the NNN hopping parameter γ ′ = 0,
the interaction strength U = 0, and the inverse temperature β = 20.
(a) Effect of the renormalization of the NN hopping parameters.
(b) Effect of the interaction strength U for the isotropic case.
(c) Effect of the NNN hopping parameter γ ′ = 0.1 in the shaken
lattice. (d) The metallic phase. For the isotropic cases, ρ =
5.2(h̄/m�d)êx , whereas for the 0D cases ρ = 4.8(h̄/m�d)êx . These
systems are in the metallic phase for γ ′ = 0.1, whereas for γ ′ = 0
they are in the semimetallic and the insulating phases, respectively.

In Fig. 6(a), the density n(μ) is plotted for several values of
γ2,3/γ1. For the isotropic case, γ2,3/γ1 = 1, the result of Zhu
et al. is reproduced [27]. For the 0D limit, the flat line due to the
gap in the spectrum is clearly visible at the chosen temperature.
Figure 6(b) confirms that repulsive interactions lead to a lower
density than in a system without interactions for the same
chemical potential. Figure 6(c) agrees with the observation
that the NNN hopping breaks the particle-hole symmetry. This
effect is also visible in Fig. 6(d), where the dependence of the
density on the chemical potential is calculated for a shaking
vector where the system is in the zero-gapped semimetallic
phase for γ ′ = 0 and in the metallic phase for γ ′ = 0.1.

V. POSSIBILITIES FOR EXPERIMENTAL OBSERVATION

Honeycomb optical lattices have recently been realized
experimentally, although the existing setups have only been
used to investigate bosonic atoms [8,28]. Shaking of a lattice
has been experimentally implemented in a one-dimensional
lattice by a periodic modulation on the position of the reflecting
mirrors [14]. For a honeycomb lattice, the shaking could be
realized by means of an acousto-optical device, as proposed
for a triangular lattice in Ref. [23].

The magnitude of the NN hopping parameter γ in a
honeycomb optical lattice has been evaluated in Ref. [24],

γ ≈ 1.861ER

(
V0

ER

)3/4

exp

(
− 1.582

√
V0

ER

)
, (30)

in terms of the recoil energy ER = h̄2k2/2m and the magnitude
of the potential barrier between nearest-neighbor lattice sites,
V0. The magnitude of the NNN hopping parameter γ ′ is not

023637-7



KOGHEE, LIM, GOERBIG, AND SMITH PHYSICAL REVIEW A 85, 023637 (2012)

Gapped  Metallic  1D 0D 

(b) Parallel  

(a) Perpendicular

mΩd 

 (nm)  

 (nm)  

180  360  412  

210  480  

  
mΩd 

135  

278  

h

h

FIG. 7. (Color online) Overview of the different phases as a
function of the shaking amplitude, starting from the semimetallic
phase (blank part). The bottom scale gives the size of the argument of
the Bessel function; the values for ρ in nanometers correspond to the
optical lattice discussed in Sec. III C with γ ′ = 0.1γ , �/2π = 6 kHz,
a laser field with a wavelength of 830 nm, and containing 40K atoms.
Shaking (a) perpendicular and (b) parallel to one of the NN hopping
directions.

yet known, but could be determined from numerical band-
structure calculations. In a typical experimental situation, we
expect the ratio γ ′/γ to be in the 5%–10% range, in agreement
with the parameters chosen in the discussion of Sec. III C.

In a typical experiment, the shaking amplitude would
be increased from zero to a finite value. Figure 7 shows
the order in which the system goes through the different
phases and dimensions as the shaking amplitude is increased.
Here, the values of the shaking amplitude required for the
dimensional crossovers are also given for the same system as
discussed in Sec. III C and γ ′ = 0.1γ . If the shaking direction
is perpendicular to one of the NN vectors, the system will
be in the gapped insulating phase beyond a certain value of
the shaking amplitude, since the Bessel function crosses the
value 0.5 only once and never obtains the value −0.5. If the
shaking is parallel to one of the NN vectors, the system will
be in the metallic phase beyond a certain value of the shaking
amplitude. Nevertheless, it is still possible to induce a merging
of Dirac points and to open up a gap in the spectrum, since the
NN hopping parameters are renormalized such that the value
of one of them will in general differ from that of the other
two. However, whether the system is actually driven into an
insulating phase or remains metallic depends on the precise
value of the ratio γ ′/γ .

In experiments, an overall harmonic trapping potential is
imposed to confine the atoms. It is described by

Vtrap(r) = 1
2mω2

trapr2, (31)

where ωtrap is the trapping frequency, and r is the position
measured from the center of the trap. By applying the local
density approximation, one finds that the chemical potential
evolves radially according to μ → μ − Vtrap(r2).

Figure 8(a) shows the density profile for several ratios of
γ2,3/γ1, without NNN hopping or interactions. The case with

FIG. 8. (Color online) Density n as a function of the distance
from the trap’s center, r = |r|, which is expressed in units of the
nearest-neighbor distance d . The trapping frequency has been chosen
such that the trapping potential is given by Vtrap(r) = 0.001γ r2/d2.
The chemical potential μ for each case has been chosen such
that the density at the trap’s center, n, is one particle per site.
This corresponds to half filling, since we consider two species of
fermions. Unless specified otherwise in the figure, the NN hopping
parameters γ2,3 = γ1 = γ = 1, the NNN hopping parameter γ ′ = 0,
the interaction strength U = 0, and the inverse temperature β = 20.
(a) Effect of the renormalization of the NN hopping parameters.
(b) Effect of the interaction strength U for the isotropic case.
(c) Effect of the NNN hopping parameter γ ′ = 0.1 in the shaken
lattice. (d) The metallic phase. For the isotropic cases, ρ =
5.2(h̄/m�d)êx , whereas for the 0D cases ρ = 4.8(h̄/m�d)êx . These
systems are in the metallic phase for γ ′ = 0.1, whereas for γ ′ = 0
they are in the semimetallic and the insulating phases, respectively.

γ2,3/γ1 = 0, when the system is in the extreme limit of the
band-insulating phase, can be well distinguished from the other
cases. Figure 8(b) shows that stronger interactions lead to a
higher density away from the center of the trap. This effect
becomes visible when the density starts to deviate from one
particle per lattice site. Next-nearest-neighbor hopping leads
to a higher density at the edge of the cloud compared to the
case without NNN hopping, which can be seen by comparison
of Figs. 8(a) and 8(c) and from Fig. 8(d). The latter shows
the effect of NNN hopping on the density profile for the case
where the NNN hopping gives rise to the metallic phase for two
different shaking vectors. In the first case, ρ = 5.2(h̄/m�d)êx ,
which gives γ1 ≈ γ2,3, such that without NNN hopping the
system is in the zero-gapped semimetallic phase and the Dirac
points are located very close to the corners of the first Brillouin
zone. In the second case, ρ = 4.8(h̄/m�d)êx , which results in
γ2,3 ≈ 0, such that without NNN hopping the system is in the
insulating phase and the two energy bands are almost flat.

We emphasize that, in the present paper, we discuss
only weak correlations that adiabatically affect the density.
However, when the on-site interaction is increased further, one
might expect correlated phases with inhomogeneous density,
even at half filling. A detailed study of these correlated
phases is a vast research issue that is yet ongoing and that
is beyond the scope of the present paper. Here, we provide
only a glimpse as to how the density, which we discussed
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above in the weak-coupling limit, may evolve in view of
some phases studied in the literature. Mean-field calculations
indicate a transition to an antiferromagnetic state above a value
of U/γ � 2.2 [9], whereas more sophisticated quantum Monte
Carlo calculations indicate an intermediate spin-liquid phase
between the semimetal and the antiferromagnetic phases [10].
The spin-liquid phase may be viewed as a Mott insulator with
a charge localization on the lattice sites, and recent slave-rotor
calculations indicate that such spin-liquid phases dominate
the phase diagram for γ1 > γ2,3 [11], which is the parameter
range where the Dirac points would merge in the absence
of interactions. The precise transition between the weakly
interacting liquid phases and these strongly correlated Mott
insulators could in principle be determined with the help of
the above-mentioned density measurements.

A more promising technique for detecting Dirac-point
motion is momentum-resolved Raman spectroscopy. This
technique has been proposed as an equivalent of angle-
resolved photoemission spectroscopy for cold-atom systems
[29]. It has not yet been realized experimentally, although
momentum-resolved radio-frequency spectroscopy, which is
a very similar technique, has already been implemented [30].
Notice further that another very similar technique, momentum-
resolved Bragg spectroscopy, has been applied to ultracold
bosonic atoms in a static optical lattice by Ernst et al. [31].
Momentum-resolved spectroscopy can allow us to indirectly
visualize the band structure. In momentum-resolved Raman
spectroscopy, the system is irradiated with two laser pulses
with frequencies ω1 and ω2. If the frequency difference is
in resonance with a transition ωhf between atomic hyperfine
states, ω1 − ω2 = ωhf, some atoms are excited in a second-
order process to the higher hyperfine state. Then, with state-
selective time-of-flight measurements, the dispersion of the
atoms in the new state is measured, from which the dispersion
of the original atoms can be derived. When the atoms are
confined in a trapping potential and the laser pulses are focused
on the center of the trap, the quality of the results obtained by
Raman spectroscopy is comparable to those of a homogeneous
system [29]. Furthermore, Raman spectroscopy yields better
results for a system with strong interactions compared to
standard time-of-flight measurements [29].

Notice that momentum-resolved Raman spectroscopy was
originally proposed to be applied to a gas of ultracold
fermionic atoms at equilibrium and not for a shaken lattice.
We therefore discuss, in this final paragraph, why we think
that this technique may also be applied to the present case.
Naturally, as long as the frequencies of the additional lasers
in the Raman-spectroscopy setup are small with respect to the
shaking frequency, ω1,ω2 	 �, even the full system satisfies
the condition (7) for the validity of Floquet theory. As in the
case of interactions, one needs, however, to avoid resonances
between the different laser frequencies that could become
critical [26]. The opposite limit, in which the laser frequencies
and that of the hyperfine transition are larger than the shaking
frequency, is more delicate. However, even then, the shaken
system remains at quasiequilibrium as long as the intensities
of the lasers used in Raman spectroscopy are weak, such that
they constitute only a small perturbation. The atomic dynamics
probed even at high frequencies is therefore still that of the
atoms at quasiequilibrium, with the band strucure obtained

from Floquet theory. Furthermore, in the experimental studies
by Zenesini et al. [14], time-of-flight measurements were used
to determine the momentum distribution of bosonic atoms in a
shaken lattice. Apart from the time-scale considerations, there
are also some length scales that need to be taken into account.
There are indeed two requirements for the correct size of the
focus of the laser beams. On the one hand, it needs to be larger
than the lattice spacing, such that sufficiently many atoms can
be excited, while on the other hand the focus of the beams
should be small enough to have an approximately flat trapping
potential inside the focus area. In addition, the choice of the
length of the pulses could possibly be a problem, since for
shorter pulses the excited atoms will be less affected by the
lattice potential, whereas for longer pulses more atoms can be
excited, leading to a stronger signal.

VI. CONCLUSIONS

In conclusion, we have investigated the band engineering of
fermionic atoms in an optical honeycomb lattice with the help
of a periodic shaking of the lattice. If the shaking frequency
� is large enough, i.e., if h̄� constitutes the largest energy
scale in the system, the Floquet theory may be applied and
the system is at quasiequilibrium in the sense that the atoms
cannot follow the rapid motion associated with the shaking.
Depending on the direction of the shaking, one may render the
hopping amplitudes in the quasistatic lattice anisotropic, due
to a renormalization of the NN and NNN hopping parameters
by Bessel functions that go through zero and change sign.
As a consequence, dimensional crossovers can be induced in
the absence of the NNN hopping. For a shaking direction
parallel to one of the NN vectors (such as, e.g., d1), one can
make one of the NN hopping parameters vanish, γ1 → 0.
The system then undergoes a transition from 2D to 1D,
while the Dirac points align simultaneously. Shaking in the
perpendicular direction (⊥d1) allows one to decrease two
NN hopping amplitudes simultaneously while maintaining γ1

unrenormalized. In this case, a dimensional crossover from
2D to 0D is induced for γ2,3 → 0, leading to two flat energy
bands, beyond the merging of the Dirac points [4,6], which
occurs at |γ1| = 2|γ2,3|. A nonzero value of γ ′ breaks the
particle-hole symmetry and leads to a coupling among the
1D chains and the 0D dimers, for the γ1 = 0 and γ2,3 = 0
cases, respectively, and thus to a weak 2D dispersion. The
merging and the alignment of Dirac points, however, are not
affected. Moreover, for a shaking direction parallel to d1,
one pair of NNN hopping amplitudes [±(d2 − d3)] remains
unrenormalized, and its relative importance is thus enhanced
when compared to the decreasing NN hopping amplitudes.
In this limit, beyond the semimetallic and the band-insulating
phases, an unusual metallic phase can appear that consists of
particle and hole pockets with a nonvanishing density of states
even at half filling.

Furthermore, we have investigated the role of weak repul-
sive on-site interactions. The resulting ground state is then
adiabatically connected to that of the noninteracting system,
and we have self-consistently calculated the dependence of the
atomic density on the (local) chemical potential. The density
profiles of the different phases, e.g., the gapless semimetal or
the gapped band insulator, and the different dimensionalities
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may be determined experimentally by in situ density measure-
ments. Moreover, momentum-resolved Raman spectroscopy
might be a promising technique to measure the band structure
associated with these different phases.
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APPENDIX: EFFECTIVE HAMILTONIAN

For the studied case, H (t) − h̄∂tF (t) = H0, where H0 was
given in Eq. (2). Since the NN hopping is usually larger than the

NNN hopping, γ ′ < γ , and since we let the chemical potential
be in the range −2γ � μ � 2γ , the dominant energy scale in
the Hamiltonian H0 is γ . Therefore, if γ 	 h̄�, the condition
(7) is satisfied and the Floquet theory may be applied.

In the general case, the effective Hamiltonian is given by
[21]

Heff =
〈 ∞∑

n=0

in

n!
[F̂ (t),H0]n

〉
T

, (A1)

where for the shaken honeycomb lattice, we choose

F̂ (t) = m�2

h̄�
sin(�t)

(∑
r∈A

r · ρ a
†
rar +

∑
r∈B

r · ρ b
†
rbr

)
.

(A2)

Using the (nonvanishing) commutation relations

[
a
†
r′ ar′ ,a

†
r br+dj

] = a
†
r′ br+dj

δr′,r ,
[
a
†
r′ ar′ ,b

†
r+dj

ar
] = −b

†
r+dj

ar′ δr′,r,

(A3)[
a
†
r′ ar′ ,a

†
r ar+di−dj

] = a
†
r′ ar+di−dj

δr′,r − a
†
r ar′ δr′,r+di−dj

,

which are valid for both fermionic and bosonic creation and annihilation operators, and equivalent ones for the creation and
annihilation operators on the B sublattice, the multiple commutator in Eq. (A1) becomes

[F̂ (t),H0]n =
[
m�2

h̄�
sin(�t)

]n
{

−γ

3∑
j=1

∑
r∈A

(dj · ρ)n
[
(−1)na†

rbr+dj
+ b

†
r+dj

ar
] − γ ′

3∑
i=1

3∑
j=1,j �=i

×
( ∑

r∈A

[(dj − di) · ρ]n a
†
r ar+di−dj

+
∑
r∈B

[(dj − di) · ρ]n b
†
rbr+di−dj

)}
− μ

( ∑
r∈A

a
†
rar +

∑
r∈B

b
†
rbr

)
. (A4)

Finally, after performing the time average and evaluating the sum over n, the effective Hamiltonian (10) is obtained.

[1] K. S. Novoselov, A. K. Geim, S. V. Morosov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,
666 (2004).

[2] C. Berger, Z. Song, T. Li, A. Y. Ogbazghi, R. Feng, Z. Dai,
A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer,
J. Phys. Chem. 108, 19912 (2004).

[3] For recent reviews on graphene, see A. H. Castro Neto, F. Guinea,
N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod.
Phys. 81, 109 (2009); M. O. Goerbig, ibid. 83, 1193 (2011).

[4] Y. Hasegawa, R. Konno, H. Nakano, and M. Kohmoto, Phys.
Rev. B 74, 033413 (2006).

[5] P. Dietl, F. Piechon, and G. Montambaux, Phys. Rev. Lett. 100,
236405 (2008).
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U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005); C. Kollath,
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