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Binding and structure of tetramers in the scaling limit
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The momentum-space structure of the Faddeev-Yakubovsky (FY) components of weakly bound tetramers is
investigated at the unitary limit using a renormalized zero-range two-body interaction. The results, obtained
by considering a given trimer level with binding energy B3, provide further support to a universal scaling
function relating the binding energies of two successive tetramer states. The correlated scaling between the
tetramer energies comes from the sensitivity of the four-boson system to a short-range four-body scale. Each
excited N th tetramer energy B

(N)
4 moves as the short-range four-body scale changes, while the trimer properties

are kept fixed, with the next excited tetramer B
(N+1)
4 emerging from the atom-trimer threshold for a universal

ratio B
(N)
4 /B3 = B

(N)
4 /B

(N+1)
4 � 4.6, which does not depend on N . We show that both channels of the FY

decomposition [atom-trimer (K type) and dimer-dimer (H type)] present high-momentum tails that reflect the
short-range four-body scale. We also found that the H channel is favored over the K channel at low momentum,
when the four-body momentum scale largely overcomes the three-body scale.
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I. INTRODUCTION

A limit cycle in physics [1] refers to a model-independent
way to look for a manifestation of a hidden scale, one in which
a correlation between physical quantities is geometrically
rescaled and replicates itself. Limit cycles are shown to
exist even in simple quantum three-boson systems [2–4],
manifested for large two-body scattering lengths as well as
for short-range interactions. They follow the 1970 Efimov
key prediction [5] of geometrically separated, weakly bound,
three-boson states near the scattering threshold, confirmed
by recent experiments in cold-atom traps [6–8]. For a more
recent exposition on the experimental status, see Ref. [9]. The
addition of one more particle to the quantum three-body system
has long challenged this picture [10–13]. Recent theoretical
works [14–21] motivated by cold-atom experiments [22–24]
have revived this issue. The actual relevance in identifying
simple universal relations in few-body binding laws, with the
corresponding experimental possibilities, have been discussed
by Modugno [25] in a recent perspective article on this matter.

In Ref. [26] we reported a different dimension of this
problem by establishing a universal correlation among the
binding energies of two successive tetramer states between two
Efimov trimers through precise numerical calculations within
a zero-range interaction at the unitary limit (zero two-body
binding). It was shown that such tetramer states are related to
an unsuspected limit cycle not constrained by Efimov physics
or by three-body properties. Tetramers hitting the atom-trimer
threshold, leading to resonant recombination losses in this
channel, are signatures of a new limit cycle. Furthermore,
other four-boson observables close to the unitary limit can
exhibit correlations not constrained by the low-energy, two-
and three-boson properties. Recombination rates, atom-trimer
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or dimer-dimer scattering lengths, can move near the Feshbach
resonance (FR) independently of the two- and three-body
properties. The appearance of few-body forces in the open
channel, due to the coupling with the closed channel, can
drive the four-body physics [15]. Indeed, there is recent
experimental evidence, reported by Nakajima et al. [27], of
a three-body force acting in the open channel near the FR in a
three-component mixture of a 6Li cold gas.

An appropriate way to directly probe the universal
properties of a few-boson system at low energy near the
unitary limit is to present results in terms of scaling functions
correlating pairs of observables, within a renormalized
zero-range two-body interaction. In this way, no effect
can be claimed to originate from a particular form of the
short-range interaction between the particles, as evidenced by
the three-body universal scaling function derived in Ref. [2].
As shown in this case, the regularization parameter in the
renormalized zero-range approach can be directly associated
with a three-boson physical property, in addition to a two-body
observable, such as the scattering length. The concept of
scaling functions, which is used to evidence universal
properties of three-boson systems close to the unitary limit,
is extended to four-boson systems in Ref. [26], as well as in
the present work. Within this context, we study the sensitivity
of tetramer properties to a four-boson scale by using the
Faddeev-Yakubovsky (FY) formalism [28,29] with zero-range
two-body interactions. Therefore, independently of the choice
of the three-body scale that fixes the trimer properties [15],
a four-body regularization parameter (four-body scale) is
introduced in the FY formalism. The new short-range scale
indeed has effects on four-boson physics, which appears as
universal correlations between four-boson low-energy s-wave
observables not constrained by the trimer properties. The
four-body quantities change as long as the new scale varies.

Previous conclusions for the nonexistence of a proper
four-body scale rely on a strong suppression of the short-range
physics, beyond that already accounted for in the three-boson
system. Indeed, by estimating the trace of the kernel of the four-
body equation in momentum space, Amado and Greenwood
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[10] showed that there is no infrared divergence, which led
them to conclude against the existence of the Efimov effect in
the case of four or more particles. However, the momentum
integrals should also implicitly have an ultraviolet cutoff
(the four-body one) to regulate them. Note that according to
Weinberg’s eigenvalue criterion [30], the divergence of the
trace is a necessary condition for an infinite number of bound
states. However, in the kernel of the FY equation, this criterion
can only by applied when considering the trimer in the ground
state. More explicitly, in case of ultraviolet divergence of the
four-body kernel, by moving a four-body scale in relation
to the three-body one, an infinite number of tetramer states
emerges from the threshold, but the number is restricted by the
energy interval between trimers (when the reference trimer is
an excited one), such that it can be infinite only in case the
given trimer is the ground state.

It is also instructive to recall other pioneering four-body
calculations that have verified the possibility of Efimov-like
behavior in four-body systems, such as the works of Kröger and
Perne [11] and Naus and Tjon [13]. Conclusions drawn within
the nuclear physics context are obviously limited, in view of
the strong nuclear repulsion of the potential core, such that the
possible observation of a four-body scale, independent from
the three- and two-body ones, is suppressed. It explains why the
4He and the triton binding energies are strongly correlated with
a fixed slope, as verified by Tjon [31]. In our understanding
of the four-body problem, two parameters are not enough
(which determines trimer properties) to describe the four-
boson system. Our results imply that the correlation between
the tetramer and trimer binding energies forms a family of
Tjon lines with slopes depending on the new four-boson scale.
To exemplify that, we have shown a four-boson universal
correlation among the energies of two successive tetramers
appearing between two consecutive Efimov states [26]. The
correlation exhibits a dependence on a new scale not fixed
only by the trimer properties. In order to directly address this
novel universal behavior, we have performed a number of
calculations of tetramer properties within a zero-range model
to show how the dependence on the new short-range scale is
evidenced through their structure in momentum space.

The tetramer energies can be presented in a scaling plot
where the behavior of a four-body scale can be easily verified
in comparison with other relevant few-body scales [26].
The existence of a short-range four-body scale, which is
independent of the two- and three-body scales, is expressed in
terms of scaling functions or correlation between observables.
Once the short-range parameters are eliminated in favor
of physical quantities, the renormalized results appear as
correlations between the four-body observables with fixed
dimer and trimer properties.

In the present work we provide details for the approach
that lead us to report [26] a universal correlation between
the energies of two successive tetramers. As is thoroughly
presented in the next sections, we establish by our numerical
investigations that a new short-range parameter is necessary to
fix the properties of the four-boson system in the unitary limit.
Our conclusions are supported by precise numerical solutions
of the four-boson FY integral equations in momentum space
for a zero-range two-body interaction [15], as well as by an
analysis of the four-body wave function.

The paper is organized as follows. In Sec. II we present the
FY formalism within a renormalized zero-range interaction.
The relevant scales are introduced in the formalism through
a subtractive renormalization approach. In Sec. III the scaling
functions for the binding energies of trimers and tetramers
are discussed, following Refs. [2] and [26]. Numerical results
close to the unitary limit are also reported in this section.
In Sec. IV we present our main results for the structure of
universal tetramers. We include in this section an extended
analysis of the low- and high-momentum structures of the
atom-trimer [(A + T) or K-type] and dimer-dimer [(D + D)
or H -type] components of the FY decomposition to pin down
where the manifestation of the short-range four-body scale is
more evident. The behavior of the four-body FY components
of the wave function is presented in this section. Finally,
in Sec. V we present our conclusions with perspectives
in relation to possible experimental observations. Three
appendices supply further details regarding our approach.
In Appendixes A and B we have details on the four-body
formalism and total wave function in momentum space. In
Appendix C we discuss the stability and convergence of our
numerical approach, and give some details on the Lanczos-type
procedure for solution of the coupled FY equations.

II. FADDEEV-YAKUBOVSKY FORMALISM

The treatment of four-body problems is quite well known
in quantum-scattering theory, following the original Faddeev
formulation of the three-body systems [28], later on extended
to N -particle scattering by Yakubovsky [29]. The actually
known Faddeev-Yakubovsky formalism has been considered
by several authors in their effort to solve different aspects of
four-body systems in nuclear and atomic physics. In addition
to the works on four-body systems already cited in the In-
troduction, we can also mention several other reference works
concerning details of the bound-state four-body FY formalism,
such as Refs. [32–41] and references therein. Alternatively, in
the solution of four-body systems with separable interactions,
several authors (exemplified by Refs. [42–45]) have applied
the Alt-Grassberger-Sandhas formalism [46], in which the
t-matrix components are used instead of the wave functions.

Here we describe the FY formalism for bound states of
four identical bosons by considering general separable two-
body interactions. Within our approach, the form factors of
the separable potential are conveniently replaced by pointlike
interactions within a renormalized zero-range model where the
three- and four-body scales are introduced.

A. Bound-state equations and notation

In a four-body (4B) system (with particles i, j , k, and l)
there are 18 different coordinate systems, each one associ-
ated with a specific two-body partition (see Appendices A
and B). Basically, by considering the arrangements of the
corresponding two- and three-body subsystems, two different
partitions are possible: K type (A + T), where a single particle
is bound to a three-body subsystem, and H type (D + D),
where two dimers are bound. Clearly, as we know from the
Faddeev formalism, each three-body subsystem also has three
atom-dimer partitions.

We present below the FY formalism with our notation,
which is used along the next sections. The bound state of four
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particles which interact via pairwise forces Vij is given by the
Schrödinger equation,

|�〉 = G0

∑
i<j

Vij |�〉 =
∑
i<j

|ψij 〉, (1)

where |ψij 〉 = G0Vij |�〉, G0 = (E − H0)−1 is the free four-
body resolvent and H0 stands for the free Hamiltonian. The
above components satisfy

|ψij 〉 = G0tij
∑
kl �=ij

|ψkl〉

= G0tij (|ψik〉 + |ψil〉 + |ψjk〉 + |ψjl〉 + |ψkl〉), (2)

where the two-body transition operator is tij . The FY decom-
position of |ψij 〉 reads∣∣Kl

ij,k

〉 = G0tij (|ψik〉 + |ψjk〉),∣∣Kk
ij,l

〉 = G0tij (|ψil〉 + |ψjl〉), (3)

|Hij,kl〉 = G0tij |ψkl〉,
where |Kl

ij,k〉 and |Hij,kl〉 correspond, respectively, to K-type
and H -type partitions. The Faddeev components of the wave
function

|ψij 〉 = ∣∣Kl
ij,k

〉 + ∣∣Kk
ij,l

〉 + |Hij,kl〉 (4)

are reconstructed through FY components.
Every |ψij 〉 component contains two K-type and one

H -type configurations. Therefore, the total wave function |�〉
contains twelve different K-type chains and six H -type chains,
leading to 18 independent FY components. By considering
identical bosons, the four-body wave function |�〉 has to be to-
tally symmetric. As a consequence, all 12 K-type components
are identical in their functional form with particles permuted.
The same is true for the six H -type components. Thus it is
sufficient to consider only two independent FY components
corresponding to the K- and H -type partitions, |K〉 ≡ |Kl

ij,k〉
and |H 〉 ≡ |Hij,kl〉. The 18 coupled FY equations, for identical
bosons, shrink to two coupled homogeneous equations,∣∣Kl

ij,k

〉 = G0tijP
[
(1 + Pkl)

∣∣Kl
ij,k

〉 + |Hij,kl〉
]
,

(5)|Hij,kl〉 = G0tij P̃
[
(1 + Pkl)

∣∣Kl
ij,k

〉 + |Hij,kl〉
]
,

where Pkl is the permutation operator for the pair (kl), with P

and P̃ defined by

P = (Pij + Pik)Pjk and P̃ = PikPjl. (6)

The symmetry property of |K〉 under exchange of particles
i and j , and |H 〉 under separate exchanges of particles i,j and
k,l, guarantee that the full wave function

|�〉 = (1 + P + PklP + P̃ )
[
(1 + Pkl)

∣∣Kl
ij,k

〉 + |Hij,kl〉
]

= [1 + (1 + P )Pkl](1 + P )
∣∣Kl

ij,k

〉
+ (1 + P )(1 + P̃ )|Hij,kl〉 (7)

is totally symmetric. In order to get insight on how the short-
range four-body scale is reflected in the bosonic wave function
for a zero-range force, we will analyze the momentum structure
of the K and H components. Following this strategy we will
be able to map where the new scale is more relevant to build
the tetramer wave function. For that purpose, we still simplify

FIG. 1. (Color online) Definition of the four-body Jacobi
momenta corresponding to the K- and H -type fragmentations.

the problem using s-wave one-term separable potentials. This
class contains, in particular, the contact interaction.

B. One-term separable potential with s-wave projection

In this section, to simplify the notation we use the particle
labels 1,2,3, and 4. Then we rewrite Eq. (5) as

|K〉 = G0t12P [(1 + P34)|K〉 + |H 〉],
(8)

|H 〉 = G0t12P̃ [(1 + P34)|K〉 + |H 〉].
In order to solve the coupled Eqs. (8) in momentum space,
one should project these equations into standard sets of Jacobi
momenta, corresponding to both K-type (| u1 u2 u3 〉) and H -
type (| v1 v2 v3 〉) partitions, as represented in Fig. 1.

The standard Jacobi momenta for the 4B system can be
defined in terms of the single-particle momentum variables
ki=1,2,3,4, in two possible configurations (K and H type), as
shown in Fig. 1:

u1 = (1/2)(k1 − k2),

u2 = (1/3)[2k3 − (k1 + k2)], (9)

u3 = (1/4)[3k4 − (k1 + k2 + k3)],
v1 = (1/2)(k1 − k2),

v2 = (1/2)[(k1 + k2) − (k3 + k4)], (10)

v3 = (1/2)(k3 − k4),

where we assume identical particles, with mass m = 1. Since
we are interested in the s-wave channel contribution, we
introduce the partial-wave representation of the four-body
projection operators corresponding to each Jacobi momenta
set as

|u〉 ≡ |u1 u2 u3〉, |v〉 ≡ |v1 v2 v3〉. (11)

Within the s-wave projection, we consider the following
completeness relation for both basis sets:∫

D3U |U 〉〈U | = 1, (12)

where U indicates each one of u and v sets, with D3U ≡
U 2

1 dU1U
2
2 dU2U

2
3 dU3. Clearly, the projection operators |u〉

and |v〉 are adequate to expand the |K〉 and |H 〉 components,
respectively. Consequently, the projection of the coupled
equations (8) is given by

〈u|K〉 = 〈u|G0tP (1 + P34)|K〉 + 〈u|G0tP |H 〉,
(13)〈v|H 〉 = 〈v|G0t P̃ (1 + P34)|K〉 + 〈v|G0t P̃ |H 〉.

In the following, the units are such that h̄ = 1 and m = 1.
By considering a one-term separable two-body potential

operator V = λ|χ〉〈χ |, the s-wave two-body t-matrix elements
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can be written, in the K and H representations, by

〈U |t |U ′〉 = 4π
δ(U ′

2 − U2)

U 2
2

δ(U ′
3 − U3)

U 2
3

χ (U1)χ (U ′
1)τ (εU ),

(14)

where the corresponding K-type and H -type Jacobi sets,
{u1,u2,u3} and {v1,v2,v3}, are represented by {U1,U2,U3}. In
the above, τ (εU ) is the reduced scattering amplitude, given by

τ (EU ) ≡
[

1

λ
−

∫
d3p

χ2(p)

EU − p2 + iδ

]−1

, (15)

where, for the K-type and H -type configurations, respectively,
we have

Eu ≡ E − 3u2
2

4
− 2u2

3

3
and Ev ≡ E − v2

2

2
− v2

3 . (16)

Note that Eu and Ev have different expressions in the
K and H representations but are identical when writ-
ten in terms of the single-particle momentum coordinates
ki .

The final expressions for the FY components, derived in
Appendix A through Eqs. (A1)–(A15), are

K(u1,u2,u3) = 4π G0(u1,u2,u3) χ (u1) τ (Eu)
∫ ∞

0
du′

2u
′2
2

∫ 1

−1
dx χ (�1(u2,u

′
2,x))

[
K(�1(u′

2,u2,x),u′
2,u3)

+ 1

2

∫ 1

−1
dx ′{K(�1(u′

2,u2,x),�2(u′
2,u3,x

′),�3(u′
2,u3,x

′)) + H (�1(u′
2,u2,x),�4(u′

2,u3,x
′),�5(u′

2,u3,x
′))}

]
,

H (v1,v2,v3) = 4π G0(v1,v2,v3) χ (v1) τ (Ev)
∫ ∞

0
dv′

3v
′2
3 χ (v′

3)

[∫ 1

−1
dx K(v3,�6(v2,v

′
3,x),�7(v2,v

′
3,x)) + H (v3,v2,v

′
3)

]
, (17)

where the functions �J=1,2...7 are defined by Eqs. (A5), (A10), (A11), (A13), (A14), (A16), and (A17). Equations (17) can be
rewritten within new definitions for the FY components, such as

K(u1,u2,u3) ≡ G0(u1,u2,u3) χ (u1)K(u2,u3),
(18)

H (v1,v2,v3) ≡ G0(v1,v2,v3) χ (v1)H(v2,v3).

Furthermore, by considering a zero-range potential, with χ = 1, the above coupled equations (17) are reduced to the following,
where the need for regularization in the momentum integrals is explicit:

K(u2,u3) = 4π τ (Eu)
∫ ∞

0
du′

2u
′2
2

∫ 1

−1
dx

[
G0(�1(u′

2,u2,x),u′
2,u3)K(u′

2,u3)

+ 1

2

∫ 1

−1
dx ′{G0(�1(u′

2,u2,x),�2(u′
2,u3,x

′),�3(u′
2,u3,x

′))K(�2(u′
2,u3,x

′),�3(u′
2,u3,x

′))

+G0(�1(u′
2,u2,x),�4(u′

2,u3,x
′),�5(u′

2,u3,x
′))H(�4(u′

2,u3,x
′),�5(u′

2,u3,x
′))}

]
,

H(v2,v3) = 4π τ (Ev)
∫ ∞

0
dv′

3v
′2
3

[ ∫ 1

−1
dx G0(v3,�6(v2,v

′
3,x),�7(v2,v

′
3,x))K(�6(v2,v

′
3,x),�7(v2,v

′
3,x))

+G0(v3,v2,v
′
3)H(v2,v

′
3)

]
. (19)

Following an appropriate renormalization scheme for zero-
range interactions, with the regularization parameters directly
associated with observables [2], in the regularization of the
above coupled equations we introduce the short-range three-
and four-body scales that we discuss in the following topic of
this section.

C. Four-boson zero-range bound-state model

In order to aid the understanding of the zero-range model
in the four-boson formalism, we briefly review the main
steps to deal with two- and three-boson equations when we
have two-body zero-range interactions. The momentum-space

representation of a zero-range interaction V (r) = (2π )3 λ δ(r)
is characterized by the two-body coupling constant λ and
a separable potential with constant form factor (〈p|χ〉 = 1).
The matrix element of the two-body transition operator,
〈p′|t(E)|p〉 = τ (E), is obtained by analytical integration of
Eq. (15). The coupling constant λ is fixed by one physical
input, e.g., the position of the two-body pole at E2:

λ−1 =
∫

d3p
1

E2 − p2
= −

∫
d3p

1

|E2| + p2
. (20)

We consider bound or virtual two-body energies, when E2 =
−|E2|—bound when the pole is in the upper part of the
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complex imaginary axis of the momentum plane (iκB), with
corresponding energy in the first Riemann sheet (E2 = −κ2

B),
and virtual when the pole is in the lower part of the complex
imaginary axis (-iκv), with the energy in the second Riemann
sheet (E2 = −κ2

v ). As we are going to consider one case or

the other, both κB and κV are labeled as
√

B2. Therefore the
corresponding scattering lengths are given by a = ±1/

√
B2

(+ for bound, and − for virtual), with the renormalized
two-body t matrix given by

τ (E) = 1/(2π2)√|E2| − √−E
= 1/(2π2)

±1/a − √|E | . (21)

The above procedure is enough to render finite the scattering
amplitude, providing cancellation of the linear divergence of
the momentum integral.

1. Subtractive regularization technique

The subtraction technique used to define the two-body scat-
tering amplitude can be generalized to three-boson systems.
The need for a new parameter beyond a is demanded by the
Thomas collapse [47] of the three-particle ground state, when
the two-body interaction range r0 goes to zero. Such collapse
is also associated with the Efimov phenomenon by observing
that in both cases |a|/r0 → ∞ [48]. The Thomas collapse is
avoided at the expense of regularizing the kernel of the three-
body equation, which is done by introducing a subtraction at
an energy scale −μ2

3. Together with the two-body scattering
length, this procedure determines the low-energy three-boson
properties. The regularization of the momentum integration
is done by the subtracted form G0(E) − G0(−μ2

3) in substi-
tution to the free three-body Green’s function G0(E). The
regularizing energy parameter μ2

3 is also called a “three-body
scale” in view of its direct association to a three-body physical
observable (scale) in the renormalization procedure. See, e.g.,
Ref. [57] for a review on the physical scales and the subtractive
regularization technique.

By adding a fourth particle to the three-body system,
within the same zero-range two-body interaction, another
regularization is required in the corresponding formalism due
to new terms in the coupled integral equations, not directly
identified with the three-body kernel. This regularization is
followed in a similar way as for the three-boson case—by

introducing one more regularizing parameter (“four-body
scale”), μ2

4, in the FY formalism. This new scaling parameter
appears in the integrands associated with the presence of the
fourth particle in order to allow the complete regularization of
all the momentum integrals. Among the 18 FY components,
only the first three (i.e., ijk + l,jki + l, and kij + l) will
fully describe the three-body (3B) system (ijk), where the 3B
scaling parameter μ2

3 enters in the subtracted form of the free
Green’s function. The 4B scaling parameter μ2

4 enters in the
subtracted form of the Green’s function that is present in the
remaining 15 components. Therefore in the three components
associated with the 3B system, the regularization is done by

G0(E) −→ G
(3)
0 (E) ≡ G0(E) − G0

(−μ2
3

)
, (22)

with the new scale appearing in the regularization of the other
15 components:

G0(E) −→ G
(4)
0 (E) ≡ G0(E) − G0

(−μ2
4

)
. (23)

Summarizing our regularizing approach: the physical scales
of the four-body problem are the energies of the dimer, one
reference trimer, and one reference tetramer. The subtractive
procedure adds the regularization parameters μ3 and μ4 to
the kernel of the FY equations, which are correlated to the
physical three- and four-body scales. The dependence on the
subtraction points is eliminated in favor of two observables,
which in our case are the values of the trimer and tetramer
reference energies. The elimination of the dependence on the
subtraction point is possible as evidenced by the existence of
correlations between four-boson s-wave observables. When
presented in terms of dimensionless quantities, the correlation
between two consecutive tetramer energies is indeed given
by a limit cycle. This correlation, presented in Ref. [26] and
further explored in the present work, is in fact consistent with
results obtained by other models.

The present four-body regularization strategy keeps fixed
the minimal requirement of the three-body properties, while
the further freedom is used to introduce the new scale.
Therefore, in the regularization procedure of Eqs. (19), by
introducing the required three- and four-body regularization
parameters as explained above and using Eqs. (22) and (23), we
obtain the corresponding zero-range subtracted FY equations,
which are given by the following:

K(u2,u3) = 4π τ (Eu)
∫ ∞

0
du′

2u
′2
2

∫ 1

−1
dx

[
G

(3)
0 (�1(u′

2,u2,x),u′
2,u3)K(u′

2,u3)

+ 1

2

∫ 1

−1
dx ′G(4)

0 (�1(u′
2,u2,x),�2(u′

2,u3,x
′),�3(u′

2,u3,x
′))K(�2(u′

2,u3,x
′),�3(u′

2,u3,x
′))

+ 1

2

∫ 1

−1
dx ′G(4)

0 (�1(u′
2,u2,x),�4(u′

2,u3,x
′),�5(u′

2,u3,x
′))H(�4(u′

2,u3,x
′),�5(u′

2,u3,x
′))

]
, (24)

H(v2,v3) = 4π τ (Ev)
∫ ∞

0
dv′

3v
′2
3

[
G

(4)
0 (v3,v2,v

′
3)H(v2,v

′
3)

+
∫ 1

−1
dx G

(4)
0 ((v3,�6(v2,v

′
3,x),�7(v2,v

′
3,x))K(�6(v2,v

′
3,x),�7(v2,v

′
3,x))

]
.
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The physical picture behind the regularization leading
to (24) can be described as follows. The three-body scale
parameterizes the short-range physics in the virtual propa-
gation of the interacting three-boson subsystem within the
four-body system. The four-body scale parameterizes the
short-range physics beyond the three-body scale, explored in
the four-boson virtual-state propagation between two different
fully interacting three-body or disjoint two-body clusters. It is
worthwhile to stress that the first term in the right-hand side
of the equation for K(u2,u3) is the three-boson bound-state
equation, when all the other terms are dropped. Thus it is
expected that such a term should carry the 3B scale, while one
could think that the other terms do not require regularization.
However, as shown in [15], all the other terms still need to
be regularized in order to avoid the 4B ground-state collapse.
Although the same regularizing parameter could also be used
in all the terms, the freedom to choose it differently is in
our hands; the constraint of introducing the trimer properties
does not require any further assumption but the given form
of the first term in the right-hand side of the equation for
K(u2,u3). The physical conditions in cold atom traps that
allow us to explore a short-range four-boson independent scale,
when approaching the Feshbach resonance, are discussed in
Ref. [26].

III. BINDING ENERGIES OF UNIVERSAL TRIMERS
AND TETRAMERS

In this section, before considering our numerical results
obtained for the FY bound-state equations (24), we provide a
brief discussion on scaling functions, starting with the three-
boson case (next section) and moving to tetramer systems, in
Sec. III B. After we set up the concept of a scaling function,
we present detailed numerical results for the tetramer binding
energies, with a comparison with other recently available
calculations. The Lanczos-type procedure for solution of the
coupled FY equations is shown in Appendix C, where we
also give some details on the stability and convergence of our
numerical approach.

A. Trimers in the scaling limit

The three-body system is sensitive to the physics at short
ranges, which is parameterized by μ3. After this scale was
recognized [2], it was shown that the change of the three-
body scale in respect to the two-body one (e.g., 1/a) can
be clearly revealed by expressing the energies of the Efimov
trimers in a single curve, which defines a scaling functionF (N)

3 ,
which allows the energies of the full sequence of weakly bound
trimers to be built. Thus the energies of successive trimers are
correlated by [2]√√√√B

(N+1)
3 − B2

B
(N)
3

≡ F (N)
3

(
±

√
B2

B
(N)
3

)
, (25)

written in terms of dimensionless quantities. For convenience,
in (25) we define B2 ≡ B2 for bound two-body systems (plus
sign, or a > 0) and B2 ≡ 0 for virtual states (minus sign, or
a < 0).

Few cycles are enough to reach a universal function
independent on N ; i.e., in the limit N → ∞ it reaches a
renormalization-group invariant limit cycle [1]. At the critical
values, B

(N+1)
3 = B2 (for bound two-body) and B

(N+1)
3 = 0

(for virtual two-body), the scaling function (25) vanishes:
F (N)

3 (±
√

B2

B
(N)
3

) = 0. In this limit, the solution for a bound

two-body system (+ sign) is given by B
(N)
3 � 6.925B2, and

the solution for a virtual two-body system (− sign) is given by
B

(N)
3 � 1141Bv

2 , where Bv
2 is the virtual state energy [2,49].

We observe that the scaling law (25) is one among many
possible model-independent correlations between three-body
observables for short-ranged interactions. We should also
point out that range effects can become relevant as |a|/r0

decreases. This is evidenced by the finite-range numerical
results from other authors, presented in the scaling plot
displayed in Ref. [2]. (On range effects and universal properties
of three-body systems, see also Ref. [50].) Therefore range
effects will affect Eq. (25) and the above critical values of
B

(N)
3 .

Evidence of Efimov cycles, with a period of 22.7, in the
values of the two-body scattering length a at the peak of
the three-body recombination were observed in a cold-atom
experiment by the Innsbruck group [22], as well as in other
recent experiments reported in [9]. These results gave a
response to a quite old discussion on the possible realization
of the Efimov effect in real physical systems. The Efimov
effect was formulated in the nuclear physics context, when
considering the solutions of the three-body Faddeev equations
in the limit of infinitely large two-body scattering lengths.
Since then, the possible existence of Efimov states in nature
have been considered in several works, where the most
promising one was the calculations done by Cornelius and
Glöckle for a system with three atoms of 4He [51]. Discussions
of this matter were revived recently with the advances in
cold-atom laboratories, where by using Feshbach resonance
techniques it is possible to vary the two-body scattering length
from zero to infinite (positive or negative) values.

B. Tetramers in the scaling limit

Following a complete analogy with the three-body case,
we now show evidence for the existence of a limit cycle for
the binding energies of successive tetramers. Therefore by
considering a shallow dimer (bound or virtual), we introduce
a scaling function for the energies of two successive tetramers
between two trimers, as√√√√B

(N+1)
4 − B3

B
(N)
4

≡ F (N)
4

(√
B3

B
(N)
4

; ±
√

B2

B3

)
. (26)

For the present purpose, the calculations are restricted to bound
tetramers below the ground trimer, although the results are
valid for tetramers attached to different trimers [26].

The scaling function (26) has the dependence on a four-
body scale independent of the three- and two-body ones. Due
to the flexibility of our model it is transparent how to obtain
it. The FY equations (24) are solved for μ3 fixed while μ4

is varied. In the unitary limit, the solutions of (24) depend
only on the ratio μ4/μ3, with observables given in units of
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μ3. Eliminating the dependence of the tetramer energies on
the ratio μ4/μ3 by writing the energy of the (N + 1)th state
as a function of the energy of the N th tetramer, the scaling
function (26) is constructed, where the dependence on μ3 is
removed in favor of B3. As no other scales are present in (24),
a scaling function such as (26) seems possible. It remains to be
seen whether Eq. (26) is independent of N , which is discussed
in the next section.

We observe that tetramers below a generic trimer are
constrained to be between the two successive Efimov trimers.
However, below the ground-state trimer the tetramer collapses
as μ4/μ3 → ∞ [15], as it is exemplified in Table I(A), for
scale ratios above 200 in the unitary limit.

C. Numerical results close to the unitary limit

The numerical calculations with the renormalized zero-
range model require a definition of the relevant scales. They
correspond to the two-, three-, and four-body scales given by
a−1, μ3, and μ4, and obviously for a fixed scattering length
and trimer scale one can move μ4 to investigate its effect on
the spectrum of tetramer ground and excited states.

In Table I we listed our numerical results for tetramer
ground- and excited-state binding energies. In part (A) the
results at unitary limit B2 = 0 are given for different scale
ratios from μ4/μ3 = 1–400. According to the obtained results
for tetramer binding energies, μ4/μ3 � 1.6 is the threshold for
the first tetramer excited state, μ4/μ3 � 21 is the threshold for
second tetramer excited state, and close to μ4/μ3 ≈ 240 for
the third tetramer excited state should appear. At these critical
values of scale ratios where B

(N+1)
4 = B3 with B2 = 0, the

scaling function (26) vanishes,

F (N)
4

(√
B3

B
(N)
4−c

; 0

)
= 0 , (27)

with the solutions approaching B
(N)
4−c � 4.6B3 for each cycle,

i.e., N = 0 and 1, as we have calculated up to three tetramers
below the trimer. The limit cycle is approached quite fast, as
verified in the three-boson case [2]. In the critical condition
(27) we have one tetramer at the atom-trimer scattering
threshold, which allows for a resonant atom-trimer relaxation
in trapped cold-atom gases at the Feshbach resonance.

In Tables I(B) and I(C), we show the numerical results
for positive and negative scattering lengths, respectively, with√

B2/B3 = ±√
0.02. From these results it is clear that by

comparing with the case of infinite scattering length and for
the same scale ratios, the tetramer binding energies for positive
and negative scattering lengths have smaller and larger values,
respectively. The critical condition for atom-trimer resonant
relaxation near the Feshbach resonance has to be corrected as

F (N)
4

(√
B3

B
(N)
4−c

; ±
√

B2

B3

)
= 0 , (28)

and a = ±1/
√

B2 does not vanish. By performing a linear ex-
pansion around a−1 = 0, from the results given in Tables I(B)
and I(C) one has

B
(N)
4−c ≈ 4.6B3[1 − 0.8(a

√
B3)−1]. (29)

TABLE I. Binding energies of ground and excited tetramer states
for different four-body scales and for (A) B2 = 0; (B) bound dimer,
with B2 = 0.02B3; and (C) virtual dimer, with

√
B2 = −√

0.02B3.
In (A) we verify that a third excited tetramer emerges for μ4/μ3 ≈
240. In (B) and (C), for nonzero two-body binding, we have
presented results only for the ground and first excited-state binding
energies.

μ4/μ3 B
(0)
4 /B3 B

(1)
4 /B3 − 1 B

(2)
4 /B3 − 1

1 3.10
1.6 4.70 7.10 × 10−4

5 12.5 0.531
10 24.6 1.44
21 63.5 3.62 3.20 × 10−4

(A) 40 184 7.65 0.203
50 275 9.80 0.365
70 520 12.9 0.629

100 1.04 × 103 20.5 1.17
200 4.06 × 103 50.8 2.86
300 9.11 × 103 102 4.53
400 1.62 × 104 153 6.28

μ4/μ3 B
(0)
4 /B3 B

(1)
4 /B3 − 1

1 2.66
1.76 4.24 9.8 × 10−4

5 10.0 0.421
20 45.9 2.77
40 139 6.10

(B) 80 506 13.0
200 2.86 × 103 39.5
300 6.00 × 103 69.3
400 9.81 × 103 104

μ4/μ3 B
(0)
4 /B3 B

(1)
4 /B3 − 1

1 3.62
1.7 5.91 0.014
5 15.4 0.658
20 74.8 4.18

(C) 40 236 9.46
80 873 20.6
200 5.02 × 103 64.5
300 1.06 × 104 115
400 1.73 × 104 174

The dependence of the tetramer energies with the ratio
μ4/μ3 in the unitary limit is presented in Fig. 2 by using
results of Table I(A). The collapse of the tetramer states by
increasing the short-range four-body momentum scale with
respect to the three-body one is seen. As for 1/a = 0, only
two scales define the tetramer state; the four-boson binding
increases with respect to the trimer one by either increasing
μ4 or decreasing μ3. The three tetramer states for N = 0, 1,
and 2 show an increase of the binding energies roughly as μ2

4.
A similar scaling appears for the trimer binding energy with
μ2

3. The ratio of B4/B3 gives the slope of the Tjon line, and
it is not a constant as thought previously. As a matter of fact,
it can be considered as a parameter measuring the four-body
scale.
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(μ4 / μ3)2
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4(N
)  / 

B
3(0

) N=0

N=1

N=2

FIG. 2. (Color online) The first three tetramer energy levels at
unitary limit, in units of the trimer ground state, are shown as functions
of (μ4/μ3)2, where μ4 and μ3 are, respectively, the four- and three-
body regularizing scaling parameters.

In order to compare directly the numerical results for the
three- and four-body limit cycle, we present the Fig. 3 with two
panels, (a) and (b). The three-body Efimov states are shown
in (b), with the energies given in units of the trimer scaling
parameter μ2

3. The corresponding four-body Efimov-like states
are given in (a), when considering a ground-state trimer in the
unitary limit. The dependencies of B

(N)
4 with B3 are given

with the energies in units of the tetramer energy parameter
μ2

4 for N = 0, 1, and 2 (with the fixed trimer parameter
μ3 = 1). We illustrate the main qualitative phenomenon of
tetramers emerging from the atom plus trimer threshold: by
decreasing B3, an increasing number of tetramers become
bound. A similar phenomenon is shown in the panel (b) for
trimers in terms of a dimer energy, which is the Efimov effect.
In our calculations we first consider tetramers below a trimer in
the ground state, such that the tetramer spectrum is not limited
from below and can collapse as we increase the four-body scale
in relation to the three-body one. In this case, the number of
excited tetramer levels can increase with no limit. However, for
a given general excited trimer, the applicability of our results is
restricted to a region where the trimer energy varies by a factor
of about 515 (the Efimov ratio in the unitary limit). Therefore,
between two successive trimer states at most three tetramers
can be found.

The results for the four-boson binding energies, plotted
in Fig. 1(a), exhibit a limit cycle, which expresses the
universal behavior of the energies with a moving four-body
scale parameter. The curves shown in this figure reduce to a
single curve when they are plotted as the correlation between
successive tetramer energies, as presented in Fig. 4 for M = 4,
where we consider the scaling plot in the unitary limit. The

scaling function F (N)
4 (

√
B3/B

(N)
4 ; 0) was built considering up

to the third excited state. As in the case of trimer Efimov
cycles, the numerical results for tetramers also present a
very rapid convergence toward a four-boson limit cycle. For

comparison, we also present F (N)
3 (

√
B2/B

(N)
3 ), which has the

10-6 10-4 10-2 1
B3

(0)

10
-6

10
-4

10
-2

1

B
4(N

)

N=0

N=1

N=2

B
2
=0

4
2 / μ

42
 / 

μ

10-6 10-4 10-2 1

B2

B
3(N

)

N=0

N=1

N=2

 / μ 3
2

 / 
μ2 3

1

10
-6

10
-4

10
-2

(a)

(b)

FIG. 3. (Color online) In (a) we have the tetramer energy levels
N = 0,1,2, as functions of the trimer ground-state energy for B2 = 0.
For comparison, in (b) we have the first Efimov trimer levels as
functions of B2. The energy units are μ2

4 in (a) (where μ2
3 = 1) and

μ2
3 in (b). In both cases, the threshold is given by the diagonal line.

value of 1/22.7 when B2 vanishes. The three-body scaling
function, identified inside the plot by M = 3, was derived
in Ref. [2], being compared directly with the corresponding
four-body scaling function, identified by M = 4. The dashed
part of the tetramer scaling curve presented in Fig. 4, where√

B3/B
(N)
4 < 1/22.7, is not accessible for the excited tetramer

energies belonging to the tetramer spectrum that is obtained
for a given excited trimer. This restriction implies that a
meaningful infinite number of tetramer levels is only possible
when considering the trimer in the ground-state level.

Let us consider the unitary limit (when we have the
geometrically spaced trimer levels), to resume the global
picture suggested by our model. By increasing the tetramer
scale with respect to the trimer one, as a new excited tetramer
emerges from the threshold, the less excited ones will slide
down, moving in the direction of the next deeply bound trimer.
Actually these tetramers, between two trimers, are resonances
decaying to an atom and a trimer. They will dive into the
complex plane through the atom-trimer scattering cut with
their width increasing as the four-body scale is incremented.
This qualitative discussion deserves further investigation from
the point of view of the complex analytical structure of the
four-body scattering equations. Our picture suggests that,
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2
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FIG. 4. (Color online) The four- and three-body scaling functions
are represented, respectively, by M = 4 and M = 3. The energies are
rescaled in terms of BN

M , where N represents the corresponding energy
level in both cases (N = 0 is the ground state). The behavior of the
excited trimer (M = 3) and tetramer (M = 4) energies is shown as
the corresponding subsystem energy (B2 or B3) varies. In the case of
M = 4, B2 is fixed to zero and the dashed part is only reachable by
tetramers below the ground-state trimer.

within the unitary limit, at most three tetramer resonances
lie between two successive trimers.

In Fig. 5, to verify the universality of the four-boson scaling
function (26) and for comparison, we include results obtained

0.3 0.35 0.4 0.45 0.5

√
⎯⎯⎯
B3 / B4

(N) 

0

0.05

0.1

√⎯
⎯

⎯
⎯

⎯
⎯

( B
4(N

+
1)

-B
3)

 / 
B

4(N
)

B2 =0.02 B3 (a > 0)

B2 =0.0044 B3 (a > 0)

B2 =0.002 B3(a > 0)
B2 =0 
B2 =0.02 B3 (a < 0)

Ref. [19]
Ref. [20]
Ref. [17]
Ref. [17] Supp.
Ref. [16]
Ref. [16] (a>0)
Ref. [16] (a<0)
Ref. [16] (interpolation to 1/a = 0)
Ref. [21]
Ref. [14]

+
++++++

+

FIG. 5. (Color online) Our results for the four-boson scaling
function, reported in [26], are displayed in the limited region where
more recent results are available. The plots are shown for B2 = 0
(solid-black curve) and in four cases with B2 �= 0 [three cases with
bound dimers, B2/B3 = 0.02, 0.0044, 0.002, and one case with a
virtual dimer,

√
B2/B3 = −√

0.02], as indicated inside the frame. In
the case of B2 = 0, this figure refers to the right-hand-side corner of
Fig. 4 for M = 4. The results were explicitly verified numerically for
N = 0 and N = 1, considering the energies B

N=0,1,2
4 in case B2 = 0;

and for N = 0 in the other cases where B2 �= 0. The symbols refer to
other model calculations (as indicated) near the unitary limit.

TABLE II. Binding-energy ratio of tetramer ground and excited
energies to a trimer level [B (0)

4 /B3,B
(1)
4 /B3 − 1], where the results of

Refs. [17,19] refer to different trimers.

Ref. [52] Ref. [14] Ref. [21] Ref. [16] Ref. [20]

[4.46, 0.06] [4.075, 0.003] [4.41, 0.01] [5.0, 0.01] [4.55, 0.003]

Ref. [17] Ref. [19]

[4.58, 0.01] [4.5175, 0.00106]
[5.88, 0.10] [4.6041, 0.00217]
[4.58, 0.006] [4.6104, 0.00227]
[5.58, 0.03] [4.6108, 0.00228]
[4.55, 0.001] [4.9929, 0.00997]

– [4.6114, 0.00228]

in other recent calculations.1 In Table II we have listed the
available results of other authors for binding-energy ratios of
ground and excited tetramers close to the unitary limit. Within
those results we should also point out that the ones given in
Refs. [17,19] are for more than one trimer level. In our results
with zero-range interaction, we include not only the exact limit
B2 = 0, but also nonzero two-body energies (bound or virtual),
as shown in Tables I(A)–I(C). The sensibility of the scaling
function with variation of the two-body conditions is shown
when nonzero two-body energies are used. As it is shown, the
exact unitary limit scaling plot is shifted to the right-hand side
(left-hand side) when considering nonzero two-body bound
(virtual) state energies.

The results of available calculations for tetramer energies
plotted in the way we are suggesting put in evidence the effect
of the four-body scale. Consistent with our findings, they slide
along the universal correlation shown in Fig. 5. The sensitivity
of our defined scaling plot, with respect to variations of a two-
body observable such as the scattering length or range effects,
is also consistent with the results obtained by other authors.

In order to verify the sensitivity of the results (obtained
for B2 = 0) with small changes in the dimer energies, we
calculate the corresponding scaling functions for a few cases
with B2 �= 0. In the given results, we have three cases for bound
two-body systems, where B2/B3 = 0.02, 0.0044, and 0.002,
and one case for a virtual two-body state with

√
B2/B3 =

−√
0.02. In Fig. 5 we have also included the Hammer and

Platter results for both a virtual and real dimer close to unitary
limit (see Fig. 2 of Ref. [16]). Despite the observed difference
in the position of both results in our plot, it is remarkable
that they both fit nicely in our scaling curve, meaning that
the four-boson model of Ref. [16] is sensitive to a four-body
scaling parameter, carried out implicitly by the momentum
cutoffs used in their calculations.

Although we calculate tetramer energies below the trimer
ground state, such that the dashed part of Fig. 4 is also verified,
the results for tetramers attached to any other Efimov state
do not change the present conclusions on the existence of a

1For an update of Fig. 5, with more recent results of other authors,
see T. Frederico, A. Delfino, M. R. Hadizadeh, L. Tomio, and M. T.
Yamashita, e-print arXiv:1201.6586.
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proper four-body scale or its universal manifestation through
the scaling function (26), calculated with the zero-range model
regularized within our scheme. This fact is evidenced in Fig. 5.
Distinct, short-ranged interaction models [16,17,19–21] show
that the energies of successive tetramers linked to the tower
of Efimov states scale according to the plot, thus verifying the
universality of the four-boson limit cycle.

IV. STRUCTURE OF UNIVERSAL TETRAMERS

The effect of the four-body scale on the structure of
tetramers at the unitary limit is detailed in this section. We
show results for the FY components in momentum space for
different scale ratios as well as for momentum probability
densities. A close inspection of the reduced FY components,K
and H, will show how μ4 manifests through their dependence
on the different Jacobi momenta. An analogous study will be
presented for the momentum probability densities.

A. Reduced Faddeev-Yakubovsky components

The reduced FY components K(u2,u3) and H(v2,v3) are
shown to spread out up to momentum of the order 1, due
to the relevance of the four-body momentum scale μ4 to
regularize the kernel of the set of FY equations (24) at short
distances. Both components have narrow peaks appearing at
small momenta, which are even more pronounced for higher
scale ratios μ4/μ3 and more excited states. They follow a

typical tetramer momentum scale,
√

B
(N)
4 /μ4. These features

are evident in Figs. 6 and 7. For a given ratio μ4/μ3, the
ground-state wave function is more expanded in momentum
space in comparison to excited states. The K and H channels,
and consequently, the total wave function for smaller tetramer
bindings, should extend to larger distances as compared to the
corresponding ones with larger binding.

The peaks at small momentum are due to the nearest trimer
pole in the three-boson interacting resolvent appearing in the
K-channel equation (24). This leads to a dominance of K over
H for small momentum when the tetramer energy approaches
B3.

In Figs. 6 and 7 we detail the sections of K(u2,u3) and
H(v2,v3) with one of the Jacobi momenta being zero for
scale ratios of 5, 50, and 200. The interpretation of the Jacobi
momentum with respect to the relevant scales is necessary
to proceed in the analysis of these plots. The variable u2

is the relative momentum of particle 3 with respect to the
center of mass of the pair (1,2), which belongs to a trimer
configuration (see Fig. 1). Note that in our derivation of the
FY equation for the zero range potential, we have chosen to
factor the dependence of the relative momentum of the (1,2)
pair in the definition of the reduced amplitudes, as given by
Eq. (18). Naively, for kinematical reasons, it is reasonable to
expect that, within the tetramer, the average distance between
two bosons is larger than the average distance between the
center-of-mass (c.m.) of the virtual pair to the third particle,
which is larger than the average distance of the virtual trimer
to the fourth particle. The ordering effect comes because the
clusters, being heavier, should have their c.m. closer to the c.m.
of the tetramer. This size ordering has a correspondence
with respect to the momentum variables. In K(u2,u3), the
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FIG. 6. (Color online) The Yakubovsky components K and H
as functions of the Jacobi momenta for scale ratio μ4/μ3 = 5 when
only one four-body excited state exists. In frames (a) and (b) the
components are shown as a function of u2,v2 where u3,v3 = 0,

and in frames (c) and (d) they are shown as a function of u3,v3

where u2,v2 = 0. In (a) and (c) we have results for the ground-
state level and in (b) and (d) for the first excited-state level.
The normalization is such that

∫ ∞
0 du2 u2

2

∫ ∞
0 du3 u2

3 K2(u2,u3) +∫ ∞
0 dv2 v2

2

∫ ∞
0 dv3 v2

3 H2(v2,v3) = 1.

momentum of the fourth particle in respect to the virtual
trimer u3 should explore larger momentum regions than u2,
which is the relative momentum of the third particle with
respect to a pair. An analogous reasoning suggests that the
momentum dependence of H(v2,v3) is such that v2 explores
larger momentum regions than v3 (the relative momentum of
two bosons). These qualitative properties are verified in Figs. 6
and 7.

The plots in Fig. 6 show the reduced FY components for the
ground state, frames (a) and (c), and excited state, frames (b)
and (d), for μ4/μ3 = 5. The high-momentum tails of H(v2,0)
and K(0,u3) with respect to H(0,v3) and K(u2,0) are visible
by comparing frames (a) and (c) in the case of the ground
state, and (b) and (d) for the excited state. By inspecting the
pair of frames (a) against (b), and (c) against (d), we also
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FIG. 7. (Color online) Following the caption of Fig. 6, here we
have the same quantities for μ4/μ3 = 50. In frames (a) and (d) we
have the ground state; in (b) and (e) the first excited state; and in (c)
and (f) the second excited state.

note that all the FY components for the excited state are more
concentrated at lower momentum than the corresponding ones
for the ground state. Although the binding-energy ratio B

(1)
4 /B3

for the excited state is close to 1, the high-momentum tail
bringing the four-body scale is present, giving to this state
the possibility to move as μ4 is changed with respect to μ3.
These qualitative features are supported by the results we have
obtained for the larger scale ratio, such as μ4/μ3 = 50 and
200, where three tetramer states are possible. This behavior is
clearly shown in Fig. 7 for μ4/μ3 = 50.

In all the cases we analyzed, the dependence of u3 in
K(u2,u3) and v2 in H(v2,v3) show that these two variables
explore larger momentum regions than u2 and v3, respectively.
As we have shown,K(u2,0) andH(0,v3) have a less prominent

tail at large momentum than K(0,u3) and H(v2,0). If, for
any reason, the high momentum dependence that appears in
the K and H channel is lessened, the dependence on the
four-body scale will be minimized (may be even completely
removed!). Therefore, an unreasonable selection of cut-off
values in the mapping of momentum variables, which can
happen in particular when a fixed cutoff is being used for
increasing values of the scale ratios, can lead to convergence
in the four-body binding energies rather than collapse. For
the discretization of momentum variables one should not only
consider large enough cut-off values, consistent with those
used in the four-body scale, but also consider a reasonable
number of mesh points in the interval near zero momentum.
Since the iteration of the coupled Eqs. (24) requires a very large
number of multidimensional interpolations on the Yakubovsky
components, we have used cubic-Hermite splines to reach high
computational accuracy.

From the above analysis, represented in Figs. 6 and 7,
we conclude that, as opposed to the general belief stating
that in four-body atomic and nuclear calculations, with model
potentials in the FY scheme, the K channel is always dominant,
we show some cases where the H channel is dominant even
at low momentum. This is shown, in particular, for high scale
ratios μ4/μ3.

B. Momentum probability densities

The tetramer wave function �(u1,u2,u3) fully symmetrized
is built from Eq. (7) using the definitions (18) of the K and
H components in terms of K(u2,u3) and H(v2,v3). In order
to simplify our analysis of the wave function and to obtain
insight as to how the momentum is shared among the Jacobi
coordinates, we introduce the momentum probability densities
n(ui) as

n(ui) = u2
i

∫ ∞

0
duju

2
j

∫ ∞

0
duku

2
k �2(u1,u2,u3);∫ ∞

0
dui n(ui) = 1, (30)

with (i,j,k) = (1,2,3), (2,3,1), and (3,1,2). For reference we
use the variables ui of the K configuration, where u1 is the
relative momentum of a pair, u2 the relative momentum of the
third boson to the center of mass (c.m.) of the pair, and u3 is
the relative momentum of the fourth boson to the c.m. of the
other three (see Fig. 1). As we have discussed in Sec. IV A,
the average values of the momentum variables are ordered as
〈u1〉 < 〈u2〉 < 〈u3〉, which is reflected in momentum densities,
independent of the degree of excitation of the tetramer.

The momentum probability densities n(u1), n(u2), and
n(u3) for scale ratio μ4/μ3 = 50, for ground, first, and second
excited tetramer states, are presented in Fig. 8. In the left
panel we show our results for the probability densities in
units of μ4. Clearly, for all three momentum densities, the
second excited tetramer leads to a very sharp peak close to
zero momentum, whereas for the first excited and ground
tetramers the peak is more wide, which is evident as the size
is inversely correlated to the tetramer binding energy. For the
ground tetramer state the FY components and consequently the
4B total wave function are expanded to a higher momentum
region, and for excited tetramers they are more restricted to the
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FIG. 8. (Color online) Momentum distribution functions n(u1), n(u2), and n(u3), with scale ratio μ4/μ3 = 50, for the ground (N = 0)
and the first two (N = 1,2) excited tetramer levels, normalized as shown in Eq. (30). In the left panels they are given as functions of the
corresponding momentum, where all momenta are in units of the momentum scale μ4. In the right panels, the momentum distributions are

rescaled by the momentum factor βN ≡
√

B
(N)
4 , where N is the tetramer level.

zero momentum region. In the right panel of Fig. 8 we present

the probability densities in momentum units βN ≡
√

B
(N)
4 , for

μ4/μ3 = 50. By considering this scaling factor corresponding
to the energy of each tetramer state, which from Table I varies
two orders of magnitude, the densities are amazingly close.

The tetramer energy can be considered as the physical scale,
which correlates other observables.

One feature of the universal properties of the four-body
wave function is presented in Fig. 9, where we have compared
the momentum distribution functions n(ui) of the two shal-
lowest tetramers for two very different values of μ4/μ3 equal
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FIG. 9. (Color online) Renormalized momentum distributions as
functions of the Jacobi momenta ui=1,2,3, considering the scaling
ratios μ4/μ3 = 5, when there is only one excited state, and μ4/μ3 =
50, when we have two excited states. The units are given by the

momentum factor βN ≡
√

B
(N)
4 . For each momentum component

ui , the corresponding distributions of both scale ratios, when
renormalized to the same maximum value, are shown to reduce almost
to the same final form (the labels inside the frame are just to indicate
the performed calculations).

to 5 and 50. The functions n(ui) were rescaled to the same
maximum value to make transparent their universal form.
The comparison between them clearly confirms a universal
dependence of the momentum distributions on the tetramer
binding energy. Note that these quantities are plotted in terms
of dimensionless quantities in natural units of the length
associated with the tetramer energy.

In Fig. 9 we have shown the renormalized form of
the rescaled distribution functions, considering two different
scale ratios μ4

μ3
= 5 and 50, whereas the distributions are

renormalized to the same maximum value. As we have shown,
the distribution functions have universal shape, independent
of the value of scale ratio. We should also add a remark
that in order to simplify the presentation of Fig. 9, we have
included only the momentum distribution functions for the two
more excited states in the case of μ4

μ3
= 50, whereas the same

universal shape is also obtained for the momentum distribution
functions of the ground state (see Fig. 8). The ground-state
energy ratio is B

(0)
4 /B3 = 275 (see Table I), which means

that B
(0)
4 is about 2.7μ2

3, while for the two excited states,
B

(1)
4 and B

(2)
4 is much smaller than μ2

3. Thus the three-body
regularization scale is far more important to the ground state
than for the excited states, which approach a universal form
for the momentum distribution functions.

C. Tetramer wave function

The calculation of the FY amplitudes K and H , given by
Eq. (18) for form factor unity, with the reduced amplitudes
K and H from the numerical solution of the zero-range
FY integral equations (24), allows the four-boson wave
function to be built fully symmetric by boson exchange. The
necessary permutations to reconstruct the 4B wave function
from the computed K(u1,u2,u3) and H (v1,v2,v3) are given by
introducing permutation operators O with the corresponding

FY amplitudes denoted by KO and HO (see Appendix B).
By computing KO and HO for different O, the 4B total wave
function can be obtained by using Eqs. (B1) or (B2).

For our purposes of presenting graphically the total wave
function, we show plots for the angle-averaged wave function,
where the dependence on the relative angles between Jacobi
momentum ui [i = (1,2,3)] is integrated. Our notation is such
that we still use �(u1,u2,u3) for the angle-averaged wave
function. Instead of the usual normalization, we consider

〈�|�〉 ≡
∫ ∞

0
du1u

2
1

∫ ∞

0
du2u

2
2

∫ ∞

0
du3u

2
3 �2(u1,u2,u3)

= 1. (31)

In Figs. 10–12 we present our numerical results for the
angle-averaged total wave function with scale ratio μ4/μ3 =
50 for the ground, first, and second excited states. The wave
functions are shown as functions of two Jacobi momenta, when
the third one is chosen to be zero. As we did before, the
magnitudes of Jacobi momenta are rescaled by the momentum

factor βN ≡
√

B
(N)
4 (N = 0,1,2). In view of the normalization

condition (31), this momentum scaling implies a rescaling of
the magnitude of the corresponding total wave function by a
factor of β

9/2
N .

The universal form of the 4B wave function is evidenced
in Figs. 10–12 by a proper rescaling with the four-body
energy. Correspondingly, the contour plots are also presented
as functions of two nonvanishing Jacobi momenta, given in
units of βN . Also the momentum density distributions, for
two excited states, present a universal form, i.e., independent
of the binding energies, when the momentum is measured in
units of βN , as shown in Fig. 8. Note that each of the choices
of the vanishing momentum implies a very long wavelength
limit for the fourth particle, indicating the dominance of a
three-body cluster configuration within the four-body system.
This configuration carries the four-body scale information, as
clearly shown by the plots on the wave-function dependence
on the two nonvanishing momentums in units of βN .

V. CONCLUSIONS AND PERSPECTIVES

The momentum-space structure of the FY components of
weakly bound tetramers was thoroughly analyzed at the unitary
limit using a renormalized zero-range two-body interaction,
with three- and four-body scales. Our regularization scheme
allows independent introduction of these two scales, providing
a general framework to investigate the universal properties
of tetramers, which have extended tails in the classically
forbidden region. The step to renormalized results for the
observables is found by introducing scaling functions, which
are written only in terms of dimensionless physical quantities.
These universal scaling functions numerically achieve a limit
cycle.

The universal scaling function correlating two successive
tetramer energies attached to one trimer comes from the
sensitivity of the four-boson system to a short-range four-
body scale. Each excited N th tetramer energy B

(N)
4 moves

as the short-range four-body scale changes while the trimer
properties are kept fixed. We suggest the ratio of B4/B3,
which gives the slope of the Tjon line and is not a constant as
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FIG. 10. (Color online) The magnitude of the 4B total wave function �(u1,u2,u3) as a function of u1 and u2, with u3 = 0, for the scale
ratio μ4/μ3 = 50. The corresponding contour plots are shown for the low-momentum region near the peak of the wave function.

thought before, as a parameter measuring the four-body scale.
At the unitary limit, the successive (N + 1)th tetramer state
emerges from the atom plus trimer threshold for a universal
ratio B

(N)
4 /B3 = B

(N)
4 /B

(N+1)
4 � 4.6, which does not depend

on N . The atom-trimer relaxation resonates when the tetramer
hits the scattering threshold.

We also find that other model results obtained at the unitary
limit, or close to it [16,17,19–21], are quite consistent with
our four-boson scaling plot, giving confidence regarding the
universality of our proposed scaling function. As evidenced by
our results, the independent behavior of the four-body scale
is verified, in particular, when a universal excited four-boson
state pumps out from the atom-trimer threshold as the four-
boson parameter is driven to short distances or to the ultraviolet
momentum region. In the case that both scales are similar,
we confirm that our scaling approach is consistent with the
results of other model calculations. We note that the results
obtained by other groups appear near the threshold region due
to the model assumptions that have been considered, which
are too restrictive and need to be relaxed to allow a wider
variation between the four- and three-body properties. The
suggested scaling plot offers a model-independent way to view
the relation between successive tetramer states, which can be

verified by experiments exploring two-body scattering lengths
very close to the Feshbach resonance, where multiboson forces
are expected to be active [27]. A four-boson short-range inter-
action can drive the four-body scale independently from the
three-body one. Short-range three-body forces accompanied
by different off-shell behaviors of the two-body interaction,
which keep the low-energy two- and three-body properties
unaltered, could provide another possibility to move the
four-body scale in practice.

The four-body scaling plot shows the independent behavior
of a four-body scale (for a fixed three-body one) in a similar
way that the three-body scaling plot, given in Ref. [2], resumes
all the Efimov states obtained by changing the three-body
scale. Next, we should emphasize that the scaling curve
relating two successive tetramer energies is valid not only
for the stable tetramers attached to the ground-state trimer,
but also for the unstable tetramers between two successive
trimers. For such a conclusion we have also performed
resonance calculations of tetramers attached to excited trimers,
which are under detailed numerical analysis to be included
in a future work. We avoid presenting such results in the
present work, mainly because we have considered other
independent and precise calculations supporting our claim of
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FIG. 11. (Color online) As in Fig. 10, the wave function is given in terms of u1 and u3, with u2 = 0.

model independence. In this regard, the recent calculations
performed by Deltuva [19] are consistent with our results and
give confidence on the model independence of the scaling plot
relating the energies of two successive tetramers between two
successive Efimov trimers in the unitary limit. As we have
shown, the effect of scattering length variations is noticeable
and shows a universal pattern, in agreement with calculations
shown in [16], performed within the context of effective
field theory. However, range corrections, which were not
yet explored within a general study considering the trimer
and tetramer interwoven spectra, will certainly have their
importance in explaining how results near the unitary limit
deviate from the calculated scaling function for a zero-range
force. In this respect, range corrections, linear in the two-
body effective range, have already been addressed within an
effective theory treatment of the three-boson problem with
subtracted momentum-space integral equations [53].

The scaling plot representation exhibiting the dependence
on the four-body scale, which is also being confirmed by other
models, shows that the model independence is not fortuitous.
The reason for that comes from the fact that the wave function
of tetramers is largely dominated by configurations where
the bosons are outside the potential range in the classically
forbidden region and depend just on two scales at the unitary

limit. The sensitivity to the short-range scales appears in both
the K and H channel of the FY decomposition, which present
high-momentum tails for any degree of tetramer excitation. We
also found that the H channel is favored over the K channel at
low momentum when the four-body momentum scale largely
overcomes the three-body scale.

The universal form of the wave function is put forward at the
unitary limit by a scaling plot where the probability momentum
densities for different Jacobi momenta are shown in units such
that the tetramer binding energy is 1. We found that the shapes
are independent of the scale ratio and excitation, depending
only on the chosen Jacobi momenta. A simple scaling rule
gives the ordering 〈u1〉 < 〈u2〉 < 〈u3〉, where u1 is the relative
momentum of a pair, u2 is the relative momentum of the third
particle to the pair, and u3 is the relative momentum of the
fourth particle in respect to the three-body subsystem.

Our calculations of tetramer binding energies, with corre-
sponding structure of momentum probability density and wave
functions, provide strong numerical evidence that universal
tetramers can arise from the trimer threshold as the four-body
scale is moved. These results suggest the possibility of a
resonant atom-trimer recombination process near the unitary
limit, i.e., when aAT → ±∞. It is worth noting that the
problem of a scale in the tetramer properties has a long
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FIG. 12. (Color online) As in Fig. 10, the wave function is given in terms of u2 and u3, with u1 = 0.

history. The four-body scale gives rise to new scalings of
tetramer observables which are not determined only by the
two- and three-body properties. We present detailed and
accurate numerical results for the binding and structure of
tetramer states to support our claim, given conveniently within
the framework of scaling functions. As a matter of fact, even
results obtained near the unitary limit, by authors arguing
that no four-body scale is necessary, are consistent with the
universal scaling plot for the tetramer binding energies.

In our numerical results of four-boson bound states, we first
consider the exact unitary limit (1/a = 0) and we next consider
deviations of this limit to bound (a > 0) and virtual (a < 0)
two-body branches. As shown in Figs. 3–5, universal tetramers
can hit the atom-trimer threshold, leading to a resonant
relaxation in this channel. This phenomenon could have been,
but was not, observed in earlier studies by considering the
possibility of a four-body independent scaling behavior near
a Feshbach resonance. This could be done by including, for
example, tunable three- or four-body potentials, which would
allow an independent change of the three- and four-body
spectra. The position of the atom-trimer resonance is not only
a function of the atom-atom scattering and the three-body
scale, but it also depends on the new four-body scale. Our
results do not exclude the resonant dimer-dimer recombination

[54] but also add the possibility of a resonant atom-trimer
recombination.

Finally, we remark that the four-boson scale can be
driven near the Feshbach resonance by induced four-body
forces (coming from the one-channel reduction of the atomic
interaction) [15,27]. Therefore, in this case the Efimov ratio
percolating the tetramer observables is not assured anymore.
Other universal scaling functions can be derived correlating
properties of tetramers, in particular, the one that correlates
the binding energies of tetramers attached to different trimers,
and as well as by extending our framework to the scattering
region. The possibility that tetramers could be formed and
driven in cold-atom laboratories, as has been achieved by
radio frequency association techniques applied successfully
to measure trimer energies [8], will allow experimental
verification of the universal scaling relations between tetramer
properties, exhibiting a new scale beyond the trimer one.
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APPENDIX A: MOMENTUM-SPACE REPRESENTATION
OF FY EQUATIONS

In the following we present some details of the FY compo-
nents in the momentum-space representation. By considering
the completeness relations Eq. (12) between the permutation
operators, we have

〈u|K〉 =
∫

D3u′ 〈u|G0tP |u′ 〉〈u′|K〉

+
∫

D3u′ D3v 〈u|G0tP |u′〉〈u′|v〉〈v|H 〉

+
∫

D3u′ D3u′′ 〈u|G0tP |u′〉〈u′|P34|u′′〉〈u′′|K〉,

〈v|H 〉 =
∫

D3v′ 〈v|G0t P̃ |v′〉〈v′|H 〉

+
∫

D3v′ D3u 〈v|G0t P̃ |v′〉〈v′|u〉〈u|K〉

+
∫

D3v′ D3uD3u′〈v|G0t P̃ |v′〉
× 〈v′|u〉〈u|P34|u′〉〈u′|K〉. (A1)

Therefore to evaluate the above coupled equations (A1), we
need to obtain the following matrix elements:

〈u|G0tP |u′〉, 〈v|G0t P̃ |v′〉, (A2)

〈u|P34|u′〉, 〈u′|v〉, 〈v′|u〉. (A3)

By considering that in the expressions (A2) we have to insert
the two-body matrix elements (14) and that

〈u|P |u′〉 =
∫ 1

−1
dx

δ[u1 − �1(u2,u
′
2,x)]

u2
1

× δ[u′
1 − �1(u′

2,u2,x)]

u′2
1

δ(u3 − u′
3)

u2
3

, (A4)

�1(u2,u
′
2,x) ≡

∣∣∣∣1

2
u2 + u′

2

∣∣∣∣
=

√
1

4
u2

2 + u′2
2 + u2u

′2
2 x, (A5)

〈v|P̃ |v′〉 = δ(v′
1 − v3)

v′2
1

δ(v′
3 − v1)

v′2
3

δ(v′
2 − v2)

v′2
2

, (A6)

the matrix elements in (A2) are given by the following:

〈u|G0tP |u′〉
= G0(u1,u2,u3)

∫
D3u′′〈u|t |u′′〉〈u′′|P |u′〉

= 4π G0(u1,u2,u3)χ (u1)τ (Eu)
δ(u′

3 − u3)

u′2
3

×
∫ 1

−1
dxχ [�1(u2,u

′
2,x)]

δ[u′
1 − �1(u′

2,u2,x)]

u′2
1

; (A7)

〈v|G0t P̃ |v′〉 = G0(v1,v2,v3)
∫

D3v′′ 〈v|t |v′′〉 〈v′′|P̃ |v′〉
= 4π G0(v1,v2,v3) χ (v1) χ (v′

3) τ (Ev)

×δ(v3 − v′
1)

v2
3

δ(v2 − v′
2)

v2
2

; (A8)

〈u|P34|u′〉 = δ(u1 − u′
1)

u′2
1

1

2

∫ 1

−1
dx

δ[u′
2 − �2(u2,u3,x)]

u′2
2

× δ[u′
3 − �3(u2,u3,x)]

u′2
3

, (A9)

where

�2(u2,u3,x) ≡
∣∣∣∣1

3
u2 + 8

9
u3

∣∣∣∣
=

√
1

9
u2

2 + 64

81
u2

3 + 16

27
u2u3x, (A10)

�3(u2,u3,x) ≡
∣∣∣∣u2 − 1

3
u3

∣∣∣∣
=

√
u2

2 + 1

9
u2

3 − 2

3
u2u3x; (A11)

〈u′|v〉 = δ(v1 − u′
1)

v2
1

1

2

∫ 1

−1
dx

δ[v3 − �4(u′
2,u

′
3,x)]

v2
3

× δ[v2 − �5(u′
2,u

′
3,x)]

v2
2

, (A12)

where

�4(u2,u3,x) ≡
∣∣∣∣1

2
u2 + 2

3
u3

∣∣∣∣
=

√
1

4
u2

2 + 4

9
u2

3 + 2

3
u2u3x, (A13)

�5(u2,u3,x) ≡
∣∣∣∣u2 − 2

3
u3

∣∣∣∣
=

√
u2

2 + 4

9
u2

3 − 4

3
u2u3x; (A14)

and

〈v′|u〉 = δ(u1 − v′
1)

u2
1

1

2

∫ 1

−1
dx

δ[u2 − �6(v′
2,v

′
3,x)]

u2
2

× δ[u3 − �7(v′
2,v

′
3,x)]

u2
3

, (A15)

where

�6(v2,v3,x) ≡ 2

3
|v2 + v3|

= 2

3

√
v2

2 + v2
3 + 2v2v3x, (A16)

�7(v2,v3,x) ≡
∣∣∣∣v3 − 1

2
v2

∣∣∣∣
=

√
v2

3 + 1

4
v2

2 − v2v3x. (A17)

APPENDIX B: FOUR-BODY TOTAL WAVE FUNCTIONS
IN MOMENTUM SPACE

The total four-body wave function, which can be written as

|�〉 = (1 + P + P34 + PP34 + P34P + PP34P )|K〉
+ (1 + P + P̃ + P P̃ )|H 〉, (B1)

is composed of 18 FY components, according to the possible
arrangements of the four particles (ijkl). We have 12 of K
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type and 6 of H type, as follows:

ijk + l →

⎧⎪⎨
⎪⎩

ij + k + l ≡ Kl
ij,k

jk + i + l ≡ Kl
jk,i = Pij Pjk Kl

ij,k

ki + j + l ≡ Kl
ki,j = Pik Pjk Kl

ij,k

ij l + k →

⎧⎪⎨
⎪⎩

ij + l + k ≡ Kk
ij,l = Pkl K

l
ij,k

j l + i + k ≡ Kk
jl,i = Pij Pjl K

k
ij,l

li + j + k ≡ Kk
li,j = Pil Pjl K

k
ij,l

ikl + j →

⎧⎪⎨
⎪⎩

ik + l + j ≡ K
j

ik,l = Pjk Pkl K
l
ij,k

li + k + j ≡ K
j

li,k = Pil Plk K
j

ik,l

kl + i + j ≡ K
j

kl,i = Pik Plk K
j

ik,l

jkl + i →

⎧⎪⎨
⎪⎩

jk + l + i ≡ Ki
jk,l = Pij Pjk Pkl K

l
ij,k

lj + k + i ≡ Ki
lj,k = Plk Pkj Ki

jk,l

kl + j + i ≡ Ki
kl,j = Plj Pkj Ki

jk,l

ij + kl →
{
ij + k + l ≡ Hij,kl

kl + i + j ≡ Hkl,ij = PikPjl Hij,kl

ik + j l →
{
ik + j + l ≡ Hik,j l = Pjk Hij,kl

j l + i + k ≡ Hjl,ik = PjkPikPjl Hij,kl

il + jk →
{
il + j + k ≡ Hil,jk = PijPjkPikPjl Hij,kl

jk + i + l ≡ Hjk,il = PijPjk Hij,kl .

In momentum space, we have

〈u|�〉 = 〈u|1|K〉 + 〈u|P |K〉 + 〈u|P34|K〉
+ 〈u|PP34|K〉 + 〈u|P34P |K〉 + 〈u|PP34P |K〉
+ 〈u|1|H 〉 + 〈u|P |H 〉 + 〈u|P̃ |H 〉 + 〈u|P P̃ |H 〉

≡
∑

[KO + HO]; O = 1,P ,P34,PP34, . . . (B2)

where

KO ≡ 〈u|O|K〉 =
∫

D3u′〈u|O|u′〉〈u′|K〉,

=
∫

D3u′〈u|O|u′〉G0(u′
1,u

′
2,u

′
3) χ (u′

1)K(u′
2,u

′
3), (B3)

and

HO ≡ 〈u|O|H 〉 =
∫

D3v′〈u|O|v′〉〈v′|H 〉

=
∫

D3v′〈u|O|v′〉G0(v′
1,v

′
2,v

′
3) χ (v′

1)H(v′
2,v

′
3). (B4)

In the following we present the matrix elements of KO and
HO explicitly:

K1 ≡ 〈u|1|K〉
= K(u1,u2,u3) = G0(u1,u2,u3)K(u2,u3), (B5)

KP ≡ 〈u|P |K〉 =
∫

dx12 K
(
�1

P ,�2
P ,u3

)
=

∫
dx12 G0

(
�1

P ,�2
P ,u3

)
K

(
�2

P ,u3
)
, (B6)

where

�1
P ≡ �1

P (u1,u2,x12) =
∣∣∣∣−1

2
u1 − 3

4
u2

∣∣∣∣
=

√
1

4
u2

1 + 9

16
u2

2 + 3

4
u1u2x12, (B7)

�2
P ≡ �2

P (u1,u2,x12) =
∣∣∣∣u1 − 1

2
u2

∣∣∣∣
=

√
u2

1 + 1

4
u2

2 − u1u2x12; (B8)

KP34 ≡ 〈u|P34|K〉 = 1

2

∫
dx23 K

(
u1,�

2
P34

,�3
P34

)
= 1

2

∫
dx23 G0

(
u1,�

2
P34

,�3
P34

)
K

(
�2

P34
,�3

P34

)
, (B9)

where

�2
P34

≡ �2
P34

(u2,u3,x23) =
∣∣∣∣1

3
u2 + 8

9
u3

∣∣∣∣
=

√
1

9
u2

2 + 64

81
u2

3 + 16

27
u2u3x23, (B10)

�3
P34

≡ �3
P34

(u2,u3,x23) =
∣∣∣∣u2 − 1

3
u3

∣∣∣∣
=

√
u2

2 + 1

9
u2

3 − 2

3
u2u3x23; (B11)

KPP34 ≡ 〈u|PP34|K〉
= 1

2

∫
dx12

∫
dx12,3 K

(
�1

PP34
,�2

PP34
,�3

PP34

)
= 1

2

∫
dx12

∫
dx12,3 G0

(
�1

PP34
,�2

PP34
,�3

PP34

)
×K

(
�2

PP34
,�3

PP34

)
, (B12)

where

�1
PP34

= �1
P

(
u1,u2,x12

)
, (B13)

�2
PP34

= �2
P34

(
�2

P (u1,u2,x12),u3,x12,3
)
, (B14)

�3
PP34

= �3
P34

(
�2

P (u1,u2,x12),u3,x12,3
)
; (B15)

KP34P ≡ 〈u|P34P |K〉
= 1

2

∫
dx23

∫
dx23,1 K

(
�1

P34P
,�2

P34P
,�3

P34P

)
= 1

2

∫
dx23

∫
dx23,1 G0

(
�1

P34P
,�2

P34P
,�3

P34P

)
×K

(
�2

P34P
,�3

P34P

)
, (B16)

where

�1
P34P

= �1
P

(
u1,�

2
P34

(u2,u3,x23),x23,1
)
,

�2
P34P

= �2
P

(
(u1,�

2
P34

(u2,u3,x23),x23,1
)
, (B17)

�3
P34P

= �3
P34

(u2,u3,x23);
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KPP34P ≡ 〈u|PP34P |K〉 = 1

2

∫
dx12

∫
dx12,3

∫
dx12;12,3 K

(
�1

PP34P
,�2

PP34P
,�3

PP34P

)
= 1

2

∫
dx12

∫
dx12,3

∫
dx12;12,3 G0

(
�1

PP34P
,�2

PP34P
,�3

PP34P

)
K

(
�2

PP34P
,�3

PP34P

)
, (B18)

where

�1
PP34P

= �1
P

(
�1

P (u1,u2,x12),�2
P34

[
�2

P (u1,u2,x12),u3,x12,3
]
,x12;12,3

)
, (B19)

�2
PP34P

= �2
P

(
�1

P (u1,u2,x12),�2
P34

[
�2

P (u1,u2,x12),u3,x12,3
]
,x12;12,3

)
, (B20)

�3
PP34P

= �3
P34

(
�2

P (u1,u2,x12),u3,x12,3
)
. (B21)

For the matrix elements of HO, we also need to evaluate
the transformation between the two different representations,
i.e., the K and H type,

H1 ≡ 〈u|1|H 〉 = 1

2

∫
dx23 H

(
u1,�

2
1 ,�

3
1

)
= 1

2

∫
dx23,1 G0

(
u1,�

2
1 ,�

3
1

)
H

(
�2

1,�
3
1

)
, (B22)

where

�2
1 ≡ �2

1(u2,u3,x23) =
∣∣∣∣u2 + 2

3
u3

∣∣∣∣
=

√
u2

2 + 4

9
u2

3 + 4

3
u2u3x23,

�3
1 ≡ �3

1(u2,u3,x23) =
∣∣∣∣1

2
u2 − 2

3
u3

∣∣∣∣
=

√
1

4
u2

2 + 4

9
u2

3 − 2

3
u2u3x23; (B23)

HP ≡ 〈u|P |H 〉
= 1

2

∫
dx12

∫
dx12,3 H

(
�1

P ,�2
P ,�3

P

)
= 1

2

∫
dx12

∫
dx12,3 G0

(
�1

P ,�2
P ,�3

P

)
H

(
�2

P ,�3
P

)
,

(B24)

where

�1
P = �1

P (u1,u2,x12), (B25)

�2
P = �2

1

(
�2

P (u1,u2,x12),u3,x12,3
)
, (B26)

�3
P = �3

1

(
�2

P (u1,u2,x12),u3,x12,3
)
; (B27)

HP̃ ≡ 〈u|P̃ |H 〉 = 1

2

∫
dx23 H

(
�1

P̃
,�2

P̃
,u1

)
= 1

2

∫
dx23 G0

(
�1

P̃
,�2

P̃
,u1

)
H

(
�2

P̃
,u1

)
, (B28)

where

�1
P̃

= �3
1(u2,u3,x23), (B29)

�2
P̃

= �2
1(u2,u3,x23); (B30)

HPP̃ ≡ 〈u|P P̃ |H 〉
= 1

2

∫
dx12

∫
dx12,3 H

(
�1

P P̃
,�2

P P̃
,�3

P P̃

)

= 1

2

∫
dx12

∫
dx12,3 G0

(
�1

P P̃
,�2

P P̃
,�3

P P̃

)
×H

(
�2

P P̃
,�3

P P̃

)
, (B31)

where

�1
P P̃

= �3
1

(
�2

P (u1,u2,x12),u3,x12,3
)
, (B32)

�2
P P̃

= �2
1

(
�2

P (u1,u2,x12),u3,x12,3
)
, (B33)

�3
P P̃

= �1
P (u1,u2,x12). (B34)

APPENDIX C: ON THE NUMERICAL APPROACH

The final set of homogeneous coupled integral equations in
momentum space, after discretization, defines a huge matrix
eigenvalue equation, which is solved by iteration within a
Lanczos-like method. This method is quite efficient in solving
few-body systems. For continuous momentum and angle
variable discretization we have used Gaussian-quadrature grid
points with hyperbolic and linear mappings, respectively. After
considering a convenient mesh distribution to have optimal
numerical stability, the number of grid points found necessary
in mapping the momentum variable was set up to 140. That
was achieved by studying the concentration of the points in
the different relevant regions of momentum integration. For
more details on the general numerical techniques that we are
considering, see also Ref. [55].

Next, we also address problems concerning the accuracy
and precision of the results in the unitary limit.

1. Numerical convergence

The numerical convergence of our results is exemplified
by one case where stability is more difficult to achieve. As
this happens in the excited states of large scale ratios, we
choose the case of μ4/μ3 = 300, in which we can verify the
existence of up to four tetramers. The number of points and,
particularly, their distribution, is quite critical for the accuracy
of the excited-state energies and corresponding FY reduced
amplitudes. In our systematic study to construct the limit cycle
shown in Fig. 5, we are satisfied to achieve ∼1% of deviation
from the converged results. To be clear, we choose to present
in Fig. 13 the convergence with respect to the mesh number of
points for the first and second excited states.

As the corresponding FY components become quite con-
centrated at the momentum origin, in this case the momentum-
space discretization ui is derived from the quadrature Gaussian
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FIG. 13. (Color online) Convergence of numerical results for the first- and second-excited-state energies, in the case that μ4/μ3 = 300.

mesh distribution xi ≡ {−1, + 1} by the following hyperbolic
mapping:

ui = 1 + xi

c1(1 − xi) + c2xi

, (C1)

with c1 ≡ μ4/μ3 and c2 = 0.4. In general, we observe that for
all the cases with smaller scaling ratios, or for excited states
that are not too close to the continuum threshold, i.e., about to
be unbound, 140 points are enough to achieve less than 1% of
inaccuracy, within an appropriate mesh distribution.

2. Iterative Lanczos-type diagonalization algorithm
for solution of the coupled FY equations

The coupled FY integral equations (24) can be schemati-
cally represented as an eigenvalue problem:

k(E) · ψ = λ(E)ψ, (C2)

where the kernel of integral equations k(E) is energy de-
pendent, and λ(E) and ψ are its eigenvalue and eigenvector,
correspondingly. The vector ψ is composed of FY components
as ψ = (KH). The binding energy of the four-body bound state
can be obtained when one of the eigenvalues obtained from
the solution of Eq. (C2) for an input energy becomes one
[λ(E) = 1]. To this aim one should solve the eigenvalue
equation (C2) for a set of input energies.

After discretization of continuous momentum and angle
variables, the kernel of the eigenvalue equation turns into a
huge matrix with dimensionality of 120 × 120 × 120 × 40 ×
40 ∼ 109, where we have used 120 mesh points for Jacobi
momentum variables (with a hyperbolic mapping) and 40 mesh
points for angle variables (with a linear mapping). Considering
that exact solutions of huge matrices by diagonalization are not
so efficient, we avoid such procedures by using a Lanczos-type
technique, which is based on iteration. In this way one can
obtain the eigenvalues and eigenvectors of a huge matrix, from
input energies [56]. In the following, we describe some details
of this technique.

The iteration procedure is performed with a properly
starting vector ψ0 = (K0

H0
), chosen as Gaussian functions for

both K and H components. After N iterations, one obtains the
set of vectors {ψi} = ψ1,ψ2, . . . ,ψN where

ψi = k(E) · ψi−1; i = 1,2, . . . ,N. (C3)

In the iterative diagonalization approach, an orthonormal basis
{ψi} can be built up by following a recursive procedure and
by using the original vector set {ψi}, where

ψi = ci

{
ψi −

i−1∑
j=1

(ψj · ψi)ψj

}
(i = 1,2, . . . ,N ). (C4)

In the above, ci are normalization factors which can be
obtained by orthogonalization of orthonormal basis states
ψi · ψj = δij . By introducing a matrix D, obtained from the
FY components as

Dij = ψi · ψj = (Ki Hi) ·
(
Kj

Hj

)
= Ki · Kj + Hi · Hj = DK

ij + DH
ij , (C5)

where

DK
ij = Ki · Kj =

∫
du2 u2

2

∫
du3 u2

3 Ki(u2,u3)Kj (u2,u3),

DH
ij = Hi · Hj =

∫
dv2 v2

2

∫
dv3 v2

3 Hi(v2,v3)Hj (v2,v3),

(C6)

the normalization factors ci can be obtained as

ci = 1√
Dii − ∑i−1

j=1 N2
ij

. (C7)

The matrix elements Nij are a projection of vectors ψi on ψj ,
i.e., Nij = ψi · ψj ,

Nij = cj

{
Dij −

j−1∑
k=1

Nik · Njk

}
. (C8)

By expanding the original vector ψ in Eq. (C2), in terms of
constructed orthonormal vectors,

ψ =
N−1∑
i=1

gi ψi (C9)

and projecting the eigenvalue equation onto ψj , the huge
dimension of the eigenvalue problem is reduced to a problem
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of much smaller dimension N − 1:

N−1∑
i=1

Mij gi = λ gj (C10)

where

Mij ≡ ψi · k · ψj . (C11)

By defining aij and bij as coefficients of linear expansion of
original vectors in terms of orthonormal vectors and reversely,

ψi =
i∑

j=1

aij ψj , ψi =
i∑

j=1

bij ψj , (C12)

the matrix elements of M can be obtained as

Mij =
i∑

k=1

bik ak+1j , 1 � i,j < N, (C13)

where

aij =
{

Nij j < i

1
ci

j = i.
(C14)

bij =
{

cj

(−∑i
k=j+1 bik akj

)
j < i

1
ci

j = i.
(C15)

The reduced eigenvalue problem, Eq. (C10), can be solved
easily by diagonalization of the matrix M . For a given
input energy, one can obtain a set of eigenvalues and their
corresponding eigenvectors. In order to obtain the physical
binding energy, one should look for an eigenvalue λ = 1 in
the obtained eigenvalue spectrum. Clearly, the eigenvector
corresponding to this eigenvalue gives the coefficients gi .
Therefore, by using the Eq. (C9), one can obtain the physical
eigenvector or the FY components.
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[36] H. Kamada and W. Glöckle, Phys. Lett. B 292, 1 (1992);

H. Kamada et al., Phys. Rev. C 64, 044001 (2001).
[37] A. L. Zubarev and V. B. Mandelzweig, Phys. Rev. C 52, 509

(1995).
[38] I. N. Filikhin, S. L. Yakovlev, V. A. Roudnev, and B. Vlahovic,

J. Phys. A: At. Mol. Opt. Phys. 35, 501 (2002).
[39] R. Lazauskas and J. Carbonell, Few-Body Syst. 34, 105

(2004).
[40] S. Bayegan, M. R. Hadizadeh, and W. Glöckle, Prog. Theor.
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