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Quantum dynamics of impurities in a one-dimensional Bose gas
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Using a species-selective dipole potential, we create initially localized impurities and investigate their
interactions with a majority species of bosonic atoms in a one-dimensional configuration during expansion. We
find an interaction-dependent amplitude reduction of the oscillation of the impurities’ size with no measurable
frequency shift, and study it as a function of the interaction strength. We discuss possible theoretical interpretations
of the data. We compare, in particular, with a polaronic mass shift model derived following Feynman variational
approach.
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I. INTRODUCTION

Low-dimensional and strongly interacting systems have
sparked intense scientific interest in recent years in diverse
research fields, such as solid-state physics, nanoscience, and
atomic physics. In particular, strongly correlated systems
display quantum phases dominated by quantum fluctuations,
such as the Mott-insulator phase [1] and magneticlike ordered
phases [2]. In low dimensions, the interplay between inter-
actions among particles and confining potential can enhance
the effect of quantum correlations, resulting in peculiar
regimes, such as the Tonks-Girardeau or the sine-Gordon [3]
regimes. Due to the unprecedented control over the interatomic
interactions, the external trapping potentials, and the internal
states of the atoms, ultracold atomic systems represent a
versatile tool to explore these novel phenomena, and have
already provided the way to realize some of these quantum
phases [4]. A particular strength of cold atoms is the realization
of systems that are hard to obtain in condensed-matter physics,
such as multicomponent bosons of either different hyperfine
states [5,6] or different species [7], as well as the study of
real-time dynamics of quantum many-body systems.

In particular, cold atoms provide a way to realize a
recently proposed new universal class of quantum systems, the
so-called ferromagnetic liquids [8], occurring as the ground
state of repulsively interacting two-component bosons. The
time evolution of a spin flip, i.e., the excitation obtained by
flipping one single bosonic “spin” from the fully spin-polarized
ground state, thereby creating a localized “impurity,” leads to
a class of dynamics completely different to that of the standard
(Luttinger-liquid) theory but possessing remarkable universal
features [8–10]. The physics of such impurities propagating
in a sea of the majority species is further connected to several
longstanding questions in strongly correlated systems, both
fermionic and bosonic. For fermionic systems and an immobile
impurity, one example is the well-known x-ray edge problem,
with the impurity leading to the Anderson orthogonality
catastrophe [11]. The motion of the impurity then strongly
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affects this physics, as was probed both for impurities in
3He [12] and, more recently, for minority species in interacting
fermionic systems [13,14], in the context of Fermi-liquid
theory. Inextricably linked to the study of the impurity motion
is the notion of polarons [15], i.e., the occurrence of density
fluctuations of the majority species, both for fermions and
bosons, leading to renormalization of the impurity parameters,
such as its mass. In one dimension, however, the nature of the
bath is quite special, leading to the above-mentioned novel
physical effects and, in particular, to subdiffusion at zero
temperature. This problem is also directly related to the motion
of a driven impurity which was investigated recently both
theoretically [16–18] and experimentally [19]. A system where
the impurity-bath interactions are adjustable over a wide range
paves the way for the study of a wealth of physical phenomena.

In this work, we realize such a system using a species-
selective dipole potential (SSDP) [20]. A minority species
(K atoms) can diffuse into a majority species of (Rb)
bosonic atoms, in a one-dimensional (1D) configuration (see
Fig. 1). We study how the interspecies interactions reduce the
oscillation amplitude of the impurities’ size σ (t) =

√
〈x2〉. We

compare the data in the light of a model based on polaronic
mass shifts.

The remainder of the paper is organized as follows: in
Sec. II we describe the experimental procedure to prepare

FIG. 1. (Color online) Ultracold Rb atoms with K impurities are
loaded into an array of 1D systems, “tubes” (left). The SSDP light
blade spatially localizes the impurities into the center of the Rb tubes
(right).
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the one-dimensional (1D) systems of K impurities initially
localized in the surrounding Rb bath and measure their
subsequent expansion; in Sec. III we report the experimental
data; Sec. IV illustrates our theoretical model based on a
quantum Langevin equation. By means of the Feynmann
variational approach [21], we calculate the impurities’ mass
renormalization due to the interactions with the Rb bath. In
Sec. V we compare the data with the results of the theo-
retical model, discussing the limitations and approximations
involved. Finally, we summarize in Sec. VI.

II. EXPERIMENTAL PROCEDURE

The mixture of 87Rb and 41K is first cooled to 1.5 μK by
microwave evaporation of Rb and sympathetic cooling of K in a
magnetic trap, then loaded into a crossed dipole trap created by
two orthogonal laser beams (λ = 1064 nm, waists � 70 μm).
Both species are spin polarized in their |F = 1,mF = 1〉
hyperfine states, featuring magnetically tunable interspecies
interactions in the 0–10 mT range. The mixture is further
cooled by optical evaporation performed in a uniform magnetic
field of 7.73 mT to adjust the interspecies scattering length a

to the convenient value of 240 Bohr radii, ensuring both fast
thermalization and a low rate of inelastic collisions.

At this point we set the magnetic field to 7.15 mT,
corresponding to vanishing interspecies interactions, and we
adiabatically raise a vertical (z) 1D optical lattice (waist
170 μm) to 15 (6.5) Erec for Rb (K) in 200 ms. The lattice
wavelength λ = 1064 nm results in a 2.3 times smaller lattice
height for 41K than for 87Rb in units of the respective recoil
energies (Erec = h2/2mλ2). After adiabatic extinction of the
dipole trap, both species move downward as collisions disrupt
the gravity-induced Bloch oscillations [22] but, due to largely
different tunneling times, K drops faster and, by adjusting the
fall time, we reduce the gravitational sag between the two
species in the dipole trap.

Subsequently, we further raise the vertical lattice to 60 Erec

for Rb and adiabatically switch on an additional standing
wave with equal waist and strength along the y direction.
Thus we create the array of 1D systems (tubes) by means
of a two-dimensional (2D) lattice. The lattice transverse
harmonic oscillator frequency, ω⊥/2π = 34(45) kHz for Rb
(K), exceeds both the temperature and the chemical potential,
thus ensuring the 1D regime for both species.

The residual trapping frequency along the direction x of
the tubes, 62 (87) Hz for Rb (K), is due to the inhomogeneous
transverse profile of the lattice beams. An SSDP elliptic beam,
orthogonal to the tubes, is then turned on in 50 ms, compressing
K at the center of Rb and leaving the latter nearly unperturbed.
This light blade has waists of 15 and 75 μm (x and z direction,
respectively), wavelength of 770.4 nm, and power equal to
0.6 mW. Correspondingly, the depth and frequency are 11 μK
and ωK/(2π ) = 1.0 kHz.

Finally, the interaction strength g1D,KRb between K and Rb,
is brought to the desired value by linearly ramping the magnetic
field to its final value Bd . Instead, the interaction strength of
the Rb atoms g1D,Rb = 2.36 × 10−37 J m is independent of the
applied magnetic field Bd .

The impurities’ dynamics is initiated by rapidly extin-
guishing the light blade with a linear ramp of 0.5 ms.

Vertical latt.

Radial latt.

Bd

SSDP
light
blade

Freezing.

t
Sag compensation Evolution

FIG. 2. (Color online) Time sequence of the experimental proce-
dure used to prepare the K impurities in the middle of 1D tubes filled
with Rb atoms.

Images of the impurities are taken once their motion has
been frozen by suddenly adding a tight optical lattice along
the tubes axis allowing for magnetic field to be extinguished
in 15 ms and for atoms to be repumped in the hyperfine
level suitable for imaging without significantly affecting their
density distribution. The full experimental procedure is shown
in Fig. 2.

Typically, we measure (1.8 ± 0.2) × 105 87Rb and (6 ±
2) × 103 41K atoms at 140 nK before loading the tubes. From
the analysis of time-of-flight images, we obtain a temperature
of the Rb sample in the 1D tubes of 350(50) nK. We
estimate the Rb peak filling and density to be 180 atoms/tube
and n1D,Rb � 7μm−1, with a filling-averaged Lieb-Liniger
parameter (mRbg1D,Rb)/(h̄2n1D,Rb) � 1; the peak K filling is
approximately 1.4 atoms/tube.

III. EXPERIMENTAL DATA

We record the oscillation of the impurities axial size
σ (t) =

√
〈x2〉 along the tubes as a function of time, through

resonant in situ absorption imaging. We fit the absorption
profiles by a two-dimensional Gaussian function. Figure 3
shows the evolution of the impurities axial size σ (t) for four
different values of the 1D interspecies interaction strength
g1D,KRb. Given the magnetic field Bd , hence the interspecies
scattering length a [23], g1D,KRb is calculated following [24]
and expressed in units of g1D,Rb as g1D,KRb = η g1D,Rb. We
find the oscillation amplitude of σ (t) to be large for η � 0 (no
interactions between impurities and 1D gas) and to decrease
with η. Remarkably, for the largest oscillation strength, the
impurities’ oscillations are always confined inside the bath.
In addition, we observe that, in addition to oscillating, σ (t)
increases linearly (at least initially) over time. In order to
extract quantitative information, we fit the experimental data
with a damped sine function with linear baseline: σ (t) = σ1 +
β t − Ae−γωt cos[

√
1 − γ 2ω (t − t0)]. Since in the following

we will mainly focus on the oscillation amplitude, in Fig. 3 we
show the fit parameters, ω/2π, γ, and β.

We first notice that the oscillation frequency does not shift,
within our error bars, with g1D,KRb: such a surprising feature
is further discussed below. Then we observe that, even in the
absence of interactions at η = 0, a residual damping occurs,
likely due to intraspecies collisions in tubes with more than
one K atom. We also notice that, during the oscillations,
the impurity cloud can grow larger than the Rb sample,
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FIG. 3. (Color online) Upper panel: oscillations of the K impurities axial width σ =
√

〈x2〉 after extinction of the confining SSDP, for
different interaction strengths with the surrounding Rb bulk, η = g1D,KRb/g1D,Rb. Solid lines represent a fit to data, and triangles the Rb axial
size. Inset images show the observed in situ density distributions of Rb (red, left) and K (blue, right) within a window of 200 × 150 μm. Lower
panel: values of the fit parameters ω/2π , γ , and β (left to right, see text for definition).

thus exploring the Rb inhomogeneous density profile. Such
inhomogeneity along the tubes axis adds to the inhomogeneity
of the tube’s filling. In the following, we account for the
inhomogeneity using the local density approximation, i.e.,
by considering homogeneous systems with different values
of Rb linear density. As K impurities are initially confined
in the middle of Rb, the first oscillation is less affected by Rb
inhomogeneous density than the following ones. Therefore we
focus our analysis on the value of the maximum size reached in
the first oscillation, after 3 ms of expansion: σp ≡ σ (t = 3 ms).
Such value closely reflects the oscillation amplitude A as, for
short times, both the slope and the damping have a negligible
effect.

Figure 4 shows the dependence of σp on the relative
coupling strength η: values of η of the order of the unity
are sufficient to induce a significant amplitude reduction, if
compared to the noninteracting case η = 0. It is important
to remark that, if mean-field interactions dominated, we
would observe an opposite behavior for positive and negative
η values. As σp decreases with |η|, independently of its
sign, we conclude that mere mean-field interactions cannot
explain our experimental findings. We also notice a saturation
behavior for η > 4 that cannot be due to the washing out of
the Feshbach resonance caused by magnetic field instability
(∼10μT). Instead, it might be related to a crossover to
the three-dimensional (3D) regime, as we estimate that for
η = 15 the mean-field interaction energy of the K impurities,
g1D,KRbn1D,Rb, equals the band gap of the 2D lattice. As
our theory cannot describe this 1D to 3D crossover, and
furthermore the inclusion of the 1D bound states between
K and Rb for η < 0 also cannot be adequately captured,

we have calculated
√

mK/m∗
K only in the range 0 < η � 8

in Fig. 3.
To some extent, the amplitude of the first oscillation could

reflect different preparation temperatures of the K sample in the
light blade, as the efficiency of the thermalization with the Rb
background depends on the strength of interactions. Thus, we
recorded the first oscillation of K impurities prepared at large
η and expanding at zero interactions, and compared it with
the oscillations of samples prepared and expanded at large (or

FIG. 4. (Color online) Experiment: impurities’ axial size at
the first oscillation maximum σp , normalized so that σp = 1 for
η = 0, versus the coupling strength parameter η = g1D,KRb/g1D,Rb,
for attractive (left, η < 0) and repulsive (right, η > 0) interactions
(circles). Theory:

√
mK/m∗

K calculated with impurity-bath coupling
g1D,KRb derived from two-body scattering [24] (solid line) and with
g1D,KRb multiplied by a fit parameter (dashed line). Both curves are
computed for a Rb density of 7 atoms/μm and γ̃ = 0.
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FIG. 5. (Color online) Amplitude of the first oscillation of the
axial size of K impurities (right) following different preparation
sequences (left): (a) η always negligible; (b) η large while K in the
SSDP light blade and negligible during expansion at t > 0; and (c) η

always large.

zero) interactions. We notice from Fig. 5 that the preparation
has a nearly negligible impact on the oscillation amplitude,
insufficient to explain the large differences observed between
high and small η. Moreover, incomplete thermalization cannot
explain why at large interactions σp lies below the Rb axial
width, as shown in Fig. 3.

To summarize, the key experimental findings are (a) even
for large η the oscillation frequency of σ (t) does not deviate
measurably from that of the noninteracting case (which is
2ω); (b) the larger |η|, the lower the amplitude of oscillation
initially; (c) in the interacting case, besides oscillating, the
impurities width increases over time in a seemingly linear
fashion; and (d) at long times σ (t) equilibrates to about the
same value, independently of η.

IV. THEORETICAL MODEL

A complete explanation of the observed phenomena is an
interesting and open problem. Motivated by the observed
shape of σ (t), we give here a semiempirical analysis of
the oscillation through the model of a damped, quantum
harmonic oscillator in contact with a thermal bath, i.e., a
quantum Langevin equation [25], ˙̂x(t) = p̂(t)/m∗

K , ˙̂p(t) =
−k∗x̂(t) − γ̃ p̂(t) + ξ̂ (t), as a framework to order and provide
a first interpretation of the findings. Here, x̂(t) and p̂(t) are,
respectively, the position and momentum operators of one 41K
atom whose mass m∗

K and spring constant k∗ are renormalized
by interactions with the bath. In addition to the exponential
damping −γ̃ p̂(t), we account for the fluctuations of the bath
by the noise operator ξ̂ (t), whose correlator 〈ξ̂ (t)ξ̂ (t ′)〉 ∝ γ̃ is
approximated by using the thermal quantum statistics of a set
of harmonic oscillators at constant spectral density [25]. The
operator ξ̂ (t) causes the gradual increase of the impurities’
width, corresponding to heating from the thermal component
of the bath.

Various effects could account for the change of amplitude.
A dominant mean-field interaction for η > 0 would make
the effective potential for the K shallower, resulting in σp

increasing with η, at odds with observed behavior. Another
possibility is the damping from the γ̃ term. However, this is
also inconsistent with the observed data: within the quantum
Langevin approximation, and at the experimental tempera-
tures, any but very small values of γ̃ result in strong heating
contributions from the correlator 〈ξ̂ (t)ξ̂ (t ′)〉, such that overall
σp increases with η.

At variance with the two above-mentioned effects, a mass
renormalization of the K impurities due to polaronic effects
[21] is a very good starting point to explain the decrease
of σp.

A. Polaronic mass shift

We calculate the mass shift M = m∗
K − mK using Feyn-

man’s variational theory for the polaron [21]. Taking the
combined impurity-bath Hamiltonian

Ĥ = p̂2

2mK

+
∑
k �=0

εkb̂
†
kb̂k +

∑
k �=0

Vke
ikx̂(bk + b

†
−k), (1)

where the Rb bath has been approximated as a
Tomonaga-Luttinger liquid with linearized density fluc-
tuations around a homogeneous background density, de-
scribed by the bosonic operators b̂k ,b̂†k with εk = vs |k|, Vk =
g1D,KRb(K|k|/2πL)1/2e−|k|/2kc , and where vs is the sound
velocity of Rb, K the Luttinger parameter, related to the
effective Rb-Rb interaction, and kc the cutoff momentum.
These quantities can be related to a homogeneous 1D Rb gas
with arbitrary contact interactions [26]; as a working theory
for inhomogeneous 1D systems is difficult to obtain, we use
this homogeneous theory instead, evaluating it for different
Rb densities in the center of the trap. We find that the results
are not that strongly depending on the precise value of the Rb
density.

Evaluating the full partition function Z = Tr(e−βĤ ) as a
path integral and integrating out the Rb bath yields an action
S for the K atom that is nonlocal in time:

S =
∫ βh̄

0
dτ

mK

2
ẋ2(τ ) −

∑
k

V 2
k

2h̄

∫ βh̄

0
dτ

×
∫ βh̄

0
dτ ′ G(k,|τ − τ ′|)eik[x(τ )−x(τ ′)], (2)

where G(u,k) = cosh[εk(u − h̄β/2)]/ sinh(h̄βεk/2). The
mass shift enters through the Feynman trial action S0,

S0 =
∫ βh̄

0
dτ

mK

2
ẋ2(τ ) + MW 3

8

∫ ∫ βh̄

0

× dτ dτ ′ cosh(W |τ − τ ′| − Wh̄β/2)

sinh(Wβh̄/2)
[x(τ ) − x(τ ′)]2,

which depends on two parameters, the mass shift M and W ,
which are chosen by minimizing the trial free energy F0 +
〈S − S0〉/(h̄β) � F = −(1/β) ln Z.

The explicit expression of the trial free energy is

F0 + 1

βh̄
〈S − S0〉

= ln

[
sinh

(
βh̄Wα

2

)]
− ln

[
sinh

(
βh̄W

2

)]
− ln α

− M

2(mK + M)

[
h̄βWα

2
coth

(
βh̄Wα

2

)
− 1

]

−
∑

k

V 2
k

h̄

∫ h̄β

0
du

(
1 + u

h̄β

)
G(k,u)K(k,u), (3)
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FIG. 6. (Color online) Square root of the inverse impurities’
renormalized mass versus interspecies interaction strength η, cal-
culated for different values of Rb density. This quantity directly
compares with the measured K width σp .

where α = √
1 + M/mK , and

K = exp

[
− h̄k2

2(mK + M)

(
u − u2

h̄β
+ M

mK

× cosh(Wαh̄β/2) − cosh[Wα(h̄β/2 − u)]

Wα sinh(h̄βWα/2)

)]
. (4)

which we then minimize numerically to obtain the mass
shift M .

We apply this theory to an experiment with an inhomo-
geneous density distribution of bath particles (due to the
external confinement of the Rb atoms). For this approach to
be reasonable, the mass shift should not depend too strongly
on a shift in Rb density, which Fig. 6 shows to be indeed the
case (all other parameters are as in the experiment).

Note that one can easily add a term corresponding to a
parabolic confining potential in the action (2) and repeat
the variational procedure to find the effective mass. Quite
intuitively, one finds that the tighter the confinement, the
smaller is the mass renormalization. This strongly suggests
that before the blade is released one should consider that the
K impurity has its bare mass. This is clearly a point that would
need to be more quantitatively tested by, e.g., a Monte Carlo
calculation.

V. COMPARISON OF DATA AND THEORY

Strongly simplifying the bath (see [25]) for a small γ̃ —as
the data suggest—we obtain the functional form for σ (t) used
to fit the oscillations in Fig. 3. The theoretically predicted σp

is proportional to 1/
√

m∗
K . Therefore, in Fig. 4 we compare

the measured σp normalized to the value at zero interactions
to the calculated values of

√
mK/m∗

K : the theoretical curve
reproduces the experimental trend and magnitude of the
amplitude reduction fairly well.

As the variational approach cannot take the inhomogeneity
of the bath into account, we approximate the translationally
invariant theory with representative values for the Rb density

in the center of the trap. We find that, in the parameter range
of the experiment, the mass shift is rather insensitive to the Rb
density.

We also considered the possibility that g1D,KRb in the
experiment (i.e., at finite density) may be different from the
one obtained in the standard 1D two-body scattering theory
[24,27]. While those formulas have indeed been demonstrated
to well describe the position of the confined-induced reso-
nances (CIR) also in the regime of finite density, it is currently
unknown how accurate it is for the actual value of g1D,KRb

away from the CIR. We find that a least-square fit of the
theory to data with a value of 3.15g1D,KRb fits the experiment
better.

Concerning the mass shift theory for σp, we must note
that for the trap parameters and temperatures it relies on the
assumption that the mass of K is not or is only insignificantly
renormalized inside the light blade during preparation. This
is supported by calculations of the mass renormalization
that include a parabolic trap for the K, which show the
mass shift becoming smaller, the deeper the trap, eventually
becoming zero. This simple extension of Feynman’s approach
is, however, ill suited to quantitative calculations of concrete
values of the mass shift in a tight confinement, and we therefore
must leave the quantitative test of this assumption to strong
numerical methods.

The above interpretation based on the polaronic mass shift
also predicts an increase of the oscillation period, which
for large η would be beyond the 5% experimental error
bars. To reconcile this apparent contradiction with the data,
we need to consider the physical processes resulting in an
effective upward renormalization of the spring constant k∗.
Such processes are more easily visualized in the limit of
impenetrability: when the impurities cannot get across the
bath atoms, their displacement from the trap bottom costs the
additional harmonic potential energy of the bath atoms moving
uphill. While this is observed in proof-of-principle simulations
for simplified models, quantitatively estimating the value of k∗
is difficult with current methods and will require further, more
refined analysis.

VI. CONCLUSIONS

In conclusion, we have investigated the dynamics of
impurities in 1D atomic samples as we varied their interaction
strength with the surrounding bath of weakly interacting
bosons by more than two orders of magnitude. We observe the
amplitude of the impurities’ quadrupole oscillations decreas-
ing with the absolute value of the interaction strength, a fact
unexplained by mere mean-field interactions. An analysis of
the data in the light of a simplified quantum Langevin equation
suggests that polaronic mass shift plays a role in the amplitude
reduction.
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