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Penetration of a vortex dipole across an interface of Bose-Einstein condensates

Tomohiko Aioi, Tsuyoshi Kadokura, and Hiroki Saito
Department of Engineering Science, University of Electro-Communications, Tokyo 182-8585, Japan

(Received 17 December 2011; published 14 February 2012)

The dynamics of a vortex dipole in a quasi-two-dimensional two-component Bose-Einstein condensate is
investigated. A vortex dipole is shown to penetrate the interface between the two components when the incident
velocity is sufficiently large. A vortex dipole can also disappear or disintegrate at the interface, depending on its
velocity and the interaction parameters.
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I. INTRODUCTION

Vortex rings, such as smoke rings blown from a smoker’s
mouth, propagate in the direction of the axis of the ring with
a long lifetime. The two-dimensional (2D) analog of a vortex
ring is a vortex dipole, which consists of a pair of vortices
of opposite circulations, propagating side by side. A vortex
dipole is a very stable structure and carries momentum in the
direction of propagation.

In superfluids, a vortex dipole consists of a pair of quantized
vortices, whose circulations are quantized to ±h/m with h

being Planck’s constant and m being an atomic mass. Such
quantized vortex dipoles have been generated and observed
in Bose-Einstein condensates (BECs) of atomic gases [1–3,5]
and of exciton polaritons [6,7]. A quantized vortex dipole
propagates with velocity �h̄/(md), where d is the distance
between vortices. In a uniform superfluid, d is constant in
time and a quantized vortex dipole propagates with a constant
velocity. In an inhomogeneous system, on the other hand, each
vortex of a vortex dipole follows its own trajectory [2–5] or
even remains stationary [3,8].

In the experiment reported in Ref. [2], a vortex dipole
was generated in an oblate BEC, which propagated through
the system. When a vortex dipole reached the edge of the
condensate, the vortex and antivortex disintegrated and they
moved along the edge of the condensate in opposite directions.
This behavior is similar to that of a classical vortex dipole
moving toward a rigid wall [9], where the vortex and antivortex
disintegrate and move along the wall in opposite directions.
For both a wall and the edge of a condensate, a vortex dipole
cannot go beyond the boundary. In this paper, we investigate
the dynamics of a vortex dipole moving toward an interface
between BECs of different components. Few studies have been
performed on this kind of vortex dynamics at interfaces even
in classical fluids. In classical fluids, dynamics of vortex rings
moving toward a density interface have been studied [10–12].

In the present paper, we will show that a vortex dipole
can penetrate the interface in a two-component BEC, in
which quantized vortices in one component are transferred
to the other component. A vortex dipole also disappears or
disintegrates at the interface. These behaviors depend on
the incident velocity of the vortex dipole and the atomic
scattering lengths which determine the interfacial tension and
the width of the interface. For some parameters, the cores of
the vortex dipole after the penetration are occupied by the other
component. When only one vortex is occupied, the occupying
fraction tunnels and oscillates between the members of the

vortex pair. In a trapping potential, a rich variety of vortex
dynamics can be observed.

This paper is organized as follows. In Sec. II we give the
basic formalism. Section III contains a numerical demonstra-
tion of the dynamics of vortex dipoles in an ideal system and
a discussion of the parameter dependence of the dynamics.
In Sec. IV we investigate the dynamics of vortex dipoles in a
trapped BEC. Section V provides conclusions to this study.

II. FORMULATION OF THE PROBLEM

We consider a two-component BEC in mean-field theory.
The dynamics of the macroscopic wave functions ψ1 and ψ2

of components 1 and 2 are described by the Gross-Pitaevskii
(GP) equation,

ih̄
∂�1

∂t
=

(
− h̄2

2m1
∇2+V1+G11|�1|2+G12|�2|2

)
�1, (1a)

ih̄
∂�2

∂t
=

(
− h̄2

2m2
∇2+V2+G22|�2|2+G12|�1|2

)
�2, (1b)

where mj is an atomic mass, Vj is an external potential,
and Gjj ′ = 2πh̄2ajj ′ (m−1

j + m−1
j ′ ) with ajj ′ being the s-wave

scattering lengths between atoms in components j and j ′
(j,j ′ = 1,2). The wave function is normalized as

∫ |�j |2d r =
Nj , where Nj is the number of atoms in component j .

For simplicity, we restrict ourselves to quasi-2D systems
in the following analysis. The system is assumed to be tightly
confined in the z direction by a potential Vzj (z) and the wave
function is reduced to the form �j (r) = φj (z)ψj (x,y), where
φj (z) is the normalized wave function of the ground state
for the potential Vzj (z). Multiplying Eq. (1) by φj (z) and
integrating it with respect to z, we have the effective 2D GP
equation,

ih̄
∂ψ1

∂t
=

(
− h̄2

2m1
∇2

⊥+V⊥1+g11|ψ1|2+g12|ψ2|2
)

ψ1, (2a)

ih̄
∂ψ2

∂t
=

(
− h̄2

2m2
∇2

⊥+V⊥2+g22|ψ2|2+g12|ψ1|2
)

ψ2, (2b)

where ∇2
⊥ is the 2D Laplacian, V⊥j (x,y) = Vj (r) − Vzj (z),

and

gjj ′ = Gjj ′

∫
|φj |2|φj ′ |2dz. (3)
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We assume that the interaction parameters gjj ′ satisfy the
immiscible condition,

g11g22 < g2
12. (4)

We solve the effective 2D GP equation (2) numerically.
The initial state is the ground state obtained by the imaginary-
time propagation of Eq. (2), i.e., i in the left-hand sides of
Eqs. (2) is replaced with −1. The imaginary- and real-time
propagations are obtained using the pseudospectral method
[13]. The computational size is large enough that the boundary
condition does not affect the results.

III. DYNAMICS OF VORTEX DIPOLES IN
AN IDEAL SYSTEM

We first consider an ideal system to study the dynamics of
vortex dipoles, where the trapping potential is absent and the
interface between the two components is straight along the y

axis. For simplicity, we assume m1 = m2 and g11 = g22 ≡ g.
The width of the interface is characterized by the parameter

� ≡ g12

g
− 1. (5)

For 0 < � � 1, the density distribution with the boundary
condition limx→−∞ n1 = limx→∞ n2 = n0 is given by [14]

nj (x) � n0

2

[
1 + (−1)j tanh

√
2�x

ξ

]
, (6)

where n0 is the density far from the interface and ξ =
h̄/(mgn0)1/2 is the healing length. The width of the interface
w is thus proportional to ξ/

√
�. The time is normalized as

t̃ = tvs/ξ , where vs = (gn0/m)1/2 is the sound velocity.
A vortex dipole is generated by the method proposed

in Ref. [15] (see Fig. 3 in Ref. [15]). When an attractive
Gaussian potential produced by a red-detuned laser beam is
displaced in a quasi-2D BEC, a vortex dipole is created in
front of the potential and “launched” in the direction of the
displacement [15]. We create a vortex dipole in component 1
using a Gaussian potential with magnitude V0 > 0 and width
W as

V⊥1 = VG ≡ −V0 exp

{
− [r − r0(t)]2

W 2

}
. (7)

The position r0(t) is linearly displaced between the times t = 0
and t = T , and a vortex dipole is launched from the potential
toward the direction of r0(T ) − r0(0). The velocity of a vortex
dipole can be controlled by the parameters V0 and W , and
the function r0(t). The Gaussian potential is located far from
the interface, and its motion does not affect the dynamics near
the interface. The dynamics of a vortex dipole therefore depend
only on its velocity and not on each parameter in Eq. (7).

Figure 1 demonstrates the typical penetration dynamics
of a vortex dipole through an interface. A vortex dipole is
generated in component 1 and propagates in the +x direction,
which is perpendicular to the interface. We note that the
vortex dipole in component 1 is accompanied by a “ghost
vortex dipole” in component 2, and they are located in the
same position (arg ψ1 and arg ψ2 at t̃ = 0 in Fig. 1). As the
vortex dipole propagates through the interface region, the ghost
vortex dipole in component 2 is substantiated (|ψ2|2/n0 at
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FIG. 1. (Color online) Dynamics of normalized density profiles
|ψj |2/n0 and phase profiles arg ψj for g11 = g22 and � = g12/g11 −
1 = 10−3. The velocity of the incident vortex dipole is vin = 0.31vs,
where vs is the sound velocity. The direction of the vortex dipole
propagation is indicated by the arrows in the left panels, and the
circulations of vortices are indicated by the arrows in the right panels.
The time is normalized as t̃ = tvs/ξ , where ξ is the healing length.
The origin of time t̃ = 0 is taken arbitrarily. The field of view of each
panel is 120ξ × 30ξ .

t̃ = 100 in Fig. 1) and then the vortex dipole is completely
transferred to component 2 (|ψ2|2/n0 at t̃ = 200 in Fig. 1).
After passing through the interface, the vortex dipole in
component 1 becomes a ghost (arg ψ1 at t̃ = 200 in Fig. 1).

Figure 2 shows the case of a thinner interface (larger �)
and a slower vortex dipole compared with those in Fig. 1.
When a vortex dipole approaches the interface, the straight
interface is curved due to the forward atomic flow in front
of the vortex dipole (|ψ1|2/n0 at t̃ = 0 in Fig. 2). The vortex
dipole then significantly deforms the interface (|ψj |2/n0 at
t̃ = 140 and t̃ = 160 in Fig. 2), which creates a new vortex
dipole in component 2. The vortex dipole created in component
2 then propagates in component 2, whose cores are occupied
by component 1 (t̃ = 300 in Fig. 2). Generation of such a
“coreless vortex dipole” by a moving potential is reported in
Ref. [16]. If the incident velocity of the vortex dipole is slightly
lower, a greater fraction of component 1 is taken away from
the interface, which forms an elliptic “bubble” of component
1 moving through component 2, as in Fig. 1 of Ref. [17].

Figure 3(a) shows the dynamics for an incident velocity vin

lower than that in Fig. 2 with the same �. As the vortex dipole
approaches the interface, the distance between the vortices
increases and the interface is upheaved [t̃ = 320–360 in
Fig. 3(a)]. When the vortices touch the interface, the interface
is disturbed and the disturbance propagates along the interface
[t̃ = 400–440 in Fig. 3(a)]. In this dynamics, vortices are not
transferred to component 2, and the vortex penetration as in
Figs. 1 and 2 does not occur.

In Fig. 3(b), the velocity of the vortex dipole is lower and
the width of the interface is thinner than for Fig. 3(a). Near
the interface, the vortex and antivortex separate and move
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FIG. 2. (Color online) Dynamics of normalized density profiles
|ψj |2/n0 and phase profiles arg ψj for � = 0.05 and vin = 0.12vs.
The direction of the vortex dipole propagation is indicated by the
arrows in the left panels, and the circulations of vortices are indicated
by the arrows in the right panels. The field of view of each panel is
120ξ × 30ξ .
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FIG. 3. (Color online) Dynamics of normalized density profile
|ψ1|2/n0 of component 1 for (a) � = 0.05 and vin = 0.088vs and
(b) � = 0.2 and vin = 0.039vs. The field of view of each panel is
60ξ × 160ξ .

along the interface in opposite directions. This behavior of
vortices is similar to that of classical point vortices near a rigid
wall. For an inviscid, incompressible, and irrotational fluid,
the trajectories of point vortices are given by [9]

1

x2
+ 1

y2
= 4

d2
, (8)

where d is the distance between incident vortices and the
wall is located at x = 0 or y = 0. According to Eq. (8), the
distance between the trajectories and the wall approaches d/2
asymptotically, which roughly agrees with the trajectories of
the vortices in Fig. 3(b).

A vortex dipole moving toward an interface thus shows a
variety of dynamics as shown in Figs. 1–3, which depend on
the incident velocity vin of a vortex dipole and the parameter
�. Figure 4 shows the parameter dependence of the dynamics
of a vortex dipole. The penetration of a vortex dipole across
the interface occurs for large vin and small �. For small vin and
large �, a vortex dipole behaves as if the interface is a rigid
boundary. The region in which a vortex dipole disappears,
disturbing the interface, is located between these regions.

The parameter dependence in Fig. 4 can be understood
qualitatively. A vortex dipole (VD) cannot penetrate the
interface, when the energy of the vortex dipole EVD �
2πh̄2n0m

−1ln(d/ξ ) [18] is much smaller than the energy
needed to deform the interface, Einterface ∼ σd, where σ is
the interfacial tension coefficient. Using the expression for the
interfacial tension coefficient in Refs. [14,19], σ = gn2

0ξ�1/2,
which is valid for � � 0.3, the inequality EVD � Einterface

reduces to

w � d, (9)

where w ∼ ξ/
√

� is the width of the interface and ξ � d

is assumed. Equation (9) indicates that the penetration of
a vortex dipole is prohibited for large � and small vVD,
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FIG. 4. (Color online) Dependence of the dynamics of a vortex
dipole on � and vin. The region of “Penetration (empty core)”
corresponds to the penetration dynamics of a vortex dipole as shown
in Fig. 1. In the region of “Penetration (occupied core)” the cores of
a vortex dipole after the penetration are occupied by component 1, as
in Fig. 2. The regions of “Interface disturbance” and “Disintegration”
correspond to the dynamics shown in Figs. 3(a) and 3(b), respectively.
The circles indicate the parameters used in Figs. 1–3.
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FIG. 5. (Color online) Incident velocity vin of a vortex dipole
versus outgoing velocity vout after the penetration across the interface
for � =0.01 (circles), 0.05 (squares), and 0.1 (triangles). The line
indicates vin = vout.

which is in agreement with Fig. 4. We also expect that the
penetration of a vortex dipole is prohibited when the velocity
vCW of the capillary wave (CW) on the interface is much larger
than the velocity of a vortex dipole vVD � h̄/(md), since the
disturbance of the interface spreads out rapidly before the
vortex dipole is transferred across the interface, as shown in
Fig. 3(a). The dispersion relation of the capillary wave, ω2 =
σk3/(2mn0), gives vCW ∼ [σk/(mn0)]1/2, and the inequality
vCW � vVD again leads to Eq. (9). In fluid mechanics, the
ratio of inertial force to the surface or interfacial tension force
is called the Weber number, defined by We = ρv2�/σ , where ρ

is the mass density, v is the characteristic velocity, and � is the
characteristic length. The substitution of ρ = mn0, v = vVD,
and � = d gives We ∼ w/d, and therefore the penetration of
a vortex dipole is prohibited for We � 1.

Figure 5 shows the relation between the incident velocity vin

and outgoing velocity vout of a vortex dipole before and after
the penetration of the interface. For a sufficiently large incident
velocity, the outgoing velocity exceeds the incident velocity.
This is understood from the relation between the energy EVD

and velocity vVD of a vortex dipole,

EVD ∼ 2πn0h̄
2

m
ln

d

ξ
� 2πn0h̄

2

m
ln

h̄

mξvVD
, (10)

i.e., the velocity vVD is larger for smaller energy EVD. When
passing through the interface, a vortex dipole loses energy by
disturbing the interface, and therefore the velocity increases.
In Fig. 5, vout rapidly falls to � vin for a small vin, which
corresponds to the “Penetration (occupied core)” region in
Fig. 4. In this parameter region, the energy is given by

EVD ∼ 2πn0h̄
2

m
ln

h̄

mξvout
+ 1

2
mcorev

2
out, (11)

where mcore is the mass of component 1 occupying the cores
of a vortex dipole after the penetration. Since mcore rapidly
increases with a decrease in vin in this parameter region, and
since the vout dependence of the right-hand side of Eq. (11) is
dominated by the second term, vout rapidly falls with a decrease
in vin.
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FIG. 6. (Color online) (a),(b) Snapshots and (c),(d) stroboscopic
images of the normalized density profiles |ψj |2 for � = 0.05, v =
0.13vs, and the incident angle tan−1 0.4. In (c) and (d), the images from
t̃ = 360 to t̃ = 1200 are superimposed at time intervals of �t̃ = 40.
The images in the dashed circles in (a) and (b) correspond to those in
(c) and (d), respectively. The direction of vortex dipole propagation is
indicated by the arrows. The field of view of each panel is 50ξ × 120ξ

in (a) and (b) and 120ξ × 80ξ in (c) and (d).

We also examined various incident angles and found an
interesting phenomenon. Figure 6 shows the dynamics for
oblique incidence of a vortex dipole. As shown in Figs. 6(a)
and 6(b), the vortex dipole penetrates the interface in a manner
similar to Fig. 2. After that, a fraction of component 1
occupying the vortex cores of component 2 oscillates between
the two cores [Fig. 6(c)]. This phenomenon is due to the
tunneling of a fraction of component 1 in an effective double-
well potential produced by the vortex cores of component 2. If
the distance between a vortex and antivortex of a vortex dipole
after the penetration is larger, the tunneling rate is smaller and
no oscillation is observed in the relevant time scale even when
only one core is occupied by component 1 (data not shown).

IV. DYNAMICS OF VORTEX DIPOLES IN
A TRAPPED SYSTEM

We next study the dynamics of a two-component BEC con-
fined in a quasi-2D axisymmetric harmonic trap mjω

2(x2 +
y2)/2. The system is tightly confined in the z direction by
a harmonic potential mjω

2
zz

2/2, and the effective interaction
coefficient in Eq. (3) has the form gjj ′ = [ωz/(2πω)]1/2Gjj ′ .
We assume that the trap frequencies are the same for both
components and that the gravitational sag is negligible. In
the following simulations, we use ω = 2π × 25 Hz and ωz =
2π × 1.25 kHz. We employ the |F = 1,mF = −1〉 state of
87Rb for component 1 and the |F = 2,mF = −2〉 state of 85Rb
for component 2, where a11 = 99aB and a12 = 213aB with aB

being the Bohr radius. In the experiment reported in Ref. [20],
the scattering length of 85Rb atoms, a22, was controlled using
the magnetic Feshbach resonance. We assume here that a22

is tuned to a22 = 250aB > a11, and component 2 surrounds
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FIG. 7. (Color online) Snapshots of the density profiles |ψj |2 of
the dynamics for T = 1.0 ms. The inset magnifies the phase profile
arg ψ2 in the dashed square. The arrows in the inset indicate the
directions of circulation. The unit of density is 8.4 × 1011 cm−2. The
field of view of each panel is 54.3 × 54.3 μm2.

component 1 in the ground state. The total number of atoms is
4 × 104 with an equal population in each component.

We create a vortex dipole by the same method [15] as
in the previous section, i.e., the attractive Gaussian potential
in Eq. (7) is applied to the inner component (component 1).
The Gaussian potential with intensity V0 = −200h̄ω and waist
W = 1.09 μm is moved as

x0(t) =
{
X0 − ut (0 � t � T ),
X0 − uT (t > T ), (12)

with X0 = 4.36 μm, u = 1.1 mm/s, and y0 = 0. The velocity
of a vortex dipole is controlled by varying T . We first
prepare the ground state for x0 = X0 by the imaginary-time
propagation method [Fig. 7(a)] and then switch to real-time
propagation.

Figure 7 shows the time evolution of the system for T =
1.0 ms, for which a vortex dipole with velocity �1.2 mm/s
is created and launched in the −x direction [Fig. 7(b)]. The
vortex dipole then penetrates the interface [Fig. 7(c)]. After the
penetration, the cores of the vortex dipole are slightly occupied

| ψ  | | ψ  |1 2
2 2

| ψ  |1
2

| ψ  |2
2

φ

0.005

0.03

0

0

−π

π

2

(b) t= 29ms

(c) t= 42ms

(d) t= 55ms

y

x

(a) t= 17ms

FIG. 8. (Color online) Snapshots of the density profiles |ψj |2 of
the dynamics for T = 1.4 ms. The white arrows indicate the directions
of propagation. The insets magnify the phase profile arg ψ2 in the
dashed squares. The arrows in the insets indicate the directions of
circulation. The unit of density is 8.4 × 1011 cm−2. The field of view
of each panel is 54.3 × 54.3 μm2.

by component 1 [see the left panel of Fig. 7(c)]. When the
vortex dipole reaches the edge of the condensate [Fig. 7(d)],
the vortices disintegrate and move in the opposite directions
along the circular edge (data not shown), as observed in the
experiment in Ref. [2].

Figure 8 shows the case of T = 1.4 ms, which produces
a vortex dipole with velocity �1.1 mm/s. The vortex dipole
penetrates the interface [Fig. 8(a)], and the pair of vortices
merges, in which component 1 contained in the cores also
merges to become a droplet [Fig. 8(b)]. The droplet then
turns back to the center, forming a vortex-antivortex pair in
component 2 [Fig. 8(c)]. The directions of circulation of the
vortex pair in Fig. 8(c) are opposite to those in Fig. 8(a).
When the droplet reaches the inner component, it eventually
disappears and the interfacial wave remains [Fig. 8(d)].

The behaviors of the vortices in Fig. 8 can be understood as
follows. The fraction of component 1 dragged into component
2 experiences a force toward the center. When the vortex
dipole moves outward [Fig. 8(a)], it experiences a force in
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FIG. 9. (Color online) Snapshots of the density profiles |ψj |2 of
the dynamics for T = 2.4 ms. The white arrow indicates the direction
of propagation. The inset magnifies the phase profile arg ψ2 in the
dashed square. The arrows in the insets indicate the directions of
circulation. The unit of density is 8.4 × 1011 cm−2. The field of view
of each panel is 54.3 × 54.3 μm2.

the direction opposite to the propagation, and the pair of
vortices approach each other due to the Magnus effect (see
Fig. 9 of Ref. [15]). When the droplet is pushed [Fig. 8(c)], the
flow around the droplet forms a vortex dipole. If the droplet
propagated further without reaching the interface, it would
split into two droplets (as in Fig. 2 of Ref. [17]).

Figure 9 shows more complicated dynamics, where a
vortex dipole with velocity �0.9 mm/s is produced with
T = 2.4 ms. In this case, the penetration does not occur and
the vortex dipole disappears at the interface. The interface is
disturbed and the disturbance propagates along the interface
[Figs. 9(b) and 9(c)]. Interestingly, the disturbance refocuses at
the opposite side of the circular interface and a vortex dipole is
created in component 2, which propagates in the +x direction
[Fig. 9(d)].

V. CONCLUSIONS

We have investigated the dynamics of quantized vortex
dipoles in phase-separated two-component BECs. Solving the
GP equation numerically, we found that a vortex dipole can
penetrate an interface between the two components (say, from
component 1 to component 2), in which quantized vortices
in component 1 are transferred to component 2 (Figs. 1 and
2). The cores of the transmitted vortex dipole in component
2 are almost empty (Fig. 1) or occupied by component 1
(Fig. 2). When the incident velocity is low or the width of
the interface is thin, a vortex dipole cannot penetrate the
interface and the vortex dipole disappears, disturbing the
interface [Fig. 3(a)], or the vortex and antivortex disintegrate
and move along the interface [Fig. 3(b)]. Through systematic
numerical simulations, we obtained the parameter dependence
of the dynamics (Fig. 4) and the relation between incident and
outgoing velocities (Fig. 5). When a vortex dipole penetrates
the interface at an oblique angle, the cores of the vortex dipole
in component 2 are occupied by component 1 asymmetrically,
followed by oscillation of component 1 between the cores due
to tunneling.

We also found a variety of dynamics for a trapped system
(Figs. 7–9). After the penetration of the interface, vortices
of a vortex dipole disintegrate and move around (Fig. 7)
or change to a bubble, falling back to the inner component
(Fig. 8). When a vortex dipole cannot penetrate the interface,
it disturbs the interface and disappears. In some cases, the
disturbance of the circular interface focuses at the opposite
side and reproduces a vortex dipole (Fig. 9). These predicted
phenomena can be observed in, e.g., a Feshbach-controlled
85Rb-87Rb BEC confined in a tight pancake-shaped trap.
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